Lecture 18: Autoencoders CS480/680 Intro to Machine Learning

2023-3-16

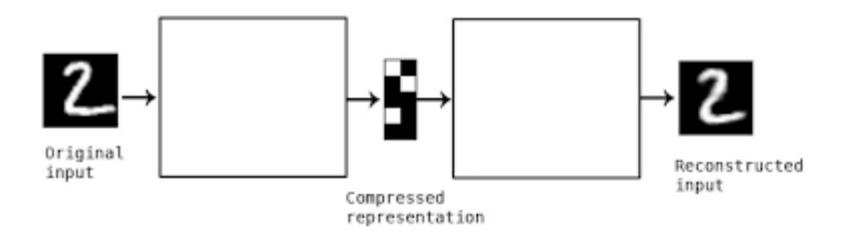
Pascal Poupart
David R. Cheriton School of Computer Science

Autoencoder

- Special type of feed forward network for
 - Compression
 - Denoising
 - Sparse representation
 - Data generation

Autoencoder

- Encoder: f()
- Decoder: g()
- Autoencoder: g(f(x)) = x



Linear Autoencoder

- f and g are linear
 - Matrix representations: W_f and W_g
- Picture:

Linear Autoencoder

• Objective: find weights W_f and W_g that minimize reconstruction error

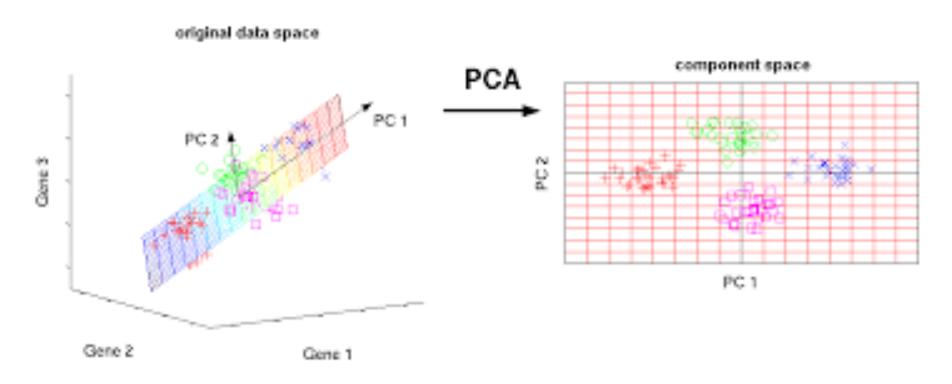
$$\min_{\mathbf{W}} \frac{1}{2} \sum_{n} \left| \left| \mathbf{W}_{g} \mathbf{W}_{f} \mathbf{x}_{n} - \mathbf{x}_{n} \right| \right|_{2}^{2}$$

- Algorithm: backpropagation
 - Gradient descent

• When using Euclidean norm (i.e., squared loss), solution is the same as principal component analysis (PCA)

Principal Component Analysis

• Hidden nodes: compressed representation

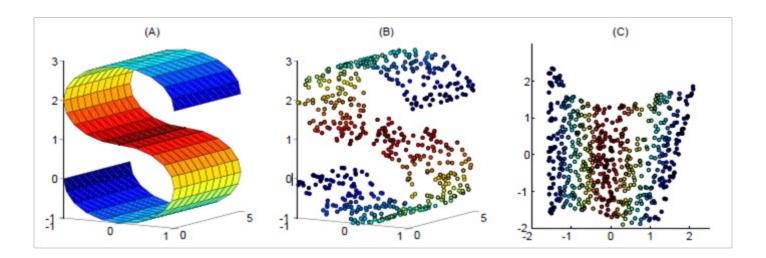


Nonlinear Autoencoder

• f and g are non-linear functions

$$\min_{W} \frac{1}{2} \sum_{n} \left| \left| g(f(\boldsymbol{x}_n; \boldsymbol{W}_f); \boldsymbol{W}_g) - \boldsymbol{x}_n \right| \right|_2^2$$

Hidden nodes: non-linear manifold



Deep Autoencoders

- f and g often consist of multiple layers
- In theory, one hidden layer in *f* and *g* is sufficient to represent any possible compression

Multiple hidden layers in f and g is often better

Sparse Representations

- When more hidden nodes than inputs, use regularization to constrain autoencoder
- Example: force hidden nodes to be sparse

$$\min_{\boldsymbol{W}} \frac{1}{2} \sum_{n} \left| \left| g(f(\boldsymbol{x}_n; \boldsymbol{W}_f); \boldsymbol{W}_g) - \boldsymbol{x}_n \right| \right|_2^2 + \operatorname{c} nnz \left(f(\boldsymbol{x}_n; \boldsymbol{W}_f) \right)$$
 where $nnz \left(f(\boldsymbol{x}_n; \boldsymbol{W}_f) \right)$ is the number **Sparse hidden nodes** of non-zero entries in the vector produced by f .

Approximate objective: L1 regularization

$$\min_{\mathbf{W}} \frac{1}{2} \sum_{n} ||g(f(\mathbf{x}_n; \mathbf{W}_f); \mathbf{W}_g) - \mathbf{x}_n||_2^2 + c ||f(\mathbf{x}_n; \mathbf{W}_f)||_1$$

Denoising Autoencoder

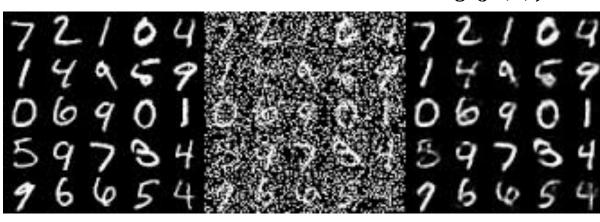
• Consider noisy version \tilde{x} of the input x

original

Data denoising

$$\min_{\boldsymbol{W}} \frac{1}{2} \sum_{n} \left| \left| g(f(\widetilde{\boldsymbol{x}}_n; \boldsymbol{W}_f); \boldsymbol{W}_g) - \boldsymbol{x}_n \right| \right|_{2}^{2} + c \left| \left| f(\widetilde{\boldsymbol{x}}_n; \boldsymbol{W}_f) \right| \right|_{1}$$

$$\boldsymbol{x} \qquad \qquad \widetilde{\boldsymbol{x}} \qquad \qquad g(f(\widetilde{\boldsymbol{x}}))$$



reconstructed

perturbed

Probabilistic Autoencoder

Let f and g represent conditional distributions

$$f: \Pr(\boldsymbol{h}|\boldsymbol{x}; \boldsymbol{W}_f)$$
 and $g: \Pr(\boldsymbol{x}|\boldsymbol{h}; \boldsymbol{W}_g)$

by using sigmoid, softmax or linear units at the hidden and output layers

Picture

Generative Model

- Sample h from some distribution Pr(h)
- Sample x from decoder $Pr(x|h; W_g)$

