Lecture 9: Multi-Layer Neural Networks,

Error Backpropagation
CS480/680 Intro to Machine Learning

Pascal Poupart
David R. Cheriton School of Computer Science

% WATERLOO

Quick Recap: Linear Models

Linear Regression Linear Classification
_ UUTY [_s t.(/,«?/\W—O‘n -
v/ 3 <§w RS
Mr‘% &a/» P @/«'K)"
z ;LW;F <

Porce 9
‘zﬁ&@m fww CWTf)

UNIVERSITY OF

CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 2 ' WATE RLOO

Quick Recap: Non-linear Models

Non—l-inear classification Non-linear regression
chz/ju& A grazaron, }9 — w‘l‘szg (><>

XK \= < wTiSGQ ‘ y
@M}: W 2609 ol - forgen sl ok

0

IIIIIIIIIIII

CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 3 Eg WATERLOO

Non-linear Models

= Convenient modeling assumption: linearity

= Extension: non-linearity can be obtained by mapping x to a non-
linear feature space ¢(x)

= Limit: the basis functions ¢;(x) are chosen a priori and are fixed

= Question: can we work with unrestricted non-linear models?

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 4 @ WATE RLOO

Flexible Non-Linear Models

= Idea 1: Select basis functions that correspond to the training data and
retain only a subset of them (e.g., Support Vector Machines)

= Idea 2: Learn non-linear basis functions (e.g., Multi-layer Neural
Networks)

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 5 @ WATE RLOO

Two-Layer Architecture

. Feed—forw%i (Itl\eural network \,\/Q)

|
>'<(Z, D
1o Z, “42
S
5 3= 2

* Hidden units: z; = hl(w()x)
= Output units: y; = h, (w)

= Overall: y, = h, (Z W]g)hl (Zl](11)

))

CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 6

>

UNIVERSITY OF

WATERLOO

Common activation functions h
= Threshold: h(a) = {_11 Z i 8

1
1+e~4

Sigmoid: h(a) = o(a) =

1/a—u 2
Gaussian: h(a) = e_E(o)

ed—_e~a

Tanh: h(a) = tanh(a) =

ed+e~ 4

Identity: h(a) = a

CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 7

UNIVERSITY OF

WATERLOO

Adaptive non-linear basis functions

= Non-linear regression
= hy: non-linear function and h,: identity

- Z W 5(2 (‘) :
Jj /Zﬂ \’_\7) guxvnc’c(cf\'\a

= Non-linear clasmficatmn
= hy: non-linear function and h,: sigmoid

(2))
A i)
Lumzan, < o"‘f(ru\.\«tg s M gw/“w

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 8 @ WATE RLOO

-
Weight training

« Parameters: < WO w®@ >

= Objectives:
= Error minimization
= Backpropagation (aka “backprop”)
= Maximum likelihood
= Maximum a posteriori

= Bayesian learning

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 9 @ WATE RLOO

Least squared error

» Error function

1

1
EW) =5) B (W) =2) |1 (W)~ 3

= When f(x, W) = ‘Zj W;E?)HU (Zi Wj(il)xi) |
|

Linear combo Non-linear basis functions

then we are optimizing a linear combination of non-linear basis
functions

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 10 @ WATE RLOO

Sequential Gradient Descent

= For each example (x,,, y,,) adjust the weights as follows:
0E,
d Wji

Wji < Wji —1

= How can we compute the gradient efficiently given an arbitrary
network structure?

= Answer: backpropagation algorithm

= Today: automatic differentiation

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 11 @ WATE RLOO

Backpropagation Algorithm

= Two phases:

» Forward phase: compute output z; of each unit j

[|
Ky 2.

= Backward phase: compute delta §; at each unit j

S S

S 5
W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 12 @ WATE RLOO

Forward phase

= Propagate inputs forward to compute the output of each unit
* Output z; at unit j:

Zj = h(a]) where a; = ZiniZi

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 13 @ WATE RLOO

Backward phase

= Use chain rule to recursively compute gradient

. OE 0E, 0a;
= For each weight w;;: — = ——L =
J c’)wji aaj aWji

= Let §; = gia’; then
5j _ Z’(aj)(zj — yj) base ca.se:.j'i.s an qutput un.it
(a;) X W0, recursion: jisa hidden unit
= Since a; =);; w;;z; then 995 _ Z;
] i Wji4i owj; i

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 14 @ WATE RLOO

Simple Example

= Consider a network with two layers:

e?—e™4
ed+e~a

= Hidden nodes: h(a) = tanh(a) =
» Tip: tanh’'(a) = 1 — (tanh(a))?

= Output node: h(a) = a

= Objective: squared error

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 15 @ WATE RLOO

Simple Example

= Forward propagation:
- Hidden units: a; = Zwé,: KLz = ‘&wﬁ\ (wj)
= Output units: a; = E:Wk% 2, %= gy
= Backward propagatlon
= Output units: § = 2 f —

= Hidden units: §; = ((— /2)2’) % WJL; 5‘(

» Gradients:

S,k 2 =(Z&- QL> Z

CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 16

L5 = (1-7") § Wy ok 4

>

UNIVERSITY OF

WATERLOO

Non-linear regression examples

= Two-layer network:

= 3 tanh hidden units and 1 identity output unit

CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart

y = sinx

= j_16(t)dt

PAGE 17

>

’%)

UNIVERSITY OF

WATERLOO

Analysis

= Efficiency:

= Fast gradient computation: linear in number of weights

= Convergence:
= Slow convergence (linear rate)

= May get trapped in local optima

= Prone to overfitting

= Solutions: early stopping, regularization (add ||w/| |z penalty term to objective),
dropout

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 18 @ WATE RLOO

Slow convergence

= Gradient direction is not always ideal

= Picture

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 19 @ WATE RLOO

Adaptive Gradients

= Idea: adjust the learning rate of each dimension separately

» AdaGrad:

2
a n (] L] L)
Ty < T_q + (ajﬁ) (sum of squares of partial derivative)

= Problem: learning rate \/ir_ decays too quickly
t

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 20 @ WATE RLOO

RMSprop

= Idea: divide by root mean square (RMS) (instead of root of the sum) of
partial derivatives

= RMSprop:

2
e <lari—q1 +|(1 — @) (;j}‘) (wWhere0 <a <1)

= Problem: gradient lacks momentum

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 21 @ WATE RLOO

Adaptive moment estimation

= Idea: replace gradient by its moving average to induce momentum

« Adam:

OE,
6Wji

2
rt<—art_1+(1—a)() (wWhere0 < a <1)

[St — Bsi_1+(1—-pB) (gj”‘)} (Where0 < g <1)
ji
Wi & Wj; — \/lr_st (update rule)
t

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 22 @ WATE RLOO

Empirical Comparison
= From Kingma & Ba (ICLR-2015):

MNIST Logistic Regression IMDB BoW feature Logistic Regression

0.7 ,

. . 0.50

— AdaGrad v — Adagrad+dropout
— iiaDnTeSterov — RMSProp+dropout
: . — SGDNesterov+dropout|]
Adam+dropout

0.45)

0.6

0.40
0.5

training cost
training cost
o
w
Ul

| T TSNS DN N N S] o
) : : : 0.30L M0 i

P I\ N e S S U O S]
: : : 0.25

0 5 10 15 20 25 30 35 40 45 0 20 40 60 80 100 120 140 160

0.2 i i 0.20 i i

iterations over entire dataset iterations over entire dataset

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 9 - Pascal Poupart PAGE 23 @ WATE RLOO

