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Large networks
§ What kind of neural networks can be used for large or variable length 

input vectors (e.g., time series)?

§ Common networks:
§ Convolutional networks

§ Recurrent networks

§ Transformers
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Convolution
§ Convolution: mathematical operation on two functions !() and $()

that produces a third function %() that can be viewed as a modified 
version of the original function !()

% & = (
!
! ) $ & − ) +)

% & = (! ∗ $)(&)

where ∗ is an operator denoting a convolution
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Example Smoothing
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Discrete convolution
§ Discrete convolution

! " = $
!"#$

$
% & '(" − &)

§ Multidimensional convolution

! ", , = $
!!"#$

$
$

!""#$

$
% &%, && '(" − &%, , − &&)
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Example: Edge Detection
§ Consider a grey scale image

§ Detect vertical edges:  % &, . = ! &, . − !(& − 1, .)

! " − $!, & − $" = (
1 $! = ", $" = &
−1 $! = " − 1, $" = &
0 otherwise
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Convolutions for feature extraction
§ In neural networks

§ A convolution denotes the linear combination of a subset of units based on 
a specific pattern of weights.

-' =$
(
''(.(

§ Convolutions are often combined with an activation function to produce a 
feature

.' = ℎ(-') = ℎ $
(
''(.(
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Gabor filters
§ Gabor filters: common feature maps inspired by the human vision system

§ Weights: 
Grey: zero White: positive Black: negative 
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Convolution Neural Network
§ A convolutional neural network refers to any network that 

includes an alternation of convolution and pooling layers, 
where some of the convolution weights are shared.

§ Architecture: 
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Pooling
§ Pooling: commutative mathematical operation that combines 

several units 

§ Examples:
§ max, sum, product, average, Euclidean norm, etc.

§ Commutative property (order does not matter):
Ex.: max -, 3 = max(3, -)
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Example: Digit Recognition

max pooling
max pooling
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Benefits
§ Sparse interactions 

§ Fewer connections

§ Parameter sharing
§ Fewer weights

§ Locally equivariant representation
§ Locally invariant to translations

§ Handle inputs of varying length
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Parameters
§ # of filters: integer indicating the # of filters applied to each window.

§ kernel size: tuple (width, height) indicating the size of the window.

§ Stride: tuple (horizontal, vertical) indicating the horizontal and 
vertical shift between each window.

§ Padding: “valid” or ”same”.  Valid indicates no input padding. Same 
indicates that the input is padded with a border of zeros to ensure that 
the output has the same size as the input. 
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Examples
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Training
§ Convolutional neural networks are trained in the same way as other 

neural networks
§ E.g., backpropagation

§ Weight sharing:
§ Combine gradients of shared weights into a single gradient
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Architecture design
§ What is the preferred filter size?

§ VGG (Visual Geometry Group at Oxford, 2014): stack of small filters is 
often preferred to a single large filter
§ Fewer parameters

§ Deeper network

§ Picture
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Residual Networks
§ Problem: very deep networks can perform worse than shallower 

networks (due to local optima & other stationary non-optimal points) 

§ Solution [He et al., 2015]: introduce residual connections (a.k.a. 
skip connections) to make blocks optional

§ Picture:
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Residual Learning
§ Consider a block 0(1) that ends with a linear layer

§ i.e., 3 4 = 5)6(4) where 6(4) can be anything

§ We can nullify 0(1) simply by setting 2 to 3
§ i.e., 3 4 = 7)6 4 = 7

§ Hence, when 0 1 = 3, 
then 4(1) = 0 1 + 1 = 1 computes the identity
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Applications
§ Image processing

§ Data with sequential, spatial, or tensor patterns
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