Lecture 9: Multi-Layer Neural Networks, Error Backpropagation CS480/680 Intro to Machine Learning

2023-2-7

Pascal Poupart
David R. Cheriton School of Computer Science

Quick Recap: Linear Models

Linear Regression

Linear Classification

Logistic regression

Binary:
$$P(y|X) = E(wTX)$$

Milti-class: $P(yk|X) = e^{wEX}$

Ferceptren

Threshold: $y = sign(wTX)$

Signorid: $P(y|X) = S(wTX)$

Quick Recap: Non-linear Models

Non-linear classification

Legistic regression

$$P(y|X) = S(WTS(X))$$

$$P(y|X) = 2 WES(X)$$

$$Ferception$$

$$S = sign (WTS(X))$$

$$P(y) = S(WTS(X))$$

Non-linear regression

Non-linear Models

- Convenient modeling assumption: linearity
- Extension: non-linearity can be obtained by mapping x to a non-linear feature space $\phi(x)$
- **Limit:** the basis functions $\phi_i(x)$ are chosen a priori and are fixed

• **Question:** can we work with unrestricted non-linear models?

PAGE 4

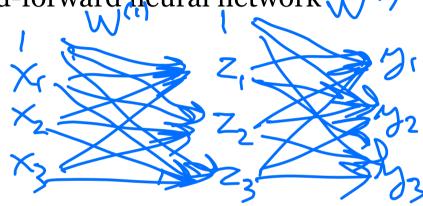
Flexible Non-Linear Models

• Idea 1: Select basis functions that correspond to the training data and retain only a subset of them (e.g., **Support Vector Machines**)

 Idea 2: Learn non-linear basis functions (e.g., Multi-layer Neural Networks)

Two-Layer Architecture

Feed-forward neural network (1)



- Hidden units: z_j = h₁(w_j⁽¹⁾\overline{x})
 Output units: y_k = h₂(w_k⁽²⁾\overline{z})
- Overall: $y_k = h_2 \left(\sum_j w_{kj}^{(2)} h_1 \left(\sum_i w_{ji}^{(1)} x_i \right) \right)$

Common activation functions h

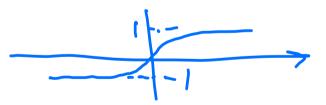
■ Threshold:
$$h(a) = \begin{cases} 1 & a \ge 0 \\ -1 & a < 0 \end{cases}$$

• Sigmoid:
$$h(a) = \sigma(a) = \frac{1}{1+e^{-a}}$$

• Gaussian:
$$h(a) = e^{-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^2}$$

• Tanh:
$$h(a) = \tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

• Identity:
$$h(a) = a$$



Adaptive non-linear basis functions

- Non-linear regression
 - h_1 : non-linear function and h_2 : identity

- Non-linear classification
 - h_1 : non-linear function and h_2 : sigmoid

near basis functi

Weight training

- Parameters: $< W^{(1)}, W^{(2)}, ... >$
- Objectives:
 - Error minimization
 - Backpropagation (aka "backprop")
 - Maximum likelihood
 - Maximum a posteriori
 - Bayesian learning

Least squared error

Error function

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n} E_{n}(\mathbf{W})^{2} = \frac{1}{2} \sum_{n} ||f(\mathbf{x}_{n}, \mathbf{W}) - y_{n}||_{2}^{2}$$

• When
$$f(x, W) = \sum_{j} w_{kj}^{(2)} \sigma\left(\sum_{i} w_{ji}^{(1)} x_{i}\right)$$

Linear combo Non-linear basis functions

then we are optimizing a linear combination of non-linear basis functions

Sequential Gradient Descent

• For each example (x_n, y_n) adjust the weights as follows:

$$w_{ji} \leftarrow w_{ji} - \eta \frac{\partial E_n}{\partial w_{ji}}$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm
- Today: automatic differentiation

Backpropagation Algorithm

- Two phases:
 - Forward phase: compute output z_i of each unit j

• Backward phase: compute delta δ_i at each unit j

Forward phase

- Propagate inputs forward to compute the output of each unit
- Output z_i at unit j:

$$z_j = h(a_j)$$
 where $a_j = \sum_i w_{ji} z_i$

Backward phase

- Use chain rule to recursively compute gradient
 - For each weight w_{ji} : $\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_i} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$

• Let $\delta_j \equiv \frac{\partial E_n}{\partial a_j}$ then

$$\delta_{j} = \begin{cases} h'(a_{j})(z_{j} - y_{j}) & \text{base case: } j \text{ is an output unit} \\ h'(a_{j})\sum_{k}w_{kj}\delta_{k} & \text{recursion: } j \text{ is a hidden unit} \end{cases}$$

• Since $a_j = \sum_i w_{ji} z_i$ then $\frac{\partial a_j}{\partial w_{ii}} = z_i$

Simple Example

- Consider a network with two layers:
 - Hidden nodes: $h(a) = \tanh(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
 - Tip: $tanh'(a) = 1 (tanh(a))^2$
 - Output node: h(a) = a

Objective: squared error

Simple Example

- Forward propagation:
 - Hidden units: $a_j = \{ w_j \mid x_i \mid z_j = t_{anh} (w_j) \}$
 - Output units: $a_k = \sum_{k} w_{k} Z_k = \sum_{k} z_k =$
- Backward propagation:

 - Output units: $\delta_k = 2k 1/2$ Hidden units: $\delta_j = (1 3/2) \frac{2}{k}$ Which is $\frac{2}{k}$
- Gradients:
 - Hidden layers: $\frac{\partial E_n}{\partial w_{ji}} = \sum_{i} \chi_{i} = (1 Z_{i}^{*}) \sum_{k} W_{kj} \sum_{i} \chi_{i}$
 - Output layer: $\frac{\partial E_n}{\partial w_{kj}} = \sum_{k} Z_{j} = (Z_{k} M_{k}) Z_{j}$

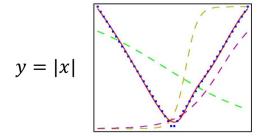
Non-linear regression examples

• Two-layer network:

• 3 tanh hidden units and 1 identity output unit

Stimated $y = x^2$

$$y = \sin x$$



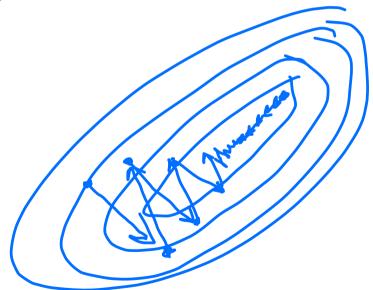
$$y = \int_{-\infty}^{x} \delta(t)dt$$

Analysis

- Efficiency:
 - Fast gradient computation: linear in number of weights
- Convergence:
 - Slow convergence (linear rate)
 - May get trapped in local optima
- Prone to overfitting
 - Solutions: early stopping, regularization (add $||w||_2^2$ penalty term to objective), dropout

Slow convergence

- Gradient direction is not always ideal
- Picture



Adaptive Gradients

- Idea: adjust the learning rate of each dimension separately
- AdaGrad:

$$r_t \leftarrow r_{t-1} + \left(\frac{\partial E_n}{\partial w_{ji}}\right)^2$$
 (sum of squares of partial derivative)
 $w_{ji} \leftarrow w_{ji} - \frac{\eta}{\sqrt{r_t}} \frac{\partial E_n}{\partial w_{ji}}$ (update rule)

• Problem: learning rate $\frac{\eta}{\sqrt{r_t}}$ decays too quickly

RMSprop

• Idea: divide by root mean square (RMS) (instead of root of the sum) of partial derivatives

• RMSprop:

$$r_t \leftarrow \alpha r_{t-1} + (1 - \alpha) \left(\frac{\partial E_n}{\partial w_{ji}}\right)^2 \text{ (where } 0 \le \alpha \le 1)$$

$$w_{ji} \leftarrow w_{ji} - \frac{\eta}{\sqrt{r_t}} \frac{\partial E_n}{\partial w_{ji}} \text{ (update rule)}$$

Problem: gradient lacks momentum

Adaptive moment estimation

- Idea: replace gradient by its moving average to induce momentum
- Adam:

$$r_t \leftarrow \alpha r_{t-1} + (1 - \alpha) \left(\frac{\partial E_n}{\partial w_{ji}}\right)^2 \text{ (where } 0 \le \alpha \le 1)$$

$$s_t \leftarrow \beta s_{t-1} + (1 - \beta) \left(\frac{\partial E_n}{\partial w_{ji}} \right)$$
 (where $0 \le \beta \le 1$)

$$w_{ji} \leftarrow w_{ji} - \frac{\eta}{\sqrt{r_t}} s_t$$
 (update rule)

Empirical Comparison

• From Kingma & Ba (ICLR-2015):

