Lecture 7: Logistic Regression, Generalized Linear Models CS480/680 Intro to Machine Learning

2023-1-31

Pascal Poupart
David R. Cheriton School of Computer Science

Beyond Mixtures of Gaussians

- Mixture of Gaussians:
 - Restrictive assumption: each class is Gaussian
 - Picture:

• Can we consider other distributions than Gaussians?

Exponential Family

• More generally, when $Pr(x|c_k)$ are members of the exponential family (e.g., Gaussian, exponential, Bernoulli, categorical, Poisson, Beta, Dirichlet, Gamma)

$$Pr(\boldsymbol{x}|\boldsymbol{\theta}_k) = \exp\left(\boldsymbol{\theta}_k^T T(\boldsymbol{x}) - A(\boldsymbol{\theta}_k) + B(\boldsymbol{x})\right)$$

where θ_k : parameters of class k T(x), $A(\theta_k)$, B(x): arbitrary functions of the inputs and parameters

• the posterior is a sigmoid logistic linear function in x

$$\Pr(c_k|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0)$$

Probabilistic Discriminative Models

• Instead of learning $Pr(c_k)$ and $Pr(x|c_k)$ by maximum likelihood and finding $Pr(c_k|x)$ by Bayesian inference, why not learn $Pr(c_k|x)$ directly by maximum likelihood?

- We know the general form of $Pr(c_k|x)$:
 - Logistic sigmoid (binary classification)
 - **Softmax** (general classification)

Logistic Regression

- Consider a single data point (x, y): $\mathbf{w}^* = argmax_{\mathbf{w}} \sigma(\mathbf{w}^T \overline{x})^y (1 \sigma(\mathbf{w}^T \overline{x}))^{1-y}$
- Similarly, for an entire dataset (X, y):

$$\mathbf{w}^* = argmax_{\mathbf{w}} \prod_{n} \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n)^{y_n} (1 - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n))^{1 - y_n}$$

Objective: negative log likelihood (minimization)

$$L(\mathbf{w}) = -\sum_{n} y_n \ln \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n) + (1 - y_n) \ln (1 - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n))$$

Tip: $\frac{\partial \sigma(a)}{\partial a} = \sigma(a)(1 - \sigma(a))$

Logistic Regression

• NB: Despite the name, logistic regression is a form of classification.

• However, it can be viewed as regression where the goal is to estimate the posterior $Pr(c_k|x)$, which is a continuous function

Maximum likelihood

Convex loss: set derivative to 0

$$0 = \frac{\partial L}{\partial w} = -\sum_{n} y_{n} \frac{\overline{\sigma(w^{T} \overline{x}_{n})} (1 - \sigma(w^{T} \overline{x}_{n})) \overline{x}_{n}}{\overline{\sigma(w^{T} \overline{x}_{n})}} - \sum_{n} (1 - y_{n}) \frac{(1 - \overline{\sigma(w^{T} \overline{x}_{n})}) \sigma(w^{T} \overline{x}_{n}) (-\overline{x}_{n})}{1 - \overline{\sigma(w^{T} \overline{x}_{n})}}$$

$$\Rightarrow 0 = -\sum_{n} y_{n} \overline{x}_{n} - \sum_{n} y_{n} \overline{\sigma(w^{T} \overline{x}_{n})} \overline{x}_{n} + \sum_{n} \sigma(w^{T} \overline{x}_{n}) \overline{x}_{n} + \sum_{n} y_{n} \overline{\sigma(w^{T} \overline{x}_{n})} \overline{x}_{n}$$

$$\Rightarrow 0 = \sum_{n} [\sigma(w^{T} \overline{x}_{n}) - y_{n}] \overline{x}_{n}$$

• Sigmoid prevents us from isolating *w*, so we use an iterative method instead

Gradient descent

Iterative reweighted least square:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla L(\mathbf{w})$$

where
$$\nabla L$$
 is the gradient: $\nabla L(\mathbf{w}) = \begin{bmatrix} \frac{\partial L}{\partial w_0} \\ \vdots \\ \frac{\partial L}{\partial w_m} \end{bmatrix}$ and n is the learning rate

and η is the learning rate (scalar that determines the step length)

Newton's method

Iterative reweighted least square:

$$\mathbf{w} \leftarrow \mathbf{w} - \mathbf{H}^{-1} \nabla L(\mathbf{w})$$

where ∇L is the gradient (column vector)

and *H* is the Hessian (matrix)

$$H = \begin{bmatrix} \frac{\partial L}{\partial^2 w_0} & \cdots & \frac{\partial L}{\partial w_0 \partial w_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial L}{\partial w_m \partial w_0} & \cdots & \frac{\partial L}{(\partial w_m)^2} \end{bmatrix}$$

Hessian

$$\boldsymbol{H} = \nabla(\nabla L(\boldsymbol{w})) = \sum_{n=1}^{N} \sigma(\boldsymbol{w}^T \overline{\boldsymbol{x}}_n) (1 - \sigma(\boldsymbol{w}^T \overline{\boldsymbol{x}}_n)) \overline{\boldsymbol{x}}_n \overline{\boldsymbol{x}}_n^T = \overline{\boldsymbol{X}} \boldsymbol{R} \overline{\boldsymbol{X}}^T$$

where
$$\mathbf{R} = \begin{bmatrix} \sigma_1(1-\sigma_1) & & & \\ & \ddots & & \\ & & \sigma_N(1-\sigma_N) \end{bmatrix}$$

and
$$\sigma_1 = \sigma(\mathbf{w}^T \overline{\mathbf{x}}_1), \quad \sigma_N = \sigma(\mathbf{w}^T \overline{\mathbf{x}}_N)$$

Case study

Applications: recommender systems, ad placement

Used by all major companies

• Advantages: logistic regression is **simple**, **flexible and efficient**

App Recommendation

- Flexibility: millions of features (binary & numerical)
 - Example:
- Efficiency: classification by dot products
 Multiple classes:
 Two classes:

$$c^* = argmax_k \frac{\exp(\mathbf{w}_k^T \overline{\mathbf{x}})}{\sum_{k'} \exp(\mathbf{w}_{k'}^T \overline{\mathbf{x}})} \qquad c^* = \begin{cases} 1 & \sigma(\mathbf{w}^T \overline{\mathbf{x}}) \ge 0.5\\ 0 & \text{otherwise.} \end{cases}$$
$$= argmax_k \mathbf{w}_k^T \overline{\mathbf{x}} \qquad = \begin{cases} 1 & \mathbf{w}^T \overline{\mathbf{x}} \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

- Sparsity:
- Parallelization:

Numerical Issues

- Logistic Regression is subject to overfitting
 - Without enough data, logistic regression can classify each data point arbitrarily well (i.e., $Pr(correct\ class) \rightarrow 1$)
- Problems: $weights \rightarrow \pm \infty$ Hessian \rightarrow singular
- Picture

Regularization

- Solution: penalize large weights
- Objective:

$$\min_{\mathbf{w}} L(\mathbf{w}) + \frac{1}{2}\lambda ||\mathbf{w}||_{2}^{2}$$

$$= \min_{\mathbf{w}} -\sum_{n} y_{n} \ln \sigma(\mathbf{w}^{T} \overline{\mathbf{x}}_{n}) + (1 - y_{n}) \ln(1 - \sigma(\mathbf{w}^{T} \overline{\mathbf{x}}_{n})) + \frac{1}{2}\lambda \mathbf{w}^{T} \mathbf{w}$$

- Gradient: $\nabla L(\mathbf{w}) = \overline{\mathbf{X}}(\sigma(\overline{\mathbf{X}}^T\mathbf{w}) \mathbf{y}) + \lambda \mathbf{w}$
- Hessian: $\boldsymbol{H} = \overline{\boldsymbol{X}} \boldsymbol{R} \overline{\boldsymbol{X}}^T + \lambda \boldsymbol{I}$ where $R_{nn} = \sigma(\boldsymbol{w}^T \overline{\boldsymbol{x}}_n) (1 - \sigma(\boldsymbol{w}^T \overline{\boldsymbol{x}}_n)$ the term $\lambda \boldsymbol{I}$ ensures that \boldsymbol{H} is not singular (eigenvalues $\geq \lambda$)

Generalized Linear Models

 How can we do non-linear regression and classification while using the same machinery?

 Idea: map inputs to a different space and do linear regression/classification in that space

Example

Suppose the underlying function is quadratic

Basis functions

- Use non-linear basis functions:
 - Let ϕ_i denote a basis function: $\phi_0(x) = 1$ $\phi_1(x) = x$ $\phi_2(x) = x^2$
 - Let the hypothesis space *H* be

$$H = \{x \to w_0 \phi_0(x) + w_1 \phi_1(x) + w_2 \phi_2(x) | w_i \in \Re\}$$

• If the basis functions are non-linear in x, then a non-linear hypothesis can still be found by linear regression

Common basis functions

• Polynomial: $\phi_i(x) = x^j$

• Gaussian:
$$\phi_j(x) = e^{-\frac{(x-\mu_j)^2}{2s^2}}$$

• Sigmoid:
$$\phi_j(x) = \sigma\left(\frac{x-\mu_j}{s}\right)$$
 where $\sigma(a) = \frac{1}{1+e^{-a}}$

Also Fourier basis functions, wavelets, etc.

Generalized Linear Models

• Linear regression:

$$\mathbf{w}^* = argmin_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{w}^T \overline{\mathbf{x}}_n \right)^2 + \frac{\lambda}{2} \left| |\mathbf{w}| \right|_2^2$$

Generalized linear regression:

$$\mathbf{w}^* = argmin_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{w}^T \phi(\mathbf{x}_n))^2 + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

• Linear separator (classification):

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} - \sum_{n} y_n \ln \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n) + (1 - y_n) \ln (1 - \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n)) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

Generalized linear separator (classification):

$$\mathbf{w}^* = argmin_{\mathbf{w}} - \sum_{n} y_n \ln \sigma(\mathbf{w}^T \phi(\mathbf{x}_n)) + (1 - y_n) \ln (1 - \sigma(\mathbf{w}^T \phi(\mathbf{x}_n))) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

