CS485/685 Machine Learning Lecture 3: Jan 10, 2012

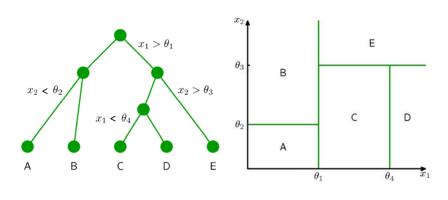
Nearest Neighbour and Statistical Learning [B] Section 2.5.2

CS485/685 (c) 2012 P. Poupart

1

Decision tree with continuous attributes

• Tree partitions the input space



CS485/685 (c) 2012 P. Poupart

Decision tree with continuous attributes

- How do we come up with good partitions?
- Common approach: thresholding
 - Single attribute: $x_j > \theta_j$
 - Multi-attribute: $f(x_1, ..., x_M) > \theta_j$
 - ullet Where f can be linear or non-linear

CS485/685 (c) 2012 P. Poupart

2

Single Attribute Thresholding

- Idea:
 - Discretize continuous attribute into finite set of intervals.
 - Pick thresholds midway between pairs of consecutive values
- Example:

CS485/685 (c) 2012 P. Poupart

Full Tree

- In the limit, single attribute thresholding leads to a full tree with one example per leaf
 - Partition input space into bins or hypercubes
 - Future examples classified according to bins' labels
 - Close to "nearest neighbour" classification
- Picture:

CS485/685 (c) 2012 P. Poupart

5

Nearest Neighbour Classification

• Instead of building tree, find nearest neighbour

$$x^* = argmin_{x'} d(x, x')$$

Label: $y_x \leftarrow y_{x^*}$

• Distance measures: d(x, x')

$$L_1: d(x,x') = \sum_{j}^{M} |x_j - x_j'|$$

$$L_2$$
: $d(x, x') = \sum_{j=1}^{M} |x_j - x_j'|^2$

...

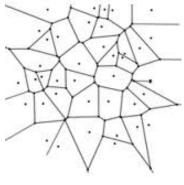
$$L_p: d(x, x') = \sum_j^M |x_j - x_j'|^p$$

Weighted dimensions: $d(x, x') = \sum_{j=1}^{M} c_j |x_j - x_j'|^p$

CS485/685 (c) 2012 P. Poupart

Voronoi diagram

- Partition implied by nearest neighbour
 - Assuming Euclidean distance



CS485/685 (c) 2012 P. Poupart

7

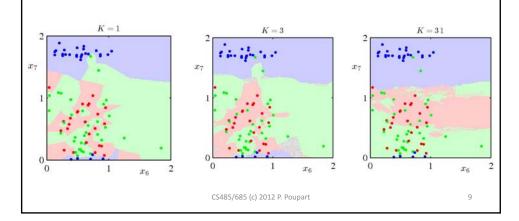
K-nearest neighbour

- Nearest neighbour often instable (overfitting)
- Idea: assign most frequent label among knearest neighbours
 - Let knn(x) be the k-nearest neighbours of x according to distance d
 - Label: $y_x \leftarrow mode(\{y_{x'}|x' \in knn(x)\})$

CS485/685 (c) 2012 P. Poupart

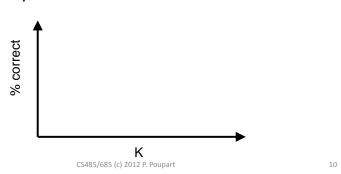
Effect of *K*

- *K* controls the degree of smoothing.
- Which partition do you prefer? Why?



Choosing K

- Best *K* depends on
 - Problem
 - Amount of training data
- Choose *K* by k-fold cross validation



Complexity

- Nearest neighbour computation:
 - Training: no computation (simply store examples)
 - Testing: return label of nearest example
- Complexity with respect to
 - N: size of training set
 - M: number of attributes

	Training	Testing
Decision tree		
Nearest neighbour		

CS485/685 (c) 2012 P. Poupart

11

Statistical Learning

- View: we have uncertain knowledge of the world
- Idea: learning simply reduces this uncertainty

CS485/685 (c) 2012 P. Poupart

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

CS485/685 (c) 2012 P. Poupart

13

Candy Example

- You bought a bag of candy but don't know its flavor ratio
- After eating *k* candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

CS485/685 (c) 2012 P. Poupart

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h_1 : 100% cherry
 - $-h_2$: 75% cherry + 25% lime
 - $-h_3$: 50% cherry + 50% lime
 - $-h_4$: 25% cherry + 75% lime
 - h_5 : 100% lime
- Examples E: evidence about the world
 - $-e_1$: 1st candy is cherry
 - $-e_2$: 2nd candy is lime
 - $-e_3^-$: 3rd candy is lime
 - **...**

CS485/685 (c) 2012 P. Poupart

15

Bayesian Learning

- **Prior:** Pr(*H*)
- Likelihood: Pr(e|H)
- Evidence: $e = \langle e_1, e_2, ..., e_N \rangle$
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

$$Pr(H|e) = k Pr(e|H)Pr(H)$$

CS485/685 (c) 2012 P. Poupart

Terminology

- Probability distribution:
 - A specification of a probability for each event in our sample space
 - Probabilities must sum to 1
- Assume the world is described by two (or more) random variables
 - Joint probability distribution
 - Specification of probabilities for all combinations of events

CS485/685 (c) 2012 P. Poupart

17

Joint distribution

- Given two random variables A and B:
- Joint distribution:

$$Pr(A = a \land B = b)$$
 for all a, b

Marginalisation (sumout rule):

$$Pr(A = a) = \Sigma_b Pr(A = a \land B = b)$$

 $Pr(B = b) = \Sigma_a Pr(A = a \land B = b)$

CS485/685 (c) 2012 P. Poupart

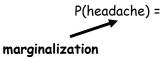
Example: Joint Distribution

sunny ~sunny cold ~cold cold ~cold 0.072 headache 0.008 headache 0.108 0.012 ~headache 0.144 0.576 ~headache 0.016 0.064

P(headacheAsunnyAcold) =

P(~headache\sunny\~cold) =

P(headacheVsunny) =

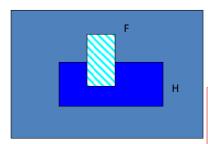


CS485/685 (c) 2012 P. Poupart

19

Conditional Probability

• Pr(A|B): fraction of worlds in which B is true that also have A true



H="Have headache" F="Have Flu"

$$\Pr(H) = 1/10$$

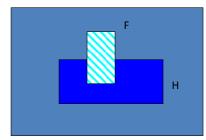
$$Pr(F) = 1/40$$

 $Pr(H|F) = 1/2$

Headaches are rare and flu is rarer, but if you have the flu, then there is a 50-50 chance you will have a headache

CS485/685 (c) 2012 P. Poupart

Conditional Probability



H="Have headache" F="Have Flu"

> Pr(H) = 1/10 Pr(F) = 1/40Pr(H|F) = 1/2

Pr(H|F) = Fraction of flu inflicted worlds in which you have a headache

- =(# worlds with flu and headache)/ (# worlds with flu)
- = (Area of "H and F" region)/ (Area of "F" region)
- = $Pr(H \Lambda F)/Pr(F)$

CS485/685 (c) 2012 P. Poupart

2

Conditional Probability

• Definition:

$$Pr(A|B) = Pr(A \Lambda B) / Pr(B)$$

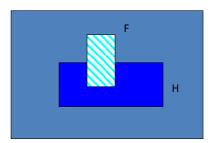
• Chain rule:

$$Pr(A \wedge B) = Pr(A|B) Pr(B)$$

Memorize these!

CS485/685 (c) 2012 P. Poupart

Inference



One day you wake up with a headache. You think "Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

H="Have headache" F="Have Flu"

Is your reasoning correct?

$$\Pr(H) = 1/10$$

$$Pr(F\Lambda H) =$$

$$Pr(F) = 1/40$$

 $Pr(H|F) = 1/2$

$$Pr(F|H) =$$

CS485/685 (c) 2012 P. Poupart

22

Example: Joint Distribution

sunny

~sunny

	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

 $Pr(headache \land cold \mid sunny) =$

 $Pr(headache \land cold \mid \sim sunny) =$

CS485/685 (c) 2012 P. Poupart

Bayes Rule

Note

$$Pr(A|B)Pr(B) = Pr(A \wedge B) = Pr(B \wedge A) = Pr(B|A)Pr(A)$$

Bayes Rule

$$Pr(B|A) = [(Pr(A|B)Pr(B))]/Pr(A)$$

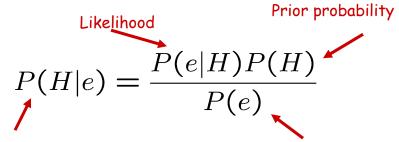
Memorize this!

CS485/685 (c) 2012 P. Poupart

25

Using Bayes Rule for inference

- Often we want to form a hypothesis about the world based on what we have observed
- Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis H, given evidence e



Posterior probability

Normalizing constant

CS485/685 (c) 2012 P. Poupart

Bayesian Learning

• Prior: Pr(H)

• Likelihood: Pr(e|H)

• Evidence: $e = \langle e_1, e_2, ..., e_N \rangle$

 Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

$$Pr(H|e) = k Pr(e|H)Pr(H)$$

CS485/685 (c) 2012 P. Poupart

27

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)
- $Pr(X|\mathbf{e}) = \Sigma_i Pr(X|\mathbf{e}, h_i) P(h_i|\mathbf{e})$ = $\Sigma_i Pr(X|h_i) P(h_i|\mathbf{e})$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

CS485/685 (c) 2012 P. Poupart

Candy Example

- Assume prior Pr(H) = < 0.1, 0.2, 0.4, 0.2, 0.1 >
- Assume candies are i.i.d. (identically and independently distributed)

$$\Pr(\boldsymbol{e}|h) = \Pi_n P(e_n|h)$$

Suppose first 10 candies all taste lime:

$$Pr(\boldsymbol{e}|h_5) =$$

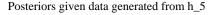
$$Pr(\boldsymbol{e}|h_3) =$$

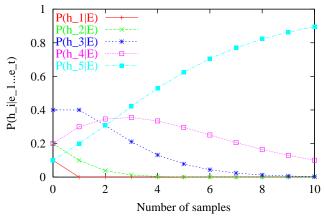
$$Pr(\boldsymbol{e}|h_1) =$$

CS485/685 (c) 2012 P. Poupart

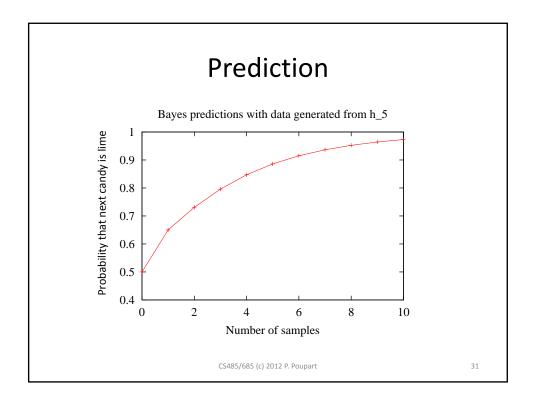
29

Posterior





CS485/685 (c) 2012 P. Poupart



Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (all hypotheses considered and weighted)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

CS485/685 (c) 2012 P. Poupart

Maximum a posteriori (MAP)

• Idea: make prediction based on most probable hypothesis $h_{\scriptsize MAP}$

$$h_{MAP} = argmax_{h_i} \Pr(h_i | \boldsymbol{e})$$

 $\Pr(X | \boldsymbol{e}) \approx \Pr(X | h_{MAP})$

 In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

CS485/685 (c) 2012 P. Poupart

33

Candy Example (MAP)

- Prediction after
 - -1 lime: $h_{MAP} = h_3$, $\Pr(lime|h_{MAP}) = 0.5$ -2 limes: $h_{MAP} = h_4$, $\Pr(lime|h_{MAP}) = 0.75$ -3 limes: $h_{MAP} = h_5$, $\Pr(lime|h_{MAP}) = 1$ -4 limes: $h_{MAP} = h_5$, $\Pr(lime|h_{MAP}) = 1$

– ...

ullet After only 3 limes, it correctly selects h_{5}

CS485/685 (c) 2012 P. Poupart

Candy Example (MAP)

- But what if correct hypothesis is h_4 ?
 - $-h_4$: Pr(lime) = 0.75 and Pr(cherry) = 0.25
- After 3 limes
 - MAP incorrectly predicts h_5
 - MAP yields $Pr(lime|h_{MAP}) = 1$
 - Bayesian learning yields Pr(lime|e) = 0.8

CS485/685 (c) 2012 P. Poupart

35

MAP properties

- ullet MAP prediction **less accurate** than Bayesian prediction since it relies only on **one** hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- **Controlled overfitting** (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - $-h_{MAP} = argmax_h \Pr(h|\boldsymbol{e})$
 - Optimization may be difficult

CS485/685 (c) 2012 P. Poupart

MAP computation

• Optimization:

```
h_{MAP} = argmax_h \Pr(h|e)
= argmax_h \Pr(h) \Pr(e|h)
= argmax_h \Pr(h) \prod_n \Pr(e_n|h)
```

- Product induces non-linear optimization
- Take the log to linearize optimization $h_{MAP} = argmax_h \log Pr(h) + \Sigma_n \log P(e_n|h)$

CS485/685 (c) 2012 P. Poupart

37

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior
 - (i.e., $Pr(hi) = Pr(h_j) \forall i, j$)
 - $-h_{MAP} = argmax_h \Pr(h) \Pr(e|h)$
 - $-h_{ML} = argmax_h \Pr(\boldsymbol{e}|h)$
- Make prediction based on h_{ML} only:
 - $-\Pr(X|\boldsymbol{e})\approx\Pr(X|h_{ML})$

CS485/685 (c) 2012 P. Poupart

Candy Example (ML)

Prediction after

```
-1 lime: h_{ML} = h_5, Pr(lime|h_{ML}) = 1

-2 limes: h_{ML} = h_5, Pr(lime|h_{ML}) = 1
```

- **Frequentist: "objective"** prediction since it relies only on the data (i.e., no prior)
- Bayesian: prediction based on data and uniform prior (since no prior ≡ uniform prior)

CS485/685 (c) 2012 P. Poupart

39

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis $h_{\rm ML}$
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP} $h_{ML} = argmax_h \Sigma_n \log \Pr(e_n|h)$

CS485/685 (c) 2012 P. Poupart