Lecture 22: Ensemble Learning: Bagging and Boosting CS480/680 Intro to Machine Learning

2023-3-30

Pascal Poupart
David R. Cheriton School of Computer Science

Outline

- Ensemble Learning
 - Bagging
 - Boosting

Supervised Learning

- Many possible techniques:
 - K-nearest neighbours, mixture of Gaussians, logistic regression, support vector machines
 - Perceptrons, feed-forward networks, convolutional neural networks
 - Hidden Markov models, recurrent neural networks, transformers
 - Deterministic autoencoders, variational autoencoders, normalizing flows, generative adversarial networks, diffusion models
- Which technique should we pick?

Ensemble Learning

- Sometimes each learning technique yields a different hypothesis
- But no perfect hypothesis...
- Could we combine several imperfect hypotheses into a better hypothesis?

Ensemble Learning

Analogies:

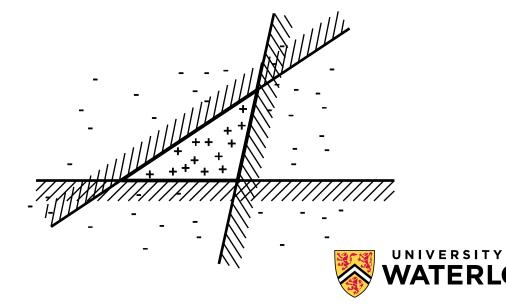
- Elections combine voters' choices to pick a good candidate
- Committees combine experts' opinions to make better decisions

• Intuitions:

- Individuals often make mistakes, but the "majority" is less likely to make mistakes.
- Individuals often have partial knowledge, but a committee can pool expertise to make better decisions.

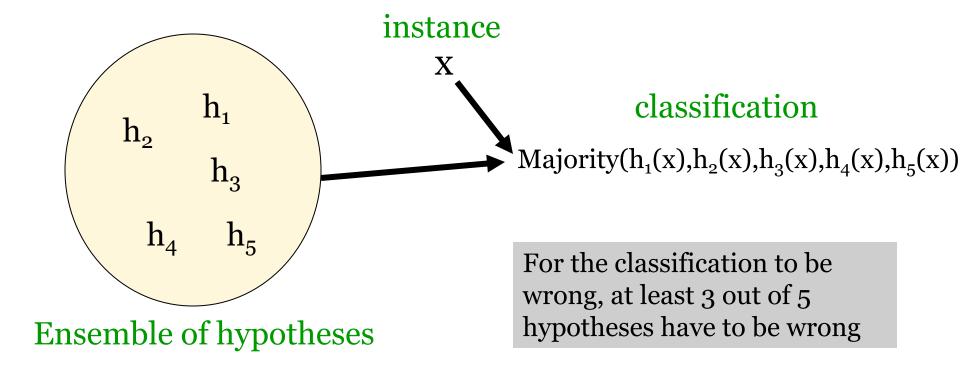
Ensemble Learning

- Definition: method to select and combine an ensemble of hypotheses into a (hopefully) better hypothesis
- Can enlarge hypothesis space:
 - Perceptrons, logistic regression, support vector machines:
 - linear separators
 - Ensemble of linear seperators:
 - polytope



Bagging

Majority Voting



Bagging

- Assumptions:
 - Each h_i makes error with probability p
 - The hypotheses are independent

- Majority voting of *n* hypotheses:
 - k hypotheses make an error: $\binom{n}{k} p^k (1-p)^{n-k}$
 - Majority makes an error: $\sum_{k>n/2} {n \choose k} p^k (1-p)^{n-k}$
 - With n = 5, $p = 0.1 \rightarrow error(majority) < 0.01$

Weighted Majority

- In practice
 - Hypotheses are rarely independent
 - Some hypotheses have less errors than others
- Let's take a weighted majority
- Intuition:
 - Decrease weight of correlated hypotheses
 - Increase weight of good hypotheses

Boosting

- Very popular ensemble technique
- Computes a weighted majority
- Can "boost" a "weak learner"
- Operates on a weighted training set

Weighted Training Set

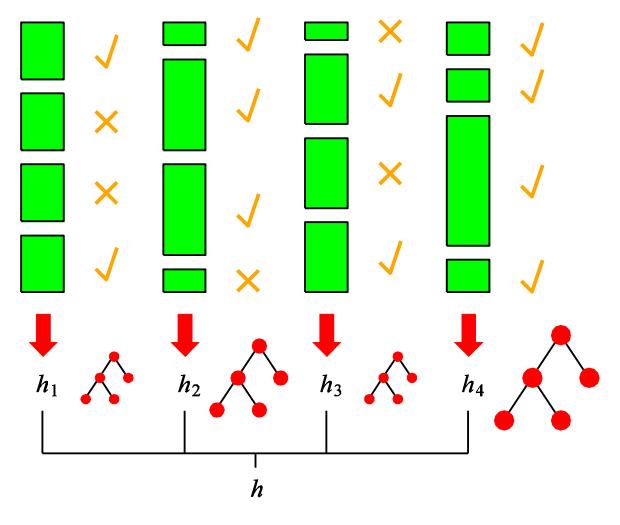
- Learning with a weighted training set
 - Supervised learning → minimize training error
 - Bias algorithm to learn correctly instances with high weights

• Idea: when an instance is misclassified by a hypothesis, increase the weight of that instance so that the next hypothesis is more likely to classify it correctly.

Boosting Framework

- Set all instance weights w_i to 1
- Repeat
 - $h_i \leftarrow learn(dataset, instance\ weights)$
 - Increase weight w_j of misclassified instances x_j
- Until sufficient number of hypotheses
- Ensemble hypothesis is the weighted majority of h_i 's with weights c_i proportional to the accuracy of h_i

Boosting Framework



AdaBoost (Adaptive Boosting)

- $w_i \leftarrow 1/N \ \forall j \ (j \text{ indexes data points})$
- For i = 1 to M do (i indexes hypotheses)
 - $h_i \leftarrow learn(dataset, \mathbf{w})$
 - $error \leftarrow 0$
 - For each (x_i, y_i) in dataset do
 - If $h_i(x_j) \neq y_j$ then $error \leftarrow error + w_j$
 - For each (x_i, y_i) in dataset do
 - If $h_i(x_j) = y_j$ then $w_j \leftarrow w_j error / (1 error)$
 - $\mathbf{w} \leftarrow normalize(\mathbf{w})$
 - $c_i \leftarrow \log[(1 error) / error]$
- Return weightedMajority(h, c)

w: vector of N instance weightsc: vector of M hypothesis weights

What can we boost?

 Weak learner: produces hypotheses at least as good as a random classifier.

Examples:

- Rules of thumb
- Decision stumps (decision trees of one node)
- Perceptrons
- Naïve Bayes models

Boosting Paradigm

- Advantages
 - No need to learn a perfect hypothesis
 - Can boost any weak learning algorithm
 - Boosting is very simple to program
 - Good generalization
- Paradigm shift
 - Don't try to learn a perfect hypothesis
 - Just learn simple rules of thumbs and boost them

Boosting Paradigm

 When we already have a bunch of hypotheses, boosting provides a principled approach to combine them

- Useful for
 - Sensor fusion
 - Combining experts
 - Increasing the accuracy of individual classifiers

Applications

- Any supervised learning task
 - Collaborative filtering (Netflix challenge)
 - Body part recognition (Kinect)
 - Spam filtering
 - Speech recognition/natural language processing
 - Data mining
 - Etc.

Netflix Challenge

 Problem: predict movie ratings based on database of ratings by previous users

• Launch: 2006

• Goal: improve Netflix predictions by 10%

• Grand Prize: 1 million \$

Progress

• 2007: BellKor 8.43% improvement

Progress

- 2007: BellKor 8.43% improvement
- **2008**:
 - No individual algorithm improves by > 9.43%
 - Top two teams BellKor and BigChaos unite
 - Start of ensemble learning
 - Jointly improve by > 9.43%

Progress

- 2007: BellKor 8.43% improvement
- **2008**:
 - No individual algorithm improves by > 9.43%
 - Top two teams BellKor and BigChaos unite
 - Start of ensemble learning
 - Jointly improve by > 9.43%
- June 26, 2009:
 - Top 3 teams BellKor, BigChaos and Pragmatic unite
 - Jointly improve > 10%
 - 30 days left for anyone to beat them

The Ensemble

- Formation of "Grand Prize Team":
 - Anyone could join
 - Share of \$1 million grand prize proportional to improvement in team score
 - Improvement: 9.46%

The Ensemble

- Formation of "Grand Prize Team":
 - Anyone could join
 - Share of \$1 million grand prize proportional to improvement in team score
 - Improvement: 9.46%
- 5 days to the deadline
 - "The Ensemble" team is born
 - Union of Grand Prize team and Vanderlay Industries
 - Ensemble of many researchers

• Last Day: July 26, 2009

- Last Day: July 26, 2009
- 6:18 pm:
 - BellKor's Pragmatic Chaos: 10.06% improvement

- Last Day: July 26, 2009
- 6:18 pm:
 - BellKor's Pragmatic Chaos: 10.06% improvement
- 6:38 pm:
 - The Ensemble: 10.06% improvement

- Last Day: July 26, 2009
- 6:18 pm:
 - BellKor's Pragmatic Chaos: 10.06% improvement
- 6:38 pm:
 - The Ensemble: 10.06% improvement
- Tie breaker: time of submission

