
Lecture 15: Recurrent Neural Networks
CS480/680 Intro to Machine Learning

Pascal Poupart
David R. Cheriton School of Computer Science

2023-3-7

Variable length data
§ Traditional feed forward neural networks can only handle fixed length

data

§ Variable length data (e.g., sequences, time-series, spatial data) leads to
a variable # of parameters

§ Solutions:
§ Convolutional neural networks

§ Recurrent neural networks

§ Graph neural networks (including recursive neural networks)

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 2

Recurrent Neural Network (RNN)
§ In RNNs, outputs can be fed back to the network as inputs, creating a

recurrent structure that can be unrolled to handle varying length data.

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 3

Training
§ Recurrent neural networks are trained by backpropagation on the

unrolled network
§ E.g. backpropagation through time

§ Weight sharing:
§ Combine gradients of shared weights into a single gradient

§ Challenges:
§ Gradient vanishing (and explosion)
§ Long range memory
§ Prediction drift

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 4

RNN for belief monitoring
§ HMM can be simulated and generalized by a RNN

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 5

Bi-Directional RNN
§ We can combine past and future evidence in separate chains

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 6

Encoder-Decoder Model
§ Also known as

sequence2sequence
§ 𝑥("): 𝑖$% input
§ 𝑦("): 𝑖$% output
§ 𝑐: context (embedding)

§ Usage:
§ Machine translation
§ Question answering
§ Dialog

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 7

Machine Translation
§ Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (2014)

Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 8

Long Short-Term Memory (LSTM)

§ Special gated structure to
control memorization and
forgetting in RNNs

§ Mitigate gradient vanishing

§ Facilitate long term memory

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 9

Unrolled Long Short-Term Memory

ℎ& ℎ' ℎ(ℎ)

𝑜𝑢𝑡' 𝑜𝑢𝑡(𝑜𝑢𝑡)

𝑖𝑛' 𝑖𝑛(𝑖𝑛)

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 10

Unrolled Long Short-Term Memory

CS480/680 Winter 2023 - Lecture 15 -
Pascal Poupart

11

ℎ& ℎ' ℎ(ℎ)

𝑜𝑢𝑡' 𝑜𝑢𝑡(𝑜𝑢𝑡)

𝑖𝑛' 𝑖𝑛(𝑖𝑛)

X X X

input
gate

input
gate

input
gate

Unrolled Long Short-Term Memory

ℎ& ℎ' ℎ(ℎ)

𝑜𝑢𝑡' 𝑜𝑢𝑡(𝑜𝑢𝑡)

𝑖𝑛' 𝑖𝑛(𝑖𝑛)

X X X

X XX

input
gate

input
gate

input
gate

forget
gate

forget
gate

forget
gate

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 12

Unrolled Long Short-Term Memory

ℎ& ℎ' ℎ(ℎ)

𝑜𝑢𝑡' 𝑜𝑢𝑡(𝑜𝑢𝑡)

𝑖𝑛' 𝑖𝑛(𝑖𝑛)

X X X

X XX

X X Xoutput
gate

output
gate

output
gate

input
gate

input
gate

input
gate

forget
gate

forget
gate

forget
gate

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 13

LSTM cell in practice

§ Adjustments:
§ Hidden state ℎ! called cell state 𝑐!
§ Output 𝑦! called hidden state ℎ!

§ Update equations
Input gate: 𝑖! = 𝜎(𝑊 "" �̅�! +𝑊($")ℎ!&')
Forget gate: 𝑓! = 𝜎(𝑊 "(�̅�! +𝑊($()ℎ!&')
Output gate: 𝑜! = 𝜎(𝑊 ") �̅�! +𝑊($))ℎ!&')
Process input: �̃�! = tanh(𝑊 "+̃ �̅�! +𝑊($+̃)ℎ!&')
Cell update: 𝑐! = 𝑓! ∗ 𝑐!&' + 𝑖! ∗ �̃�!
Output: 𝑦! = ℎ! = 𝑜! ∗ tanh(𝑐!)

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 14

Gated Recurrent Unit (GRU)
§ Simplified LSTM

§ No cell state
§ Two gates (instead of three)
§ Fewer weights

§ Update equations
Reset gate: 𝑟! = 𝜎(𝑊 ", �̅�! +𝑊($,)ℎ!&')
Update gate: 𝑧! = 𝜎(𝑊 "- �̅�! +𝑊($-)ℎ!&')

Process input: 7ℎ! = tanh 𝑊 ".$ �̅�! + 𝑟! ∗ 𝑊 $.$ ℎ!&'
Hidden state update: ℎ! = (1 − 𝑧!) ∗ ℎ!&' + 𝑧! ∗ 7ℎ!
Output: 𝑦! = ℎ!

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 15

Attention
§ Mechanism for alignment in machine translation, image captioning, etc.
§ Attention in machine translation: align each output word with relevant

input words by computing a softmax of the inputs
§ Context vector 𝑐": weighted sum of input encodings ℎ*

𝑐" = ∑* 𝑎"*ℎ*
§ Where 𝑎"* is an alignment weight

between input encoding ℎ* and output encoding 𝑠"

𝑎"* =
+,- ./"01231$(4!"#,%$)

∑$% +,-(./"01231$(4!"#,%$%))
(softmax)

§ Alignment example: 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑠"7', ℎ* = 𝑠"7'8 ℎ*

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 16

Attention
§ Picture

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 17

Machine Translation with Bidirectional RNNs, LSTM units and
attention
§ Bahdanau, Cho, Bengio (ICLR-2015)

§ Bleu: BiLingual Evaluation Understudy
§ Percentage of translated words that appear in ground truth

RNNsearch: with attention
RNNenc: no attention

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 18

Alignment example

§ Bahdanau, Cho, Bengio (ICLR-2015)

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 19

Recursive Neural Network
§ Recursive neural networks:

§ generalize RNNs from chains to trees
§ Special case of graph neural nets

§ Weight sharing allows
trees of different sizes to
fit variable length data.

§ What structure should
the tree follow?

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 20

Example: Semantic Parsing
§ Use a parse tree or dependency graph as the structure of the recursive

neural network

§ Example:

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 21

Application: Sentiment Analysis
§ Socher et al., (2013) Recursive Deep Models for Semantic

Compositionality Over a Sentiment Treebank

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 22

