Lecture 24: Support Vector Machines CS480/680 Intro to Machine Learning

2023-4-6

Pascal Poupart
David R. Cheriton School of Computer Science

Sparse kernel techniques

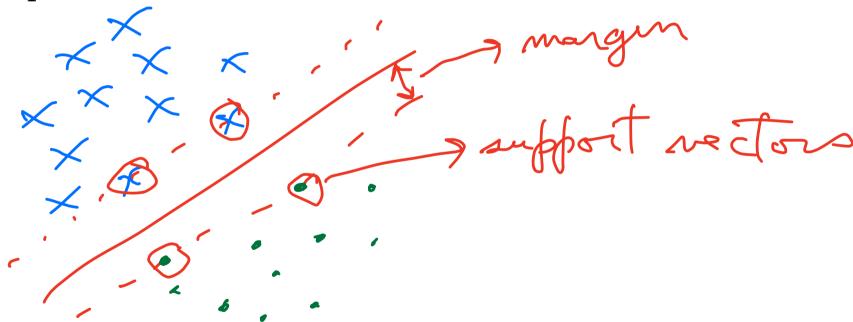
- Kernel based approaches: complexity depends on the amount of data, not the dimensionality of the space. But for large datasets, this is not practical.
 - Kernel matrix is square in # of data points
 - Prediction requires inversion of the kernel matrix, which is cubic in # of data points

- Can we use a **sparse representation**?
 - i.e., kernel that depends on a subset of the data

Support Vector Machines

Kernel depends on subset of data

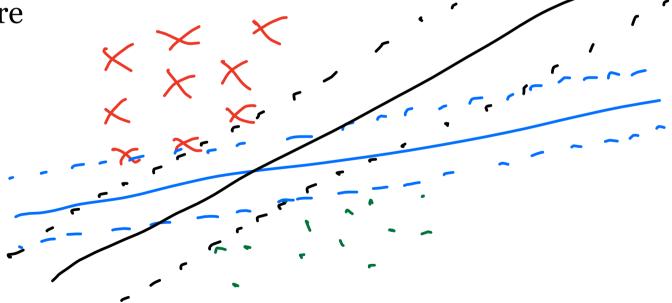
Picture



Max-Margin Classifier

 Find linear separator that maximizes the distance (or margin) to closest data points

Picture



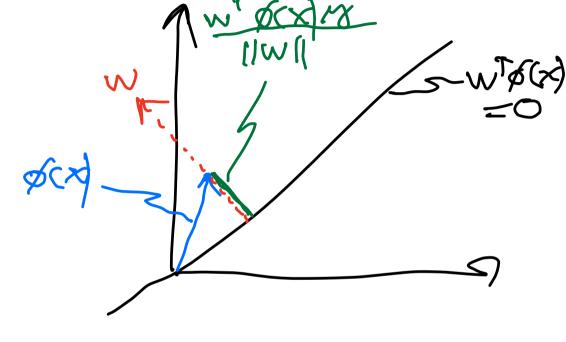
Margin

• Linear separator: $\mathbf{w}^T \phi(\mathbf{x}) = 0$

Distance to linear separator:

$$\frac{yw^T\phi(x)}{||w||} \text{ where } y \in \{-1,1\}$$

• Maximum margin:



$$max_{\mathbf{w}} \frac{1}{||\mathbf{w}||} \left\{ \min_{n} y_{n} \mathbf{w}^{T} \phi(\mathbf{x}_{n}) \right\}$$

Comparison

Perceptron
Inear separator
(sepends on the
starting values)
simple update rule
prone to overfitting

Support Vector Machine

. unique max-margin

linear separator

. quadratic plinization

. robust to overfitting

Maximum Margin

Unique max margin linear separator

$$max_{\mathbf{w}} \frac{1}{||\mathbf{w}||} \left\{ \min_{n} y_{n} \ \mathbf{w}^{T} \phi(\mathbf{x}_{n}) \right\}$$

• Alternatively, we can fix the minimal distance to 1 and minimize ||w||

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$
s.t. $y_n \mathbf{w}^T \phi(\mathbf{x}_n) \ge 1 \quad \forall n$

 This is a convex quadratic optimization problem that can easily be solved by many optimization packages

Derivation

$$argmax_{w} \frac{1}{||w||} \left\{ \min_{n} y_{n} \mathbf{w}^{T} \phi(\mathbf{x}_{n}) \right\}$$

$$= argmax_{w,\delta} \frac{1}{||w||} \delta \quad \text{s.t. } y_{n} \mathbf{w}^{T} \phi(\mathbf{x}_{n}) \geq \delta \quad \forall n$$

$$= argmax_{w,\delta} \frac{1}{||w||} \quad \text{s.t. } y_{n} \frac{\mathbf{w}^{T}}{\delta} \phi(\mathbf{x}_{n}) \geq 1 \quad \forall n$$

$$\text{replace } \frac{\mathbf{w}}{\delta} \text{ by } \mathbf{w}'$$

$$= argmax_{w'} \frac{1}{||w'||} \quad \text{s.t. } y_{n} \mathbf{w}'^{T} \phi(\mathbf{x}_{n}) \geq 1 \quad \forall n$$

$$= argmin_{w'} ||\mathbf{w}'|| \quad \text{s.t. } y_{n} \mathbf{w}'^{T} \phi(\mathbf{x}_{n}) \geq 1 \quad \forall n$$

$$= argmin_{w'} \frac{1}{2} ||\mathbf{w}'||^{2} \quad \text{s.t. } y_{n} \mathbf{w}'^{T} \phi(\mathbf{x}_{n}) \geq 1 \quad \forall n$$

Support Vectors

Quadratic optimization problem

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$
s.t. $y_n \mathbf{w}^T \phi(x_n) \ge 1 \quad \forall n$

• Only the points where $y_n w^T \phi(x_n) = 1$ are necessary. These points define the active constraints and are known as the **support vectors**.

Dual representation

• Idea: reformulation where $\phi(x)$ appears only in a kernel

Approach: find the dual of the optimization problem

Result: (sparse) kernel support vector machines

Dual derivation

Transform constrained optimization

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 \quad \text{s.t. } y_n \mathbf{w}^T \phi(\mathbf{x}_n) \ge 1 \quad \forall n$$

into an unconstrained optimization problem

Lagrangian

$$\max_{a \ge 0} \min_{w} L(w, a)$$

where
$$L(\boldsymbol{w}, \boldsymbol{a}) = \frac{1}{2} ||\boldsymbol{w}||^2 - \sum_{n} a_n [y_n \, \boldsymbol{w}^T \phi(\boldsymbol{x}_n) - 1]$$

penalty for violating the nth constraint

Dual derivation

• Solve inner minimization:

$$\min_{\mathbf{w}} L(\mathbf{w}, \mathbf{a}) = \min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^{2} - \sum_{n} a_{n} [y_{n} \mathbf{w}^{T} \phi(\mathbf{x}_{n}) - 1]$$

• Set derivative to 0:

$$\frac{\partial L}{\partial w} = 0 \implies w = \sum_{n} a_n y_n \phi(x_n)$$

• Substitute \boldsymbol{w} by $\sum_n a_n y_n \phi(\boldsymbol{x}_n)$ in $L(\boldsymbol{w}, \boldsymbol{a})$ to obtain:

$$L(a) = \sum_{n} a_{n} - \frac{1}{2} \sum_{n} \sum_{n'} a_{n} a_{n'} y_{n} y_{n'} k(x_{n}, x_{n'})$$

Dual Problem

 We are then left with an optimization in *a* only known as the **dual problem**

$$\max_{\boldsymbol{a}} L(\boldsymbol{a})$$

s.t.
$$a_n \geq 0$$

• **Sparse optimization**: many a_n 's are o

Classification

• Primal problem:

$$y_* = sign(\mathbf{w}^T \phi(\mathbf{x}_*))$$

• Dual problem:

$$y_* = sign\left(\sum_n a_n y_n \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_*)\right)$$
$$y_* = sign\left(\sum_n a_n y_n k(\mathbf{x}_n, \mathbf{x}_*)\right)$$

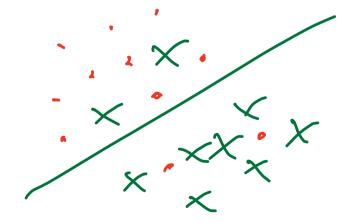
Generalization

- Support vector machines generalize quite well
 - i.e., overfitting is rare

• Reason: maximizing the margin is equivalent to minimizing an upper bound on the worst-case loss (worst loss for any underlying input distribution).

Overlapping Class Distributions

- So far we assumed that data is linearly separable
 - High dimensions help for linear separability, but may hurt for generalization
- But what if the data is noisy (mistakes or outliers)
 - Constraints should allow misclassifications
- Picture



Soft margin

• Idea: relax constraints by introducing slack variables $\xi_n \geq 0$

Picture:
$$y_n \mathbf{w}^T \phi(\mathbf{x}_n) \ge 1 - \xi_n \quad \forall n$$

Soft margin classifier

New optimization problem:

$$\min_{\mathbf{w},\xi} \quad C \sum_{n=1}^{N} \xi_n + \frac{1}{2} ||\mathbf{w}||^2$$

s.t.
$$y_n \mathbf{w}^T \phi(\mathbf{x}_n) \ge 1 - \xi_n$$

and $\xi_n \ge 0 \quad \forall n$

• where C > 0 controls the trade-off between the slack variable penalty and the margin

Soft margin classifier

Notes:

- 1. Since $\sum_n \xi_n$ is an upper bound on the # of misclassifications, C can also be thought as a regularization coefficient that controls the trade-off between error minimization and model complexity
- 2. When $C \to \infty$, then we recover the original hard margin classifier
- 3. Soft margins handle minor misclassifications, but the classifier is still very sensitive to outliers

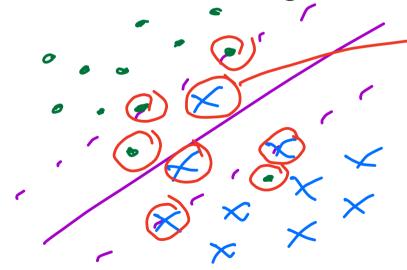
Support Vectors

As before support vectors correspond to active constraints

$$y_n \mathbf{w}^T \phi(\mathbf{x}_n) = 1 - \xi_n$$

• i.e., all points that are in the margin or misclassified

• Picture:



Multiclass Classification

• Optimization problem:

$$\min_{W} \frac{1}{2} \sum_{k} ||\mathbf{w}_{k}||^{2} \qquad \text{class index}$$

s.t.
$$\mathbf{w}_{y_n}^T \phi(\mathbf{x}_n) - \mathbf{w}_k^T \phi(\mathbf{x}_n) \ge 1 \quad \forall n, k \ne y_n$$

Equivalent to binary SVM when we have only two classes

Overlapping classes

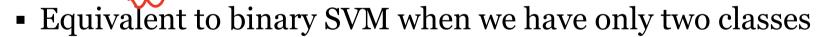
Add slack variables:

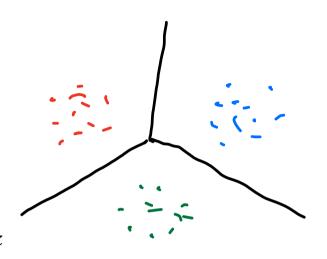
$$\min_{\boldsymbol{W},\boldsymbol{\xi}} C \sum_{n} \xi_{n} + \frac{1}{2} \sum_{k} \left| |\boldsymbol{w}_{k}| \right|^{2}$$

s.t.
$$\mathbf{w}_{y_n}^T \phi(\mathbf{x}_n) - \mathbf{w}_k^T \phi(\mathbf{x}_n) \ge 1 - \xi_n \ \forall n, k \ne y_k$$

s.t.
$$\mathbf{w}_{y_n}^T \phi(\mathbf{x}_n) - \mathbf{w}_k^T \phi(\mathbf{x}_n) \ge 1 - \xi_n \ \forall n, k \ne y_k$$

$$(\mathbf{w}_{y_n}^T - \mathbf{w}_k^T) \ \mathcal{P}(\mathbf{x}_n) > 1 - \xi_n$$





Public Lecture

Speaker: Pascal Poupart

• Title: From AlphaGo to ChatGPT

• Date: April 12 @ 1:30 pm

Location: DC1350

Other Al Courses

- CS486/686: Intro to AI (S23 instructor: Pascal Poupart)
 - includes reinforcement learning, causality, decision making
- CS485/685: Learning theory
- CS484/684: Computer vision
- CS479: Biologically plausible neural networks
- CS794: Optimization for Data Science
- CS885: Reinforcement Learning (instructor: Pascal Poupart)
- CS886: Advanced topics in AI
 - Graph neural networks, NLP, Vision, multiagent systems, robust ML, learning theory