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Variable length data

= Traditional feed forward neural networks can only handle fixed length
data

= Variable length data (e.g., sequences, time-series, spatial data) leads to
a variable # of parameters

= Solutions:
= Convolutional neural networks
» Recurrent neural networks

= Graph neural networks (including recursive neural networks)
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Recurrent Neural Network (RNN)

= In RNNSs, outputs can be fed back to the network as inputs, creating a
recurrent structure that can be unrolled to handle varying length data.
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.
Training

= Recurrent neural networks are trained by backpropagation on the
unrolled network
= E.g. backpropagation through time
= Weight sharing:
= Combine gradients of shared weights into a single gradient
= Challenges:

= Gradient vanishing (and explosion)
= Long range memory
= Prediction drift
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RNN for belief monitoring

= HMM can be simulated and generalized by a RNN
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Bi-Directional RNN

= We can combine past and future evidence in separate chains
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Encoder-Decoder Model

» Also known as

sequence2sequence
« x(M: it input
« y@: ith output
= ¢: context (embedding)

= Usage:
= Machine translation
= Question answering
= Dialog
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Machine Translation

= Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (2014)

Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation

Source

Translation Model

RNN Encoder-Decoder

at the end of the

[a la fin de la] [f la fin des années] [étre sup-
primés a la fin de la]

[a la fin du] [a la fin des] [a la fin de 1a]

for the first time

[r © pour la premirére fois] [été donnés pour
la premiere fois] [été commémorée pour la
premiere fois]

[pour la premiére fois] [pour la premiere fois ,]
[pour la premieére fois que]

in the United States
and
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Unis et] [été constatées aux Etats-Unis et]
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, as well as
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Long Short-Term Memory (LSTM)

= Special gated structure to é
control memorization and -

forgetting in RNNs
= Facilitate long term memory \ é\@%@ 3(/, ,w( \
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= Mitigate gradient vanishing




Unrolled Long Short-Term Memory

% UNIVERSITY OF

CS480/680 Winter 2023 - Lecture 15 - Pascal Poupart PAGE 10 @ WATE RLOO



Unrolled Long Short-Term Memory
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Unrolled Long Short-Term Memory
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Unrolled Long Short-Term Memory
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LSTM cell in practice

= Adjustments:

= Hidden state h; called cell state c;
= Output y; called hidden state h;

= Update equations
Input gate: i, = o(W %, + WDh,_)) he b h,
Forget gate: f, = o(W g, + WrHDp,_))
Output gate: o, = a(W %, + W"p, )
Process input: & = tanh(W %, + wHOp,_ )
Cell update: ¢; = f; * c;_1 + iy * &
Output: y; = hy = oy * tanh(c;)
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Gated Recurrent Unit (GRU)

= Simplified LSTM

= No cell state

= Two gates (instead of three) B o
= Fewer weights

= Update equations
Reset gate: r, = o(W Mz, + WHDp,_)
Update gate: z, = o(W @5, + whdp,_ )

Process input: h, = tanh (W(iﬁ)ft + 17y * (W(hﬁ)ht_l))
Hidden state update: hy = (1 — z,) * hy_; + 2z * h;
Output: y; = hy
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Attention

= Mechanism for alignment in machine translation, image captioning, etc.

= Attention in machine translation: align each output word with relevant
input words by computing a softmax of the inputs
= Context vector ¢;: weighted sum of input encodings h;
ci = Xjaijh;
= Where q;; is an alignment weight
between input encoding h; and output encoding s;

exp(alignment(Si—l»hj)) (Softmax)

a .. =
YR exp(alignment(si-1,h;1))

= Alignment example: alignment(s;_1, h;) = s{_1h;
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Attention

= Picture
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Machine Translation with Bidirectional RNNs, LSTM units and
attention

= Bahdanau, Cho, Bengio (ICLR-2015)
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» Bleu: BiLingual Evaluation Understudy

= Percentage of translated words that appear in ground truth
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Alignment example

= Bahdanau, Cho, Bengio (ICLR-2015)
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Recursive Neural Network

= Recursive neural networks:
= generalize RNNs from chains to trees
= Special case of graph neural nets

= Weight sharing allows
trees of different sizes to
fit variable length data.

= What structure should
the tree follow?
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Example: Semantic Parsing

= Use a parse tree or dependency graph as the structure of the recursive
neural network

= Example:
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Application: Sentiment Analysis

= Socher et al., (2013) Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank

Model Accuracy ¢
Negated Positive  Negated Negative GoP; = g( a,p 1)
biNB 19.0 273 o
RNN 333 45.5
MV-RNN 52.4 546 oo p1=g(b,c)
RNTN 714 81.8

Table 2: Accuracy of negation detection. Negated posi-
tive is measured as correct sentiment inversions. Negated ... hot ve r'y gOO d ves
negative is measured as increases in positive activations. b

d

C cleverness other kind intelligent humor
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