CS485/685 Lecture 10: Feb 4, 2016

Multi-layer Neural Networks, Error Backpropagation [D] Chapt. 8, [HTF] Chapt. 11, [B] Sec. 5.2, 5.3, [M] Sec. 16.5, [RN] Sec. 18.7

Quick Recap: Linear Models

Linear Regression

Linear Classification

Quick Recap: Non-linear Models

Non-linear classification

Non-linear regression

Non-linear Models

- Convenient modeling assumption: linearity
- Extension: non-linearity can be obtained by mapping x to a non-linear feature space $\phi(x)$
- **Limit:** the basis functions $\phi_i(x)$ are chosen a priori and are fixed
- Question: can we work with unrestricted non-linear models?

Flexible Non-Linear Models

- Idea 1: Select basis functions that correspond to the training data and retain only a subset of them (e.g., Support Vector Machines)
- Idea 2: Learn non-linear basis functions (e.g., Multi-layer Neural Networks)

Two-Layer Architecture

Feed-forward neural network

- Hidden units: $z_j = h_1(\boldsymbol{w}_j^{(1)}\overline{\boldsymbol{x}})$
- Output units: $y_k = h_2(\boldsymbol{w}_k^{(2)}\overline{\boldsymbol{z}})$
- Overall: $y_k = h_2 \left(\sum_j w_{kj}^{(2)} h_1 \left(\sum_i w_{ji}^{(1)} x_i \right) \right)$

Common activation functions h

• Threshold:
$$h(a) = \begin{cases} 1 & a \ge 0 \\ -1 & a < 0 \end{cases}$$

• Sigmoid:
$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

• Gaussian:
$$h(a) = e^{-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^2}$$

• Tanh:
$$h(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

• Identity: h(a) = a

Adaptive non-linear basis functions

- Non-linear regression
 - h_1 : non-linear function and h_2 : identity

- Non-linear classification
 - $-h_2$: non-linear function and h_2 : sigmoid

Weight training

- Parameters: $< W^{(1)}, W^{(2)}, ... >$
- Objectives:
 - Error minimization
 - Backpropagation (aka "backprop")
 - Maximum likelihood
 - Maximum a posteriori
 - Bayesian learning

Least squared error

Error function

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n} E_{n}(\mathbf{W})^{2} = \frac{1}{2} \sum_{n} ||f(\mathbf{x}_{n}, \mathbf{W}) - y_{n}||_{2}^{2}$$

• When
$$f(\mathbf{x}, \mathbf{W}) = \sum_{j} w_{kj}^{(2)} \sigma\left(\sum_{i} w_{ji}^{(1)} x_{i}\right)$$

Linear combo Non-linear basis functions

then we are optimizing a linear combination of nonlinear basis functions

Sequential Gradient Descent

• For each example (x_n, y_n) adjust the weights as follows:

$$w_{ji} \leftarrow w_{ji} - \eta \frac{\partial E_n}{\partial w_{ji}}$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm

Backpropagation Algorithm

- Two phases:
 - Forward phase: compute output z_i of each unit j

- Backward phase: compute delta δ_j at each unit j

Forward phase

- Propagate inputs forward to compute the output of each unit
- Output z_j at unit j:

$$z_j = h(a_j)$$
 where $a_j = \sum_i w_{ji} z_i$

Backward phase

Use chain rule to recursively compute gradient

- For each weight
$$w_{ji}$$
: $\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$

$$-$$
 Let $\delta_j \equiv rac{\partial E_n}{\partial a_j}$ then

$$\delta_{j} = \begin{cases} h'(a_{j})(z_{j} - y_{j}) & \text{base case: } j \text{ is an output unit} \\ h'(a_{j})\sum_{k}w_{kj}\delta_{k} & \text{recursion: } j \text{ is a hidden unit} \end{cases}$$

– Since
$$a_j = \sum_i w_{ji} z_i$$
 then $\frac{\partial a_j}{\partial w_{ji}} = z_i$

Simple Example

- Consider a network with two layers:
 - Hidden nodes: $h(a) = \tanh(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
 - Tip: $tanh'(a) = 1 (tanh(a))^2$
 - Output node: h(a) = a
- Objective: squared error

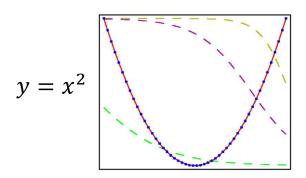
Simple Example

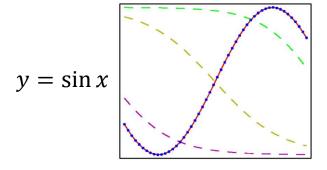
Forward propagation:

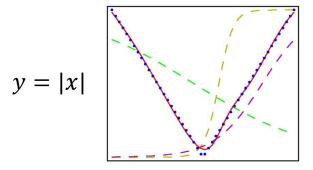
- Hidden units: $a_i = z_i =$
- Output units: $a_k = z_k =$
- Backward propagation:
 - Output units: $\delta_k =$
 - Hidden units: $\delta_i =$
- Gradients:
 - Hidden layers: $\frac{\partial E_n}{\partial w_{ji}}$ =
 - Output layer: $\frac{\partial E_n}{\partial w_{kj}}$ =

Non-linear regression examples

- Two layer network:
 - 3 tanh hidden units and 1 identity output unit







$$y = \int_{-\infty}^{x} \delta(t)dt$$

Analysis

- Efficiency:
 - Fast gradient computation: linear in number of weights
- Convergence:
 - Slow convergence (linear rate)
 - May get trapped in local optima
- Prone to overfitting
 - Solutions: early stopping, regularization (add $||w||_2^2$ penalty term to objective)