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Variable length data
§ Traditional feed forward neural networks can only handle fixed length 

data

§ Variable length data (e.g., sequences, time-series, spatial data) leads to 
a variable # of parameters

§ Solutions:
§ Convolutional neural networks

§ Recurrent neural networks

§ Graph neural networks (including recursive neural networks)
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Recurrent Neural Network (RNN)
§ In RNNs, outputs can be fed back to the network as inputs, creating a 

recurrent structure that can be unrolled to handle varying length data.
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Training
§ Recurrent neural networks are trained by backpropagation on the 

unrolled network 
§ E.g. backpropagation through time

§ Weight sharing:
§ Combine gradients of shared weights into a single gradient

§ Challenges:
§ Gradient vanishing (and explosion)
§ Long range memory
§ Prediction drift
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RNN for belief monitoring
§ HMM can be simulated and generalized by a RNN
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Bi-Directional RNN
§ We can combine past and future evidence in separate chains
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Encoder-Decoder Model
§ Also known as 

sequence2sequence
§ 𝑥("): 𝑖$% input
§ 𝑦("): 𝑖$% output
§ 𝑐: context (embedding)

§ Usage:
§ Machine translation
§ Question answering
§ Dialog
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Machine Translation
§ Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (2014) 

Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
Machine Translation 
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Long Short-Term Memory (LSTM)

§ Special gated structure to 
control memorization and 
forgetting in RNNs

§ Mitigate gradient vanishing

§ Facilitate long term memory
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Unrolled Long Short-Term Memory
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Unrolled Long Short-Term Memory
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Unrolled Long Short-Term Memory
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LSTM cell in practice

§ Adjustments:
§ Hidden state ℎ! called cell state 𝑐!
§ Output 𝑦! called hidden state ℎ!

§ Update equations
Input gate: 𝑖! = 𝜎(𝑊 "" �̅�! +𝑊($")ℎ!&')
Forget gate: 𝑓! = 𝜎(𝑊 "( �̅�! +𝑊($()ℎ!&')
Output gate: 𝑜! = 𝜎(𝑊 ") �̅�! +𝑊($))ℎ!&')
Process input: �̃�! = tanh(𝑊 "+̃ �̅�! +𝑊($+̃)ℎ!&')
Cell update: 𝑐! = 𝑓! ∗ 𝑐!&' + 𝑖! ∗ �̃�!
Output: 𝑦! = ℎ! = 𝑜! ∗ tanh(𝑐!)
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Gated Recurrent Unit (GRU)
§ Simplified LSTM

§ No cell state
§ Two gates (instead of three)
§ Fewer weights

§ Update equations
Reset gate: 𝑟! = 𝜎(𝑊 ", �̅�! +𝑊($,)ℎ!&')
Update gate: 𝑧! = 𝜎(𝑊 "- �̅�! +𝑊($-)ℎ!&')

Process input: 7ℎ! = tanh 𝑊 ".$ �̅�! + 𝑟! ∗ 𝑊 $.$ ℎ!&'
Hidden state update: ℎ! = (1 − 𝑧!) ∗ ℎ!&' + 𝑧! ∗ 7ℎ!
Output: 𝑦! = ℎ!
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Attention
§ Mechanism for alignment in machine translation, image captioning, etc.
§ Attention in machine translation: align each output word with relevant 

input words by computing a softmax of the inputs
§ Context vector 𝑐": weighted sum of input encodings ℎ*

𝑐" = ∑* 𝑎"*ℎ*
§ Where 𝑎"* is an alignment weight 

between input encoding ℎ* and output encoding 𝑠"

𝑎"* =
+,- ./"01231$(4!"#,%$)

∑$% +,-(./"01231$(4!"#,%$%))
(softmax)

§ Alignment example: 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑠"7', ℎ* = 𝑠"7'8 ℎ*
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Attention
§ Picture
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Machine Translation with Bidirectional RNNs, LSTM units and 
attention
§ Bahdanau, Cho, Bengio (ICLR-2015)

§ Bleu: BiLingual Evaluation Understudy
§ Percentage of translated words that appear in ground truth

RNNsearch: with attention
RNNenc: no attention
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Alignment example

§ Bahdanau, Cho, Bengio (ICLR-2015)
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Recursive Neural Network
§ Recursive neural networks: 

§ generalize RNNs from chains to trees
§ Special case of graph neural nets  

§ Weight sharing allows 
trees of different sizes to 
fit variable length data.

§ What structure should
the tree follow?
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Example: Semantic Parsing
§ Use a parse tree or dependency graph as the structure of the recursive 

neural network

§ Example:
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Application: Sentiment Analysis
§ Socher et al., (2013) Recursive Deep Models for Semantic 

Compositionality Over a Sentiment Treebank

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE  22


