Lecture 19: Generative Networks CS480/680 Intro to Machine Learning

2023-3-21

Pascal Poupart
David R. Cheriton School of Computer Science

Generative networks

- Neural networks are typically used for classification or regression
 - Input: data
 - Output: class or prediction

Can we design neural networks that can generate data?

PAGE 2

- Input: random vector
- Output: data

Generative networks

- Several types of generative networks
 - Boltzmann machines
 - Sigmoid belief networks
 - Variational autoencoders
 - Generative adversarial networks
 - Entropic autoencoder
 - Generative moment matching networks
 - Sum-product networks
 - Normalizing flows
 - Diffusion models
 - **...**

Recall Probabilistic Autoencoder

Let f and g represent conditional distributions

$$f: \Pr(\mathbf{h}|\mathbf{x}; \mathbf{W}_f)$$
 and $g: \Pr(\mathbf{x}|\mathbf{h}; \mathbf{W}_g)$

- The decoder *g* can be treated as a generative model
 - 1. Sample h from Pr(h)
 - 2. Sample x from $Pr(x|h; W_g)$
- Question: how do we choose Pr(h)? NB: We cannot use $Pr(h|x; W_f)$ since it is conditioned on x, which we are trying to generate.

Variational Autoencoders

- Idea: train encoder $Pr(h|x; W_f)$ to approach a simple and fixed distribution, e.g., $N(h; \mathbf{0}, \mathbf{I})$
- This way we can set Pr(h) to N(h; 0, I)

• Objective: $\max \sum_{n} \log \Pr(x_n; W_f, W_g) - c KL(\Pr(h|x_n; W_f)||N(h; 0, I))$

Kullback-Leibler divergence Distance measure for distributions

Variational Autoencoder Likelihood

• How do we compute $Pr(x_n; W_f, W_g)$?

$$\Pr(\mathbf{x}_n; \mathbf{W}_f, \mathbf{W}_g) = \int_{\mathbf{h}} \Pr(\mathbf{x}_n | \mathbf{h}; \mathbf{W}_g) \Pr(\mathbf{h} | \mathbf{x}_n; \mathbf{W}_f) d\mathbf{h}$$

• Since $Pr(h|x_n; W_f)$ should approach N(h; 0, I), then force $Pr(h|x_n; W_f)$ to be Gaussian

$$Pr(\boldsymbol{h}|\boldsymbol{x}_n;\boldsymbol{W}_f) = N(\boldsymbol{h};\mu_n(\boldsymbol{x}_n;\boldsymbol{W}_f),\sigma_n(\boldsymbol{x}_n;\boldsymbol{W}_f)\boldsymbol{I})$$

where the mean μ_n and variance σ_n are obtained by a neural net in \boldsymbol{x}_n parametrized by \boldsymbol{W}_f

Variational Autoencoder Likelihood

Approximate the integral over h

$$\Pr(\mathbf{x}_n; \mathbf{W}_f, \mathbf{W}_g) = \int_{\mathbf{h}} \Pr(\mathbf{x}_n | \mathbf{h}; \mathbf{W}_g) N(\mathbf{h}; \mu_n(\mathbf{x}_n; \mathbf{W}_f), \sigma_n(\mathbf{x}_n; \mathbf{W}_f) \mathbf{I}) d\mathbf{h}$$

• by a single sample: $\Pr(\mathbf{x}_n; \mathbf{W}_f, \mathbf{W}_g) \approx \Pr(\mathbf{x}_n | \mathbf{h}_n; \mathbf{W}_g)$ where $\mathbf{h}_n \sim N(\mathbf{h}; \mu_n(\mathbf{x}_n; \mathbf{W}_f), \sigma_n(\mathbf{x}_n; \mathbf{W}_f)\mathbf{I})$

Variational Autoencoder Training

Training by backpropagation

Variational Autoencoder Testing

- Testing corresponds to generating a data point
- Picture

Images generated with VAEs

Generative Adversarial Networks

- Approach based on game theory
- Two networks:
 - 1. Generator $g(\mathbf{z}; \mathbf{W}_q) \rightarrow \mathbf{x}$
 - 2. Discriminator $d(x; W_d) \rightarrow Pr(x \text{ is } real)$
- Objective:

$$\min_{\boldsymbol{W}_g} \max_{\boldsymbol{W}_d} \sum_{n} \log \Pr(\boldsymbol{x}_n \text{ is real}; \boldsymbol{W}_d) + \log \Pr(g(\boldsymbol{z}_n; \boldsymbol{W}_g) \text{ is fake}; \boldsymbol{W}_d)$$

$$\equiv \min_{\boldsymbol{W}_g} \max_{\boldsymbol{W}_d} \sum_{n} \log d(\boldsymbol{x}_n; \boldsymbol{W}_d) + \log \left(1 - d(g(\boldsymbol{z}_n; \boldsymbol{W}_g); \boldsymbol{W}_d)\right)$$

Generative Adversarial Networks Picture

GAN training

- Repeat until convergence
 - For k steps do
 - Sample $z_1, ..., z_N$ from Pr(z)
 - Sample $x_1, ..., x_N$ from training set
 - Update discriminator by ascending its stochastic gradient

$$\nabla_{\boldsymbol{W}_d} \left(\frac{1}{N} \sum_{n=1}^{N} \left[\log d(\boldsymbol{x}_n; \boldsymbol{W}_d) + \log \left(1 - d(g(\boldsymbol{z}_n; \boldsymbol{W}_g); \boldsymbol{W}_d) \right) \right] \right)$$

- Sample $z_1, ..., z_N$ from Pr(z)
- Update generator by descending its stochastic gradient

$$\nabla_{\boldsymbol{W}_g} \left(\frac{1}{N} \sum_{n=1}^{N} \log \left(1 - d(g(\boldsymbol{z}_n; \boldsymbol{W}_g); \boldsymbol{W}_d) \right) \right)$$

GAN training

- In the limit (with sufficiently expressive networks, sufficient data and global convergence)
 - $\Pr(x|z;W_g) \rightarrow true\ data\ distribution$
 - $Pr(x \text{ is } real; W_d) \rightarrow 0.5 \text{ (for real and fake data)}$

- Problems in practice:
 - Imbalance: one network may dominate the other
 - Local convergence

Images generated with GANs

Right columns are nearest neighbour training examples of adjacent column

