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Large networks

= What kind of neural networks can be used for large or variable length
input vectors (e.g., time series)?

« Common networks:
= Convolutional networks
= Recurrent networks

« Transformers
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Convolution

= Convolution: mathematical operation on two functions x() and w()
that produces a third function y() that can be viewed as a modified
version of the original function x()

y(i) = fx(t)w(i — t)dt
y(@) = (x*w)(@)

where * is an operator denoting a convolution
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Discrete convolution

= Discrete convolution

oo

yD= ) xOwi-1

t=—o0

= Multidimensional convolution

yiN= ) D xttIwli—t,)— )

t1=—oo t2=—oo
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Example: Edge Detection

= Consider a grey scale image

» Detect vertical edges: v(i,j) = x(i,j) —x(i — 1,))

1 tl = i, tz =]
W(l_tl,]—tz)z -1 tlzi_l,tzzj
0 otherwise
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Convolutions for feature extraction

» In neural networks

= A convolution denotes the linear combination of a subset of units based on
a specific pattern of weights.

Clj = Z WjiZi
[

= Convolutions are often combined with an activation function to produce a

feature
Zj = h(aj) =h (2 WjiZi>
[
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Gabhor filters

= Gabor filters: common feature maps inspired by the human vision system

= Weights:
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Convolution Neural Network

= A convolutional neural network refers to any network that
includes an alternation of convolution and pooling layers,
where some of the convolution weights are shared.
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Pooling

= Pooling: commutative mathematical operation that combines
several units

= Examples:

= max, sum, product, average, Euclidean norm, etc.

= Commutative property (order does not matter):

Ex.: max(a, b) = max(b, a)
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Example: Digit Recognition
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Benefits

= Sparse interactions
= Fewer connections
= Parameter sharing

= Fewer weights

= Locally equivariant representation
= Locally invariant to translations

= Handle inputs of varying length
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Parameters

= # of filters: integer indicating the # of filters applied to each window.

. ﬁé’flil/e\l size: tuple (width, height) indicating the size of the window.

= Stride: tuple (horizontal, vertical) indicating the horizontal and
vertical shift between each window.

= Padding: “valid” or same”. Valid indicates no input padding. Same
indicates that the input is padded with a border of zeros to ensure that
the output has the same size as the input.
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Examples
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-
Training

= Convolutional neural networks are trained in the same way as other
neural networks

= E.g., backpropagation

= Weight sharing:

= Combine gradients of shared weights into a single gradient
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Architecture design

= What is the preferred filter size?

= VGG (Visual Geometry Group at Oxford, 2014): stack of small filters is
often preferred to a single large filter
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Residual Networks

= Problem: very deep networks can perform worse than shallower
networks (due to local optima & other stationary non-optimal points)

= Solution [He et al., 2015]: introduce residual connections (a.k.a.
skip connections) to make blocks optional
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= Picture:
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Residual Learning

= Consider a block b(x) that ends with a linear layer
= i.e., b(x) = wl g(x) where g(x) can be anything

= We can nullify b(x) simply by setting w to 0
sie,b(x)=0Tg(x) =0

= Hence, when b(x) = 0,
then f(x) = b(x) + x = x computes the identity
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Applications

= Image processing

= Data with sequential, spatial, or tensor patterns
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