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Quick Recap: Linear Models

Linear Regression Linear Classification
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Quick Recap: Non-linear Models

Non—l-inear classification Non-linear regression
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Non-linear Models

= Convenient modeling assumption: linearity

= Extension: non-linearity can be obtained by mapping x to a non-
linear feature space ¢(x)

= Limit: the basis functions ¢;(x) are chosen a priori and are fixed

= Question: can we work with unrestricted non-linear models?

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 4 @ WATE RLOO



Flexible Non-Linear Models

= Idea 1: Select basis functions that correspond to the training data and
retain only a subset of them (e.g., Support Vector Machines)

= Idea 2: Learn non-linear basis functions (e.g., Multi-layer Neural
Networks)
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Two-Layer Architecture

. Feed—forw%i (Itl\eural network \,\/Q)
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* Hidden units: z; = hl(w( )x)
= Output units: y; = h, (w )

= Overall: y, = h, (Z W]g)hl (Zl ](11)
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Common activation functions h
= Threshold: h(a) = {_11 Z i 8

1
1+e~4

Sigmoid: h(a) = o(a) =

1/a—u 2
Gaussian: h(a) = e_E( o )

ed—_e~a

Tanh: h(a) = tanh(a) =

ed+e~ 4

Identity: h(a) = a
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Adaptive non-linear basis functions

= Non-linear regression
= hy: non-linear function and h,: identity
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= Non-linear clasmficatmn
= hy: non-linear function and h,: sigmoid
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-
Weight training

« Parameters: < WO w®@ >

= Objectives:
= Error minimization
= Backpropagation (aka “backprop”)
= Maximum likelihood
= Maximum a posteriori

= Bayesian learning
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Least squared error

» Error function

1

1
EW) =5 ) B (W) =2 ) |1 (W)~ 3

= When f(x, W) = ‘Zj W;E?)HU (Zi Wj(il)xi) |
|

Linear combo Non-linear basis functions

then we are optimizing a linear combination of non-linear basis
functions
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Sequential Gradient Descent

= For each example (x,,, y,,) adjust the weights as follows:
0E,
d Wji

Wji < Wji —1

= How can we compute the gradient efficiently given an arbitrary
network structure?

= Answer: backpropagation algorithm

= Today: automatic differentiation
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Backpropagation Algorithm

= Two phases:

» Forward phase: compute output z; of each unit j

[ |
Ky 2.

= Backward phase: compute delta §; at each unit j
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Forward phase

= Propagate inputs forward to compute the output of each unit
* Output z; at unit j:

Zj = h(a]) where a; = ZiniZi
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Backward phase

= Use chain rule to recursively compute gradient

. OE 0E, 0a;
= For each weight w;;: — = ——L =
J c’)wji aaj aWji

= Let §; = gia’; then
5j _ Z’(aj)(zj — yj) base ca.se:.j'i.s an qutput un.it
(a;) X W0, recursion: jisa hidden unit
= Since a; = );; w;;z; then 995 _ Z;
] i Wji4i owj; i
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Simple Example

= Consider a network with two layers:

e?—e™4
ed+e~a

= Hidden nodes: h(a) = tanh(a) =
» Tip: tanh’'(a) = 1 — (tanh(a))?

= Output node: h(a) = a

= Objective: squared error
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Simple Example

= Forward propagation:
- Hidden units: a; = Zwé,: KLz = ‘&wﬁ\ ( wj)
= Output units: a; = E:Wk% 2, %= gy
= Backward propagatlon
= Output units: § = 2 f —

= Hidden units: §; = ( (— /2)2’) % WJL; 5‘(

» Gradients:

S,k 2 =(Z&- QL> Z
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Non-linear regression examples

= Two-layer network:

= 3 tanh hidden units and 1 identity output unit
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Analysis

= Efficiency:

= Fast gradient computation: linear in number of weights

= Convergence:
= Slow convergence (linear rate)

= May get trapped in local optima

= Prone to overfitting

= Solutions: early stopping, regularization (add ||w/| |z penalty term to objective),
dropout

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 18 @ WATE RLOO



Slow convergence

= Gradient direction is not always ideal

= Picture
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Adaptive Gradients

= Idea: adjust the learning rate of each dimension separately

» AdaGrad:

2
a n (] L] L)
Ty < T_q + ( ajﬁ) (sum of squares of partial derivative)

= Problem: learning rate \/ir_ decays too quickly
t
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RMSprop

= Idea: divide by root mean square (RMS) (instead of root of the sum) of
partial derivatives

= RMSprop:

2
e <lari—q1 +|(1 — @) (;j}‘) (wWhere0 <a <1)

= Problem: gradient lacks momentum
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Adaptive moment estimation

= Idea: replace gradient by its moving average to induce momentum

« Adam:

OE,
6Wji

2
rt<—art_1+(1—a)( ) (wWhere0 < a <1)

[St — Bsi_1+(1—-pB) (gj”‘)} (Where0 < g <1)
ji
Wi & Wj; — \/lr_st (update rule)
t
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Empirical Comparison
= From Kingma & Ba (ICLR-2015):

MNIST Logistic Regression IMDB BoW feature Logistic Regression
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