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Gradient Boosting

= AdaBoost designed for classification

= How can we use boosting for regression?

= Answer: Gradient Boosting
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Gradient Boosting

Idea:
= Predictor f, at stage k incurs loss L(f;(x),y)

= Train h;,, to approximate negative gradient:

OL(fi(x),y)
0fr(x)

hps1(x) = —

= Update predictor by adding a multiple ;. ., of hy,:
frer1(x) < fire(x) + Ngyq A (x)
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Squared Loss

= Consider squared loss

L(fie (), ¥) = = (fie (%) — yn)?

= Negative gradient corresponds to residual r

. OL(fk(xn)yn) _ . _
afk(xn) = Yn fk(xn) —Tn

= Train base learner h;,
with residual dataset {(x,,,7,) v}

= Base learner h;,, can be any non-linear predictor (often a small
decision tree)

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 23 - Pascal Poupart PAGE 4 @ WATE RLOO



llustration
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Gradient Boosting Algorithm

= Initialize predictor with a constant c:
fo(xn) = argming X L(c, yn)
= Fork =1to K do

_ aL(fk—l(xn)ryn)
0fk—1(xn)

= Train a base learner h;, with residual dataset {(x,,, 73,)vn }

= Compute pseudo residuals: r;; =

= Optimize step length:
Mk = argming Y L(fi—1(Xn) + nhy (X)), yn)

= Update predictor: fi, (x) <« fr—1(x) + nihy (%)
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XGBoost

= eXtreme Gradient Boosting
= Package optimized for speed and accuracy

= XGBoost used in >12 winning entries for various challenges
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-
challenge-winning-solutions

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 23 - Pascal Poupart PAGE 7 @ WATE RLOO


https://github.com/dmlc/xgboost/tree/master/demo
https://github.com/dmlc/xgboost/tree/master/demo

Boosting vs Bagging

= Review - -
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Independent classifiers/predictors

How can we obtain independent classifiers/predictors for bagging?

Bootstrap sampling

= Sample (without replacement) subset of data

Random projection

= Sample (without replacement) subset of features

Learn different classifiers/predictors based on each data subset and feature subset
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lllustration of Bootstrap Sampling and Random Projection
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Bagging
Fork=1to K

D, < sample data subset
F; < sample feature subset

h; « train classifier/predictor based on D, and F;

Classification: majority(h,(x), ..., hx(x))

Regression: average(h(x), ..., hx(x))

Random forest: bag of decision trees
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Application: Xbox 360 Kinect

= Microsoft Cambridge

= Body part recognition: supervised learning
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Depth camera

» Kinect

Gray scale depth map
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Kinect Body Part Recognition
= Problem: label each pixel with a body part
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depth image = body parts == 3Djointp;c‘);).osals
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Kinect Body Part Recognition

= Features: depth differences between pairs of pixels

(a) N . (b) Q
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o «Q P 2)'
L 4
b2
()

» Classification: forest of decision trees
(1,%x) (1,x)

tree 1

treeT

, Pr(c)
' Py(c) L‘.
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Large Scale Machine Learning

= Big data
= Large number of data instances

= Large number of features
= Solution: distribute computation (parallel computation)

= GPU (Graphics Processing Unit)

= Many cores
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GPU computation

= Many Machine Learning algorithms consist of vector, matrix and
tensor operations

= A tensor is a multidimensional array

= GPU (Graphics Processing Units) can perform arithmetic operations
on all elements of a tensor in parallel

= Packages that facilitate ML programming on GPUs: Keras, PyTorch,
TensorFlow, MXNet, Theano, Catfe, DL.4J
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Multicore Computation

= Idea: Train a different classifier/predictor with a subset of the data on each
core

= How can we combine the classifiers/predictors?

= Should we take the average of the parameters of the classifiers/predictors?

No, this might lead to a worse classifier/predictor. This is especially
problematic for models with hidden variables/units such as neural networks
and hidden Markov models
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Bad case of parameter averaging

= Consider two threshold neural nets that encode the exclusive-or Boolean function
= Averaging the weights yields new neural net that does not encode exclusive-or . <
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Safely Combining Predictions

= A safe approach to ensemble learning is to combine the
predictions (not the parameters)

= Classification: majority vote of the classes predicted by the
classifiers

= Regression: average of the predictions computed by the regressors
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Knowledge Distillation

» Technique to train a small student network h from a large
teacher network h.

= Can be used to compress an ensemble of networks into a single network

= Idea: minimize negative log likelihood of target y and cross entropy
between teacher and student:

min Z [—logpn(ylx)—AZPh(y’Ix)logpﬁ(y’lx)
_’yl

(x,y)€ED
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Course Perception

= When you have a chance, please fill up the survey and provide
feedback about the course (CS480/680) at

https://perceptions.uwaterloo.ca/
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