Lecture 4: Statistical Learning CS480/680 Intro to Machine Learning

2023-1-19

Pascal Poupart David R. Cheriton School of Computer Science

Statistical Learning

• View: we have uncertain knowledge of the world

Idea: learning simply reduces this uncertainty

Terminology

Probability distribution:

- A specification of a probability for each event in our sample space
- Probabilities must sum to 1

- Assume the world is described by two (or more) random variables
 - Joint probability distribution
 - Specification of probabilities for all combinations of events

Joint distribution

- Given two random variables *A* and *B*:
- Joint distribution:

 $Pr(A = a \land B = b)$ for all a, b

Marginalisation (sumout rule):

$$Pr(A = a) = \Sigma_b Pr(A = a \wedge B = b)$$

$$Pr(B = b) = \Sigma_a Pr(A = a \Lambda B = b)$$

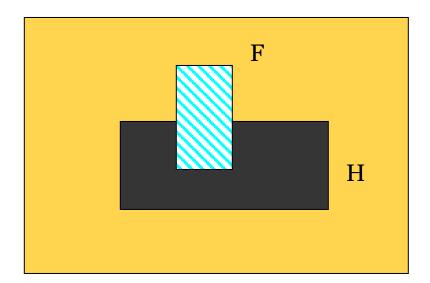
Example: Joint Distribution

sunny			~sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

P(headacheAsunnyAcold) = 0.108 P(-headacheAsunnyA-cold) = 0.064 $P(headache) = 0.168 \pm 0.012 \pm 0.072 \pm 0.008 \pm 0.2$ marginalization

Conditional Probability

Pr(A|B): fraction of worlds in which B is true that also have A true

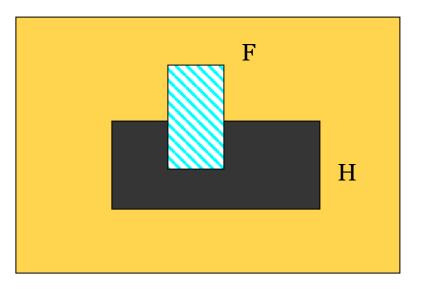


H="Have headache" F="Have Flu"

> Pr(H) = 1/10Pr(F) = 1/40Pr(H|F) = 1/2

Headaches are rare and flu is rarer, but if you have the flu, then there is a 50-50 chance you will have a headache

Conditional Probability



H="Have headache" F="Have Flu"

> Pr(H) = 1/10Pr(F) = 1/40Pr(H|F) = 1/2

Pr(H|F) = Fraction of flu inflicted worlds in which you have a headache

- = (# worlds with flu and headache)/(# worlds with flu)
- = (Area of "H and F" region)/(Area of "F" region)

= $\Pr(H \wedge F) / \Pr(F)$

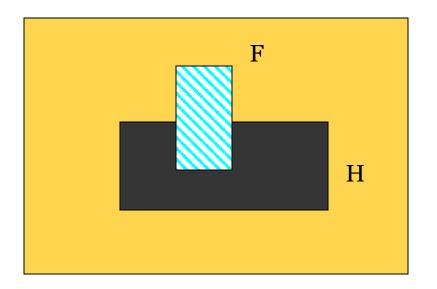
Conditional Probability

• Definition: $Pr(A|B) = Pr(A \land B) / Pr(B)$

• Chain rule: $Pr(A \land B) = Pr(A|B) Pr(B)$

Memorize these rules!

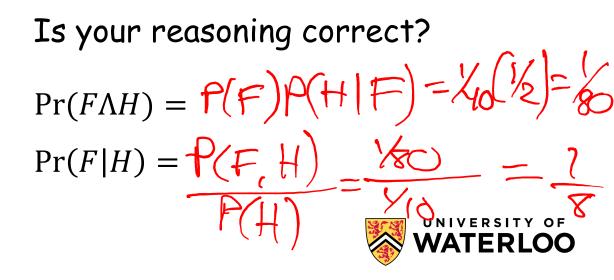
Inference



H="Have headache" F="Have Flu"

Pr(H) = 1/10Pr(F) = 1/40Pr(H|F) = 1/2

One day you wake up with a headache. You think "Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"



Example: Joint Distribution

sunny			~sunny		
	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

$$Pr(headache \Lambda cold | sunny) = \bigcap(A, C, S) \qquad 0, 108$$

$$Pr(headache \Lambda cold | \sim sunny) = \bigcap(A, C, S) \qquad 0, 08+0, 012+0, 016+0, 044 \qquad 0, 08+$$

Bayes Rule

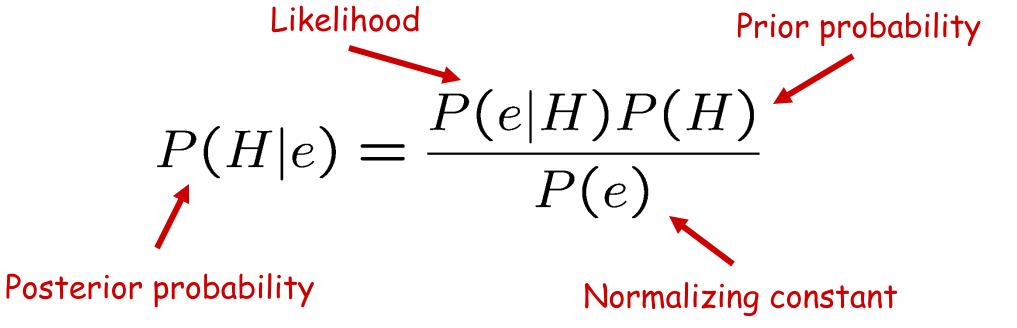
• Note: $Pr(A|B)Pr(B) = Pr(A\Lambda B) = Pr(B\Lambda A) = Pr(B|A)Pr(A)$

• Bayes Rule: $Pr(B|A) = \frac{Pr(A|B)Pr(B)}{Pr(A)}$

Memorize this!

Using Bayes Rule for inference

- Often, we want to form a hypothesis about the world based on what we have observed
- Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis *H*, given evidence *e*



Bayesian Learning

- **Prior:** Pr(*H*)
- Likelihood: Pr(e|H)
- Evidence: $e = \langle e_1, e_2, ..., e_N \rangle$

• **Bayesian Learning** amounts to computing the posterior using Bayes' Theorem:

$$Pr(H|e) = k Pr(e|H)Pr(H)$$

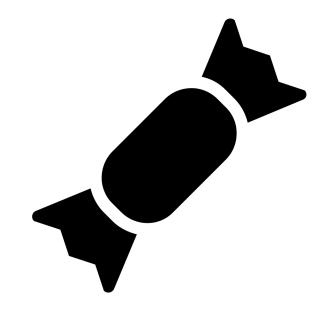
$$Me nomalization$$

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity *X*
- $\Pr(X|\boldsymbol{e}) = \Sigma_i \Pr(X|\boldsymbol{e}, h_i) P(h_i|\boldsymbol{e})$ = $\Sigma_i \Pr(X|h_i) P(h_i|\boldsymbol{e})$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime



You bought a bag of candy but don't know its flavor ratio

- After eating *k* candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

• Hypothesis H: probabilistic theory of the world

- *h*₁: 100% cherry
- *h*₂: 75% cherry + 25% lime
- *h*₃: 50% cherry + 50% lime
- *h*₄: 25% cherry + 75% lime
- *h*₅: 100% lime

•

• Examples E: evidence about the world

- *e*₁: 1st candy is cherry
- e_2 : 2nd candy is lime
- e_3 : 3rd candy is lime

Candy Example

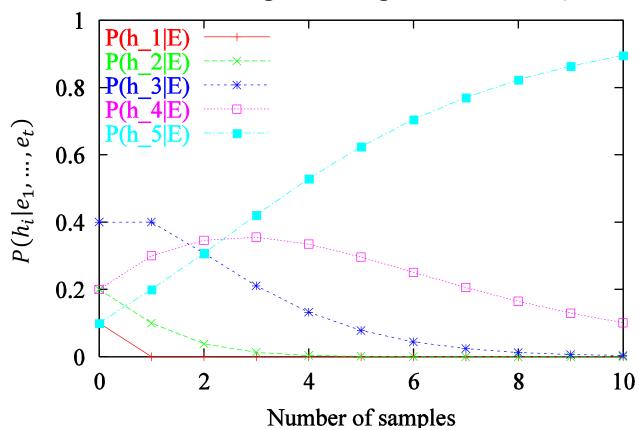
- Assume prior Pr(H) = < 0.1, 0.2, 0.4, 0.2, 0.1 >
- Assume candies are i.i.d. (identically and independently distributed) $Pr(e|h) = \prod_n P(e_n|h)$
- Suppose first 10 candies all taste lime:

$$Pr(\boldsymbol{e}|h_{5}) = 1^{lo} = 1$$

$$Pr(\boldsymbol{e}|h_{3}) = 0.5^{lo} = 0.0097$$

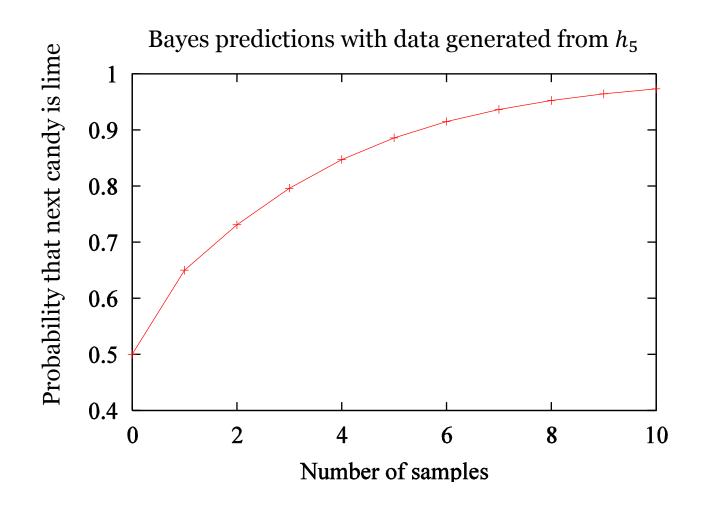
$$Pr(\boldsymbol{e}|h_{1}) = 0^{lo} = 0$$

Posterior



Posteriors given data generated from h_5

Prediction



Bayesian Learning

- Bayesian learning properties:
 - **Optimal** (i.e., given prior, no other prediction is correct more often than the Bayesian one)
 - **No overfitting** (all hypotheses are considered and weighted)
- There is a price to pay:
 - When hypothesis space is large, Bayesian learning may be intractable
 - i.e., sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (MAP)

Idea: make prediction based on most probable hypothesis h_{MAP}

 $h_{MAP} = argmax_{h_i} \Pr(h_i | \boldsymbol{e})$ $\Pr(X | \boldsymbol{e}) \approx \Pr(X | h_{MAP})$

 In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

MAP properties

- MAP prediction **less accurate** than Bayesian prediction since it relies only on **one** hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding *h_{MAP}* may be intractable:
 - $h_{MAP} = argmax_h \Pr(h|\boldsymbol{e})$
 - Optimization may be difficult

Maximum Likelihood (ML)

• Idea: simplify MAP by assuming uniform prior (i.e., $Pr(h_i) = Pr(h_j) \forall i, j$)

$$h_{MAP} = argmax_h \Pr(h) \Pr(\boldsymbol{e}|h)$$

 $h_{ML} = argmax_h \Pr(\boldsymbol{e}|h)$

• Make prediction based on h_{ML} only: $Pr(X|e) \approx Pr(X|h_{ML})$

Maximum Likelihood (ML) properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to **overfitting** (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP} $h_{ML} = argmax_h \Sigma_n \log \Pr(e_n|h)$

