Lecture 3: Linear Regression CS480/680 Intro to Machine Learning

Pascal Poupart
David R. Cheriton School of Computer Science

Linear model for regression

- Simple form of regression
- Picture:

Problem

- Data: $\left\{\left(\boldsymbol{x}_{\mathbf{1}}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{\boldsymbol{N}}, y_{N}\right)\right\}$
- $\left.\boldsymbol{x}=<x_{1}, x_{2}, \ldots, x_{M}\right\rangle$: input vector
- y : target (continuous value)
- Problem: find hypothesis h that maps x to y
- Assume that h is linear:

$$
h(\boldsymbol{x}, \boldsymbol{w})=w_{0}+w_{1} x_{1}+\cdots+w_{M} x_{M}=\boldsymbol{w}^{\boldsymbol{T}}\binom{1}{\boldsymbol{x}}
$$

- Objective: minimize some loss function
- Euclidean loss: $L_{2}(\boldsymbol{w})=\frac{1}{2} \sum_{n=1}^{N}\left(h\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{w}\right)-y_{n}\right)^{2}$

Optimization

- Find best \boldsymbol{w} that minimizes Euclidean loss

$$
\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}}\binom{1}{\boldsymbol{x}_{\boldsymbol{n}}}\right)^{2}
$$

- Convex optimization problem mern-connex

\Rightarrow unique optimum (global)

Solution

- Let $\overline{\boldsymbol{x}}=\binom{1}{\boldsymbol{x}}$ then $\min _{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right)^{2}$
- Find \boldsymbol{w}^{*} by setting the derivative to 0

$$
\begin{aligned}
& \frac{\partial L_{2}}{\partial_{w_{j}}}=\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right) \bar{x}_{n j}=0 \quad \forall j \\
& \quad \Rightarrow \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right) \overline{\boldsymbol{x}}_{\boldsymbol{n}}=0
\end{aligned}
$$

- This is a linear system in \boldsymbol{w}, therefore we rewrite it as $\boldsymbol{A} \boldsymbol{w}=\boldsymbol{b}$
where $\boldsymbol{A}=\sum_{n=1}^{N} \overline{\boldsymbol{x}}_{\boldsymbol{n}} \overline{\boldsymbol{x}}_{n}^{T}$ and $\boldsymbol{b}=\sum_{n=1}^{N} y_{n} \overline{\boldsymbol{x}}_{n}$

Solution

- If training instances span \mathfrak{R}^{M+1} then \boldsymbol{A} is invertible:

$$
w=A^{-1} b
$$

- In practice it is faster to solve the linear system $\boldsymbol{A} \boldsymbol{w}=\boldsymbol{b}$ directly instead of inverting \boldsymbol{A}
- Gaussian elimination
- Conjugate gradient
- Iterative methods

Picture

Regularization

- Least square solution may not be stable
- i.e., slight perturbation of the input may cause a dramatic change in the output
- Form of overfitting

Example 1

$$
\begin{aligned}
& \cdot \text { Training data: } \bar{x}_{1}=\binom{1}{0} \quad \bar{x}_{2}=\binom{1}{\epsilon} \\
& y_{1}=1 \quad \begin{array}{l}
y_{2}=1
\end{array} \\
& \cdot \boldsymbol{A}=\bar{x}_{1} \bar{x}_{1}^{\top}+\bar{x}_{2} \bar{x}_{2}^{\top}=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\binom{1}{\varepsilon}(1 \varepsilon)=\left(\begin{array}{ll}
2 & \varepsilon \\
\varepsilon & \varepsilon^{2}
\end{array}\right) \\
& \cdot A^{-1}=\left(\begin{array}{cc}
1 & -1 / \varepsilon \\
-y_{\varepsilon} & 2 / \varepsilon^{2}
\end{array}\right) \quad \boldsymbol{b}=y_{1} \bar{x}_{1}+y_{2}{\overline{x_{2}}}_{2}=1\binom{1}{0}+1\binom{1}{\varepsilon}=\binom{2}{\varepsilon} \\
& \cdot \boldsymbol{w}=A^{-1} b=\binom{1}{0}
\end{aligned}
$$

Example 2

$$
\left.\begin{array}{c}
\text { - Training data: } \bar{x}_{\mathbf{1}}=\binom{1}{0} \quad \overline{\boldsymbol{x}}_{2}=\binom{1}{\epsilon} \\
y_{1}=1+\epsilon \quad y_{2}=1 \\
\text { • } \boldsymbol{A}=\left(\begin{array}{cc}
2 & \varepsilon \\
\varepsilon & \varepsilon^{2}
\end{array}\right) \\
\text { • } \boldsymbol{A}^{-\mathbf{1}}=\left(\begin{array}{cc}
1 & -1 / \varepsilon^{2} \\
-1 / \varepsilon & 2
\end{array} \varepsilon^{2}\right.
\end{array}\right) \quad \boldsymbol{b}=y_{1}, \overline{x_{1}}+y_{2} \overline{x_{2}}=(1+\varepsilon)\binom{1}{0}+1\binom{1}{\varepsilon}=\binom{2+\varepsilon}{\varepsilon /}
$$

Picture

Regularization

- Idea: favor smaller values
- Tikhonov regularization: $\operatorname{add}\left|\left|=| |_{2}^{2}\right.\right.$ as a penalty term
- Ridge regression:

$$
\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right)^{2}+\frac{\lambda}{2}| | \boldsymbol{w} \|_{2}^{2}
$$

where λ is a weight to adjust the importance of the penalty

Regularization

- Solution: $(\lambda \boldsymbol{I})+\boldsymbol{A}) \boldsymbol{w}=\boldsymbol{b}$

- Notes
- Without regularization: eigenvalues of linear system may be arbitrarily close to 0 and the inverse may have arbitrarily large eigenvalues.
- With Tikhonov regularization, eigenvalues of linear system are $\geq \lambda$ and therefore bounded away from 0 . Similarly, eigenvalues of inverse are bounded above by $1 / \lambda$.

Regularized Examples Let $\lambda=0.05$ \& $\varepsilon=0.1$

$$
\begin{aligned}
& \text { Example } 1 \\
& (\lambda I+A)=\left(\begin{array}{cc}
2+\lambda & \varepsilon \\
\varepsilon & \varepsilon^{2}+\lambda
\end{array}\right)=\left(\begin{array}{cc}
\text { Example } 2 \\
2.05 & 0.1 \\
0.1 & 6.06
\end{array}\right) \\
& (\lambda I+A)^{-1}=\left(\begin{array}{cc}
0.531 \\
-0.885 & -0.885 \\
2 & 18.1416
\end{array}\right) \\
& b=\binom{2}{\varepsilon}=\binom{2+\varepsilon}{0.1}=\binom{2.1}{0.1} \\
& w=\binom{0.9735}{0.0442}
\end{aligned}
$$

