CS485/685 Lecture 19: March 13, 2012

Hypothesis Dependent Bounds [BDSS] Chapters 6-7

CS485/685 (c) 2012 P. Poupart

1

Uniform Convergence Recap

CS485/685 (c) 2012 P. Poupart

Non-Uniform Convergence Idea

CS485/685 (c) 2012 P. Poupart

2

Weighted Hypotheses

• Idea: Assign weights to hypotheses such that the sum of all the weights is at most 1.

- E.g.
$$w: H \to [0,1]$$
 s.t. $\sum_{h \in H} w(h) \le 1$

- For countable H, $\exists f$ such that $f \colon \mathbb{N} \to H$
- So we define $w(h) = \frac{1}{f^{-1}(h)^2}$

CS485/685 (c) 2012 P. Poupart

Non-uniform error bound

• Theorem: Let $w: H \to [0,1]$ such that $\sum_{h \in H} w(h) \le 1$ Then $\forall N, \delta > 0$ and D

$$\Pr_{S \sim D^N} [\exists h \in H \ s. \ t. \ |L_S(h) - L_D(h)| \ge \epsilon_h] \le \delta$$

where
$$\epsilon_h = \sqrt{\frac{\ln\left(\frac{1}{w(h)}\right) + \ln\left(\frac{2}{\delta}\right)}{2N}}$$

CS485/685 (c) 2012 P. Poupart

5

Proof

$$\begin{split} P_{S \sim D^N}[\exists h \in H \ s. \ t. \ |L_S(h) - L_D(h)| &\geq \epsilon_h] \\ &\leq \sum_{h \in H} \Pr_{S \sim P^N}[|L_S(h) - L_D(h)| \geq \epsilon_h] \ \text{by union bound} \\ &\leq \sum_{h \in H} 2e^{-2N\epsilon_h^2} \ \text{by Hoeffding's bound} \\ &\forall D \ \Pr(|L_S(h) - L_D(h)| > \epsilon) \leq 2e^{-2N\epsilon^2} \end{split}$$

$$= \sum_{h \in H} w(h)\delta \qquad \text{since } \epsilon_h = \sqrt{\frac{\ln\left(\frac{1}{w(h)}\right) + \ln\left(\frac{2}{\delta}\right)}{2N}}$$
$$= \delta$$

CS485/685 (c) 2012 P. Poupart

Hypothesis Dependent Bound

• Given a training set of size N, the loss $L_D(h)$ achieved by any algorithm that returns a hypothesis h is bounded by $L_S(h) + \epsilon_h$ with prob $\geq 1 - \delta$

where
$$\epsilon_h = \sqrt{\frac{\ln(\frac{1}{w(h)}) + \ln(\frac{2}{\delta})}{2N}}$$

CS485/685 (c) 2012 P. Poupart

7

New Learning Paradigm

• Idea: instead of doing ML, MAP or Bayesian learning, choose the hypothesis with lowest error bound:

• Hence $\epsilon_h=\sqrt{\frac{\ln\left(\frac{1}{w(h)}\right)+\ln\left(\frac{2}{\delta}\right)}{2N}}$ can be thought as a regularization term

CS485/685 (c) 2012 P. Poupart

Weighting Function

- Where does w(h) come from?
- Idea: give more weight to hypotheses that are more likely.
- Minimize $L_S(h) + \epsilon_h$ where $\epsilon_h = \sqrt{\frac{\ln\left(\frac{1}{w(h)}\right) + \ln\left(\frac{2}{\delta}\right)}{2N}}$
 - As $L_D(h)$ ↓ then $L_S(h)$ ↓ and ϵ_h ↓ since w(h) ↑
 - As $L_D(h) \uparrow$ then $L_S(h) \uparrow$ and $\epsilon_h \uparrow$ since $w(h) \downarrow$

CS485/685 (c) 2012 P. Poupart

9

Weighting Function

- How can we give more weight to more likely hypotheses?
- Two common ideas:
 - Description length
 - Prior probability

CS485/685 (c) 2012 P. Poupart

Description Length

- Occam's razor: simpler hypotheses are generally better
- Use description length as a proxy for the complexity of a hypothesis
- Set weight inversely proportional to description length

CS485/685 (c) 2012 P. Poupart

11

Description Length

- Let Σ be a set of symbols (alphabet) - E.g., $\Sigma = \{0,1\}$ or $\{a,b,c,d\}$
- Let $d: H \to \Sigma^*$ be a description language
- Let |h| be the length of d(h)

CS485/685 (c) 2012 P. Poupart

Description Dependent Bound

- **Definition**: d is a prefix-free language if $\forall h \ d(h)$ is not the prefix of any d(h')
- **Theorem**: Let $d: H \to \{0,1\}^*$ be a prefix-free description language. Then $\forall N, \delta > 0, D$ with prob $\geq 1 \delta$

$$\forall h \in H \ L_D(h) \le L_S(h) + \sqrt{\left(|h| + \ln\left(\frac{2}{\delta}\right)\right)/2N}$$

CS485/685 (c) 2012 P. Poupart

13

Proof

- Let $w(h) = 1/2^{|h|}$
- **Kraft's inequality:** if $S \subseteq \{0,1\}^*$ is a prefix-free set of strings then

$$\sum_{\sigma \in S} \frac{1}{2^{|\sigma|}} \le 1$$

- This can be verified by defining w(h) to be the probability of generating d(h) by repeatedly tossing a coin that outputs 0 for head and 1 for tail.
- Since probabilities sum up to 1, then Kraft's inequality holds.

CS485/685 (c) 2012 P. Poupart

Prior distribution

- Instead of using description length, we can use domain knowledge to set w(h) based on some prior distribution Pr(h).
- **Theorem:** Let $\Pr(h)$ be some prior distribution over H. Then $\forall N, \delta > 0, D$ with prob $\geq 1 \delta$

$$\forall h \in H \ L_D(h) \le L_S(h) + \sqrt{\left(\ln\left(\frac{1}{\Pr(h)}\right) + \ln\left(\frac{2}{\delta}\right)\right)/2N}$$

CS485/685 (c) 2012 P. Poupart

1.5

Example: Decision Trees

• Description Language:

CS485/685 (c) 2012 P. Poupart