Lecture 17: Graph Neural Networks CS480/680 Intro to Machine Learning

2023-3-14

Pascal Poupart
David R. Cheriton School of Computer Science

Graph Neural Networks

- Generalization of
 - Convolutional neural networks
 - Transformers

Applications:

- Recommender systems
- Social networks, financial networks
- Biology, Chemistry and Physics (proteins, moelcules)
- Combinatorial optimization

Embeddings

- Neural network that computes embeddings for nodes (and edges) in a graph by passing messages along the edges of the graph
- The embedding of a node captures information about its context

Message Passing

- Graph: Nodes $(V = \{v\})$ and edges $(E = \{e\})$
 - Initial node embedding: $h_0(v)$
 - Message passing:

Convolutional Neural Network

- CNN that preserves size is a special type of GNN
 - Initial node embedding: $h_0(v)$ = pixel intensities

Convolutional Neural Network

- CNN that preserves size is a special type of GNN
 - Initial node embedding: $h_0(v)$ = pixel intensities
 - $n \times n$ convolutional layer (stride=1, padding=same):

$$m_{ij} \leftarrow aggregate(\{h_{t-1}(v_{i'j'})|i' \neq i \text{ or } j' \neq j\}) = \sum_{i' \neq i \text{ or } j' \neq j} w_{i'j'} h_{t-1}(v_{i'j'}) + h_t(v_{ij}) \leftarrow combine(h_{t-1}(v_{ij}), m_{ij}) = \sigma(w_{ij}h_{t-1}(v_{ij}) + m_{ij})$$

• $n \times n$ pooling layer (stride=1, padding=same):

$$m_{ij} \leftarrow aggregate(\{h_{t-1}(v_{i'j'}) | i' \neq i \text{ or } j' \neq j\}) = \max_{i' \neq i \text{ or } j' \neq j} h_{t-1}(v_{i'j'})$$
$$h_t(v_{ij}) \leftarrow combine(h_{t-1}(v_{ij}), m_{ij}) = \max\{h_{t-1}(v_{ij}), m_{ij}\}$$

Graph Convolutional Neural Network

GNN that does the same operations as a CNN on arbitrary graphs

• Initial node embedding: $h_0(v)$

• Message passing: $H_t \leftarrow \sigma \left(\widehat{D}^{-1}\widehat{A}H_{t-1}W\right)$

Transformer

- Transformer is a special type of fully connected GNN
 - Initial node embedding: $h_0(v) = pixel intensities$
 - Message passing:

$$m_v \leftarrow aggregate(\{h_{t-1}(u)|u \in neighbors(v)\}) = \sum_u a_{vu} W_V h_{t-1}(u)$$
$$h_t(v) \leftarrow combine(h_{t-1}(v), m_v) = norm\left(ff\left(norm(a_{vv} W_V h_{t-1}(v) + m_v)\right)\right)$$

where a_{vu} is the attention weight of u with respect to v

$$a_{vu} = \frac{\exp\left(sim\left(W_Qh(v), W_Kh(u)\right)\right)}{\sum_{u'} \exp\left(sim\left(W_Qh(v), W_Kh(u')\right)\right)}$$

Recommender System

- Movie recommendation (edge completion)
- Bipartite graph:
 - Nodes: users and movies
 - Edges: e_{uv} = user u watched movie v

Recommender System

- Movie recommendation (edge completion)
- Bipartite graph:
 - Nodes: users and movies
 - Edges: e_{uv} = user u watched movie v
- Messages: $h_t(v) \leftarrow comb_{\phi}(h_{t-1}(v), agg_{\theta}(\{h_{t-1}(u)|u \in nb(v)\}))$
 - Example: $h_t(v) \leftarrow \sigma(\phi h_{t-1}(v) + \sum_u \theta h_{t-1}(u))$
- Edge prediction: $P(e_{uv}) = f_W(u, v)$
 - Example: $P(e_{uv}) = \sigma(h(u)^T W h(v))$
- Train: $\max_{W,\theta,\phi} \sum_{e_{uv} \in E} \log P(e_{uv})$

Boolean Satisfiability Mr

• Graph:

• Nodes: literals $V = \{v\}$ and clauses $U = \{u\}$

• Edges: e_{vu} = literal v appears in clause u $e_{v\sim v}$ = special edge from literal v to its complement $\sim v$

Boolean Satisfiability

- Example: $(v_1 \lor \sim v_2 \lor v_3) \land (v_2 \lor \sim v_3 \lor \sim v_4)$
- Graph:
 - Nodes: literals $V = \{v\}$ and clauses $U = \{u\}$
 - Edges: e_{vu} = literal v appears in clause u $e_{v\sim v}$ = special edge from literal v to its complement $\sim v$
- Messages: $h_t(v) \leftarrow comb_{\phi}(h_{t-1}(v), agg_{\theta}(\{h_{t-1}(u)|u \in nb(v)\}))$
 - Example: $h_t(v) \leftarrow \sigma(\phi h_{t-1}(v) + \sum_u \theta h_{t-1}(u))$
- Clause classification: $P(u) = f_w(u)$
 - Example: $P(u) = \sigma(w^T h(u))$
- Train:
 - Satisfiable: $\max_{w,\theta,\phi} \sum_{u \in posClauses} \log P(u)$
 - Unsatisfiable: $\min_{w,\theta,\phi} \sum_{u \in posClauses} \log P(u)$

