# Lecture 9: Multi-Layer Neural Networks, Error Backpropagation CS480/680 Intro to Machine Learning

2023-2-7

Pascal Poupart
David R. Cheriton School of Computer Science



# **Quick Recap: Linear Models**

Linear Regression

**Linear Classification** 



## **Quick Recap: Non-linear Models**

Non-linear classification

Non-linear regression



#### **Non-linear Models**

- Convenient modeling assumption: linearity
- Extension: non-linearity can be obtained by mapping x to a non-linear feature space  $\phi(x)$
- Limit: the basis functions  $\phi_i(x)$  are chosen a priori and are fixed

• Question: can we work with unrestricted non-linear models?



#### Flexible Non-Linear Models

• Idea 1: Select basis functions that correspond to the training data and retain only a subset of them (e.g., **Support Vector Machines**)

 Idea 2: Learn non-linear basis functions (e.g., Multi-layer Neural Networks)



#### **Two-Layer Architecture**

Feed-forward neural network

- Hidden units:  $z_j = h_1(\boldsymbol{w}_j^{(1)} \overline{\boldsymbol{x}})$ Output units:  $y_k = h_2(\boldsymbol{w}_k^{(2)} \overline{\boldsymbol{z}})$ Overall:  $y_k = h_2\left(\sum_j w_{kj}^{(2)} h_1\left(\sum_i w_{ji}^{(1)} x_i\right)\right)$



#### Common activation functions h

• Threshold: 
$$h(a) = \begin{cases} 1 & a \ge 0 \\ -1 & a < 0 \end{cases}$$

• Sigmoid: 
$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

• Gaussian: 
$$h(a) = e^{-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^2}$$

• Tanh: 
$$h(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

• Identity: h(a) = a



#### **Adaptive non-linear basis functions**

- Non-linear regression
  - $h_1$ : non-linear function and  $h_2$ : identity

- Non-linear classification
  - $h_1$ : non-linear function and  $h_2$ : sigmoid



## **Weight training**

- Parameters:  $< W^{(1)}, W^{(2)}, ... >$
- Objectives:
  - Error minimization
    - Backpropagation (aka "backprop")
  - Maximum likelihood
  - Maximum a posteriori
  - Bayesian learning



#### **Least squared error**

Error function

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n} E_{n}(\mathbf{W})^{2} = \frac{1}{2} \sum_{n} ||f(\mathbf{x}_{n}, \mathbf{W}) - y_{n}||_{2}^{2}$$

• When 
$$f(\mathbf{x}, \mathbf{W}) = \sum_{j} w_{kj}^{(2)} \sigma\left(\sum_{i} w_{ji}^{(1)} x_{i}\right)$$

Linear combo Non-linear basis functions

then we are optimizing a linear combination of non-linear basis functions

#### **Sequential Gradient Descent**

• For each example  $(x_n, y_n)$  adjust the weights as follows:

$$w_{ji} \leftarrow w_{ji} - \eta \frac{\partial E_n}{\partial w_{ji}}$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm
- Today: automatic differentiation



## **Backpropagation Algorithm**

- Two phases:
  - Forward phase: compute output  $z_i$  of each unit j

• Backward phase: compute delta  $\delta_j$  at each unit j



#### **Forward phase**

- Propagate inputs forward to compute the output of each unit
- Output  $z_i$  at unit j:

$$z_j = h(a_j)$$
 where  $a_j = \sum_i w_{ji} z_i$ 



#### **Backward phase**

- Use chain rule to recursively compute gradient
  - For each weight  $w_{ji}$ :  $\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$

• Let  $\delta_j \equiv \frac{\partial E_n}{\partial a_j}$  then

$$\delta_{j} = \begin{cases} h'(a_{j})(z_{j} - y_{j}) & \text{base case: } j \text{ is an output unit} \\ h'(a_{j})\sum_{k}w_{kj}\delta_{k} & \text{recursion: } j \text{ is a hidden unit} \end{cases}$$

• Since  $a_j = \sum_i w_{ji} z_i$  then  $\frac{\partial a_j}{\partial w_{ji}} = z_i$ 



#### **Simple Example**

- Consider a network with two layers:
  - Hidden nodes:  $h(a) = \tanh(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$ 
    - Tip:  $tanh'(a) = 1 (tanh(a))^2$
  - Output node: h(a) = a

Objective: squared error



# **Simple Example**

#### Forward propagation:

• Hidden units: 
$$a_j =$$

• Output units: 
$$a_k = z_k = z_k = z_k$$

- Backward propagation:
  - Output units:  $\delta_k =$
  - Hidden units:  $\delta_i =$
- Gradients:
  - Hidden layers:  $\frac{\partial E_n}{\partial w_{ji}}$  =
  - Output layer:  $\frac{\partial E_n}{\partial w_{kj}} =$

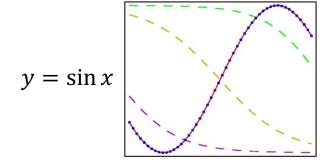


 $z_i =$ 

#### Non-linear regression examples

- Two-layer network:
  - 3 tanh hidden units and 1 identity output unit

$$y = x^2$$



$$y = |x|$$

$$y = \int_{-\infty}^{x} \delta(t) dt$$



#### **Analysis**

- Efficiency:
  - Fast gradient computation: linear in number of weights
- Convergence:
  - Slow convergence (linear rate)
  - May get trapped in local optima
- Prone to overfitting
  - Solutions: early stopping, regularization (add  $||w||_2^2$  penalty term to objective), dropout



#### Slow convergence

- Gradient direction is not always ideal
- Picture



#### **Adaptive Gradients**

- Idea: adjust the learning rate of each dimension separately
- AdaGrad:

$$r_t \leftarrow r_{t-1} + \left(\frac{\partial E_n}{\partial w_{ii}}\right)^2$$
 (sum of squares of partial derivative)

$$w_{ji} \leftarrow w_{ji} - \frac{\eta}{\sqrt{r_t}} \frac{\partial E_n}{\partial w_{ji}}$$
 (update rule)

• Problem: learning rate  $\frac{\eta}{\sqrt{r_t}}$  decays too quickly



#### **RMSprop**

• Idea: divide by root mean square (RMS) (instead of root of the sum) of partial derivatives

#### RMSprop:

$$r_t \leftarrow \alpha r_{t-1} + (1 - \alpha) \left(\frac{\partial E_n}{\partial w_{ji}}\right)^2 \text{ (where } 0 \le \alpha \le 1)$$

$$w_{ji} \leftarrow w_{ji} - \frac{\eta}{\sqrt{r_t}} \frac{\partial E_n}{\partial w_{ji}} \text{ (update rule)}$$

Problem: gradient lacks momentum



#### **Adaptive moment estimation**

- Idea: replace gradient by its moving average to induce momentum
- Adam:

$$r_t \leftarrow \alpha r_{t-1} + (1 - \alpha) \left(\frac{\partial E_n}{\partial w_{ii}}\right)^2 \text{ (where } 0 \le \alpha \le 1)$$

$$s_t \leftarrow \beta s_{t-1} + (1 - \beta) \left( \frac{\partial E_n}{\partial w_{ji}} \right)$$
 (where  $0 \le \beta \le 1$ )

$$w_{ji} \leftarrow w_{ji} - \frac{\eta}{\sqrt{r_t}} s_t$$
 (update rule)



#### **Empirical Comparison**

• From Kingma & Ba (ICLR-2015):

