Quick Recap for Linear models

Linear Regression: $y = \mathbf{w}^T \overline{\mathbf{x}}$

Linear classification

Mixture of Gaussians

Prior: $Pr(Y) = \pi$ where π is a probability

Likelihood: $\Pr(X|Y) = N(\mu, \Sigma)$ (Gaussian with mean μ and covariance Σ)

Posterior: Pr(Y|X) = kPr(Y) Pr(X|Y)

Logistic Regression

 $\Pr(Y|X) = \sigma(\mathbf{w}^T \overline{\mathbf{x}})$ where σ is the logistic function for binary classification

 $\Pr(Y_k|\boldsymbol{X}) = \frac{\exp(\boldsymbol{w}_k^T \overline{\boldsymbol{x}})}{\sum_j \exp(\boldsymbol{w}_j^T \overline{\boldsymbol{x}})} \text{ softmax function for multiclass classification}$

Thresholded perceptron

 $y = sign(\mathbf{w}^T \overline{\mathbf{x}})$ where sign returns 1 when $\mathbf{w}^T \mathbf{x} \ge 0$ and 0 otherwise

Logistic perceptron

$$\Pr(y) = \sigma(\mathbf{w}^T \overline{\mathbf{x}})$$

Quick recap for non-linear models

Main idea use basis functions $\phi(x)$ to transform the input space in a non-linear fashion Example: to span a polynomial of degree k, use $\phi_1(x) = x$, $\phi_2(x) = x^2$, ..., $\phi_k(x) = x^k$

$$x = 2$$
 \rightarrow $\phi(x) = \begin{pmatrix} x \\ x^2 \\ \dots \\ x^k \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ \dots \\ 2^k \end{pmatrix}$

Non-linear regression: $y = \mathbf{w}^T \phi(\overline{\mathbf{x}})$

Multilayer neural network

Nonlinear classification

Logistic Regression

 $\Pr(Y|X) = \sigma(\mathbf{w}^T \phi(\overline{x}))$ where σ is the logistic function for binary classification

$$\Pr(Y_k|\mathbf{X}) = \frac{\exp(\mathbf{w}_k^T \phi(\overline{\mathbf{x}}))}{\sum_j \exp(\mathbf{w}_j^T \phi(\overline{\mathbf{x}}))} \text{ softmax function for multiclass classification}$$

Thresholded perceptron

 $y = sign(\mathbf{w}^T \phi(\overline{\mathbf{x}}))$ where sign returns 1 when $\mathbf{w}^T \phi(\overline{\mathbf{x}}) \ge 0$ and 0 otherwise

Logistic perceptron

$$Pr(y) = \sigma(\mathbf{w}^T \phi(\overline{\mathbf{x}}))$$

Multi-layer neural networks