Lecture 15: Recurrent Neural Networks CS480/680 Intro to Machine Learning

2023-3-7

Pascal Poupart David R. Cheriton School of Computer Science

Variable length data

- Traditional feed forward neural networks can only handle fixed length data
- Variable length data (e.g., sequences, time-series, spatial data) leads to a variable # of parameters
- Solutions:
 - Convolutional neural networks
 - Recurrent neural networks
 - Graph neural networks (including recursive neural networks)

Recurrent Neural Network (RNN)

• In RNNs, outputs can be fed back to the network as inputs, creating a recurrent structure that can be unrolled to handle varying length data.

Training

- Recurrent neural networks are trained by backpropagation on the unrolled network
 - E.g. backpropagation through time
- Weight sharing:
 - Combine gradients of shared weights into a single gradient
- Challenges:
 - Gradient vanishing (and explosion)
 - Long range memory
 - Prediction drift

RNN for belief monitoring

• HMM can be simulated and generalized by a RNN

Bi-Directional RNN

• We can combine past and future evidence in separate chains

Encoder-Decoder Model

Also known as

sequence2sequence

- $x^{(i)}$: i^{th} input
- $y^{(i)}$: i^{th} output
- c: context (embedding)
- Usage:
 - Machine translation
 - Question answering
 - Dialog

Machine Translation

 Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (2014) Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Source	Translation Model	RNN Encoder-Decoder
at the end of the	[a la fin de la] [f la fin des années] [être sup-	[à la fin du] [à la fin des] [à la fin de la]
	primés à la fin de la]	
for the first time	[r © pour la premirëre fois] [été donnés pour	[pour la première fois] [pour la première fois,]
	la première fois] [été commémorée pour la	[pour la première fois que]
	première fois]	
in the United States	[? aux ?tats-Unis et] [été ouvertes aux États-	[aux Etats-Unis et] [des Etats-Unis et] [des
and	Unis et] [été constatées aux États-Unis et]	États-Unis et]
, as well as	[?s , qu'] [?s , ainsi que] [?re aussi bien que]	[, ainsi qu'] [, ainsi que] [, ainsi que les]
one of the most	[?t ?l' un des plus] [?l' un des plus] [être retenue	[l' un des] [le] [un des]
	comme un de ses plus]	

Long Short-Term Memory (LSTM)

 Special gated structure to control memorization and forgetting in RNNs

Mitigate gradient vanishing

Facilitate long term memory

LSTM cell in practice

- Adjustments:
 - Hidden state h_t called cell state c_t
 - Output y_t called hidden state h_t
- Update equations

Input gate: $i_t = \sigma(W^{(ii)}\bar{x}_t + W^{(hi)}h_{t-1})$ Forget gate: $f_t = \sigma(W^{(if)}\bar{x}_t + W^{(hf)}h_{t-1})$ Output gate: $o_t = \sigma(W^{(io)}\bar{x}_t + W^{(ho)}h_{t-1})$ Process input: $\tilde{c}_t = \tanh(W^{(i\tilde{c})}\bar{x}_t + W^{(h\tilde{c})}h_{t-1})$ Cell update: $c_t = f_t * c_{t-1} + i_t * \tilde{c}_t$ Output: $y_t = h_t = o_t * \tanh(c_t)$

Gated Recurrent Unit (GRU)

- Simplified LSTM
 - No cell state
 - Two gates (instead of three)
 - Fewer weights
- Update equations

Reset gate: $r_t = \sigma(W^{(ir)}\bar{x}_t + W^{(hr)}h_{t-1})$ Update gate: $z_t = \sigma(W^{(iz)}\bar{x}_t + W^{(hz)}h_{t-1})$ Process input: $\tilde{h}_t = \tanh\left(W^{(i\tilde{h})}\bar{x}_t + r_t * \left(W^{(h\tilde{h})}h_{t-1}\right)\right)$ Hidden state update: $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$ Output: $y_t = h_t$

Attention

- Mechanism for alignment in machine translation, image captioning, etc.
- Attention in machine translation: align each output word with relevant input words by computing a softmax of the inputs
 - Context vector c_i : weighted sum of input encodings h_j

$$c_i = \sum_j a_{ij} h_j$$

• Where a_{ij} is an alignment weight

between input encoding h_j and output encoding s_i

$$a_{ij} = \frac{\exp(alignment(s_{i-1},h_j))}{\sum_{j'} \exp(alignment(s_{i-1},h_{j'}))} \text{ (softmax)}$$

• Alignment example: $alignment(s_{i-1}, h_j) = s_{i-1}^T h_j$

Attention

Picture

Machine Translation with Bidirectional RNNs, LSTM units and attention

Bahdanau, Cho, Bengio (ICLR-2015)

RNNsearch: with attention RNNenc: no attention

- Bleu: BiLingual Evaluation Understudy
 - Percentage of translated words that appear in ground truth

Alignment example

Bahdanau, Cho, Bengio (ICLR-2015)

Recursive Neural Network

- Recursive neural networks:
 - generalize RNNs from chains to trees
 - Special case of graph neural nets
- Weight sharing allows trees of different sizes to fit variable length data.
- What structure should the tree follow?

Example: Semantic Parsing

- Use a parse tree or dependency graph as the structure of the recursive neural network
- Example:

Application: Sentiment Analysis

 Socher et al., (2013) Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Model	Accuracy	
	Negated Positive	Negated Negative
biNB	19.0	27.3
RNN	33.3	45.5
MV-RNN	52.4	54.6
RNTN	71.4	81.8

Table 2: Accuracy of negation detection. Negated positive is measured as correct sentiment inversions. Negated negative is measured as increases in positive activations.

