Lecture 8: Perceptrons, Neural Networks CS480/680 Intro to Machine Learning

2023-2-2

Pascal Poupart
David R. Cheriton School of Computer Science

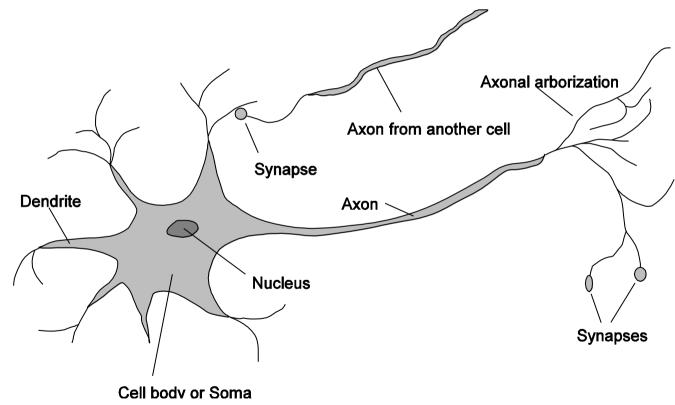
Outline

- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

Brain

- Seat of human intelligence
- Where memory/knowledge resides
- Responsible for thoughts and decisions
- Can learn
- Consists of nerve cells called neurons

Neuron



Comparison

- Brain
 - Network of neurons
 - Nerve signals propagate in a neural network
 - Parallel computation
 - Robust (neurons die everyday without much impact)
- Computer
 - Bunch of gates
 - Electrical signals directed by gates
 - Sequential and parallel computation
 - Fragile (if a gate stops working, computer crashes)

Artificial Neural Networks

• Idea: mimic the brain to do computation

- Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

ANN Unit

For each unit i:

• Weights: W

- Strength of the link from unit i to unit j
- Input signals x_i weighted by W_{ii} and linearly combined:

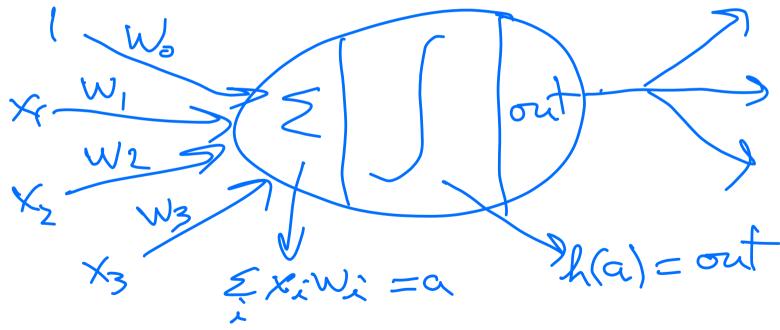
$$a_j = \sum_i W_{ji} x_i + W_{j0} = \boldsymbol{W_j} \ \overline{\boldsymbol{x}}$$

Activation function: h

• Numerical signal produced: $y_j = h(a_j)$

ANN Unit

Picture



Activation Function

- Should be nonlinear
 - Otherwise, network is just a linear function

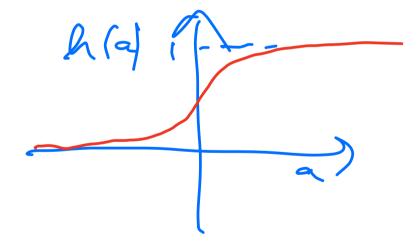
- Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

Common Activation Functions

Threshold

h(a)

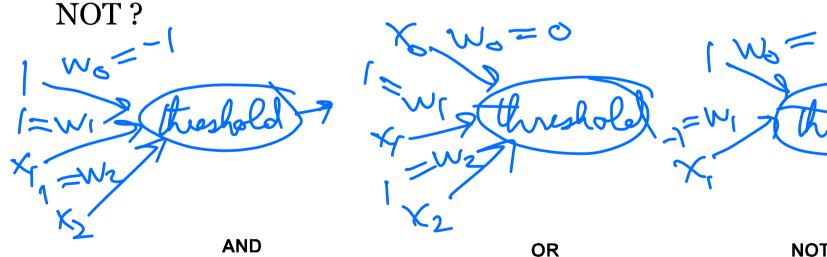
Sigmoid



Logic Gates

a=Wot YIWI + X2W2

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean functions
- What should be the weights of the following units to code AND, OR,



NOT

Network Structures

Feed-forward network

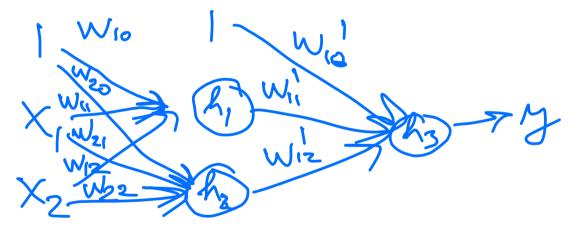
- Directed **acyclic** graph
- No internal state
- Simply computes outputs from inputs

Recurrent network

- Directed cyclic graph
- Dynamical system with internal states
- Can memorize information

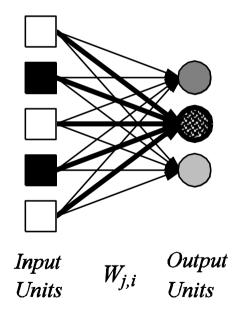
Feed-forward network

 Simple network with two inputs, one hidden layer of two units, one output unit



Perceptron

Single layer feed-forward network



Supervised Learning

- Given list of (x, y) pairs
- Train feed-forward ANN
 - To compute proper outputs **y** when fed with inputs **x**
 - Consists of adjusting weights W_{ji}
- Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

- Learning is done separately for each unit j
 - Since units do not share weights

Perceptron learning for unit *j*:

- For each (x, y) pair do:
 - Case 1 (correct output produced): $\forall_i W_{ji} \leftarrow W_{ji}$
 - Case 2 (output produced is 0 instead of 1): $\forall_i W_{ji} \leftarrow W_{ji} + x_i$
 - Case 3 (output produced is 1 instead of 0): $\forall_i W_{ji} \leftarrow W_{ji} x_i$
- Until correct output for all training instances

Threshold Perceptron Learning

- Dot products: $\overline{x}^T \overline{x} \ge 0$ and $-\overline{x}^T \overline{x} \le 0$
- Perceptron computes

1 when
$$\mathbf{w}^T \overline{\mathbf{x}} = \sum_i x_i w_i + w_0 > 0$$

0 when
$$\mathbf{w}^T \overline{\mathbf{x}} = \sum_i x_i w_i + w_0 < 0$$

If output should be 1 instead of 0 then

$$w \leftarrow w + \overline{x} \text{ since } (w + \overline{x})^T \overline{x} \ge w^T \overline{x}$$

If output should be 0 instead of 1 then

$$w \leftarrow w - \overline{x}$$
 since $(w - \overline{x})^T \overline{x} \le w^T \overline{x}$

Threshold Perceptron Hypothesis Space

- Hypothesis space h_w :
 - All binary classifications with parameters *w* s.t.

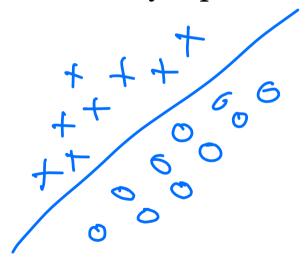
$$w^T \overline{x} > 0 \to +1$$
$$w^T \overline{x} < 0 \to -1$$

- Since $w^T \overline{x}$ is linear in w, perceptron is called a **linear separator**
- **Theorem:** Threshold perceptron learning converges if and only if the data is linearly separable

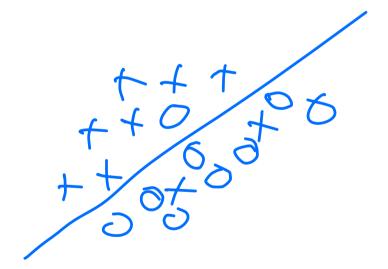
Linear Separability

• Examples:

Linearly separable

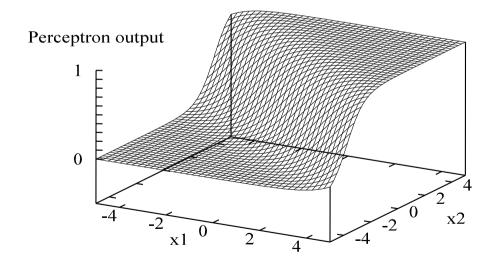


Non-linearly separable



Sigmoid Perceptron

- Represent "soft" linear separators
- Same hypothesis space as logistic regression



Sigmoid Perceptron Learning

- Possible objectives
 - Minimum squared error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n} E_n(\mathbf{w})^2 = \frac{1}{2} \sum_{n} \left(y_n - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n) \right)^2$$

- Maximum likelihood
 - Same algorithm as for logistic regression
- Maximum a posteriori hypothesis
- Bayesian Learning

Gradient of Squared Error

• Gradient:

$$\frac{\partial E}{\partial w_i} = \sum_n E_n(w) \frac{\partial E_n}{\partial w_i}$$

$$= -\sum_n E_n(w) \sigma'(w^T \bar{x}_n) x_i$$
Recall that $\sigma' = \sigma(1 - \sigma)$

$$= -\sum_n E_n(w) \sigma(w^T \bar{x}_n) \left(1 - \sigma(w^T \bar{x}_n)\right) x_i$$

Sequential Gradient Descent

Perceptron-Learning(training_set, network)

- Repeat
 - For each (x_n, y_n) in training_set do

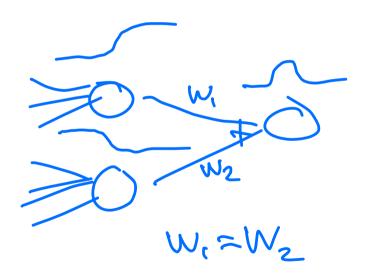
$$E_n \leftarrow y_n - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n)$$

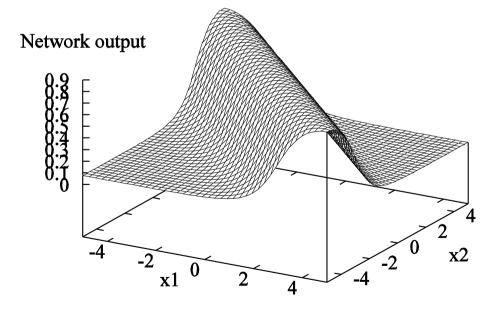
$$\mathbf{w} \leftarrow \mathbf{w} + \eta \; E_n \; \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n) \left(1 - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n) \right) \; \overline{\mathbf{x}}_n$$

- Until some stopping criterion satisfied
- Return learnt network
- N.B. η is a learning rate corresponding to the step size in gradient descent

Multilayer Networks

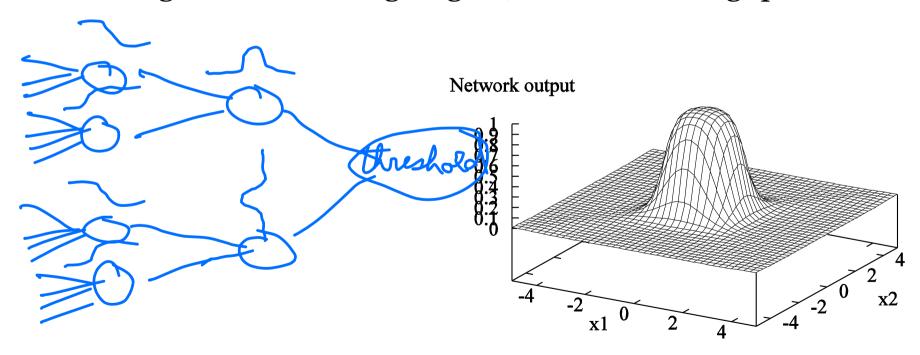
 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge





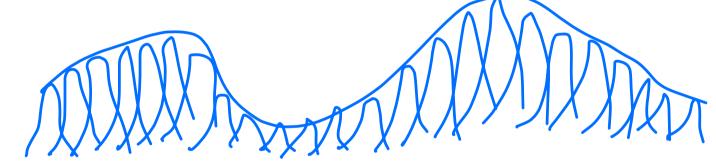
Multilayer Networks

Adding two intersecting ridges (and thresholding) produces a bump



Multilayer Networks

 By tiling bumps of various heights together, we can approximate any function.



- Training algorithm:
 - **Back-propagation** (gradient descent performed by propagating errors backward into the network)
 - Derivation next class

Neural Net Applications

- Neural nets can approximate any function, hence millions of applications
 - Speech recognition
 - Word embeddings
 - Machine translation
 - Vision-based object recognition
 - Vision-based autonomous driving
 - Etc.

