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Non-linear Models Recap
§ Generalized linear models:

§ Neural networks:
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Kernel Methods
§ Idea: use large (possibly infinite) set of fixed non-linear basis 

functions
§ Normally, complexity depends on number of basis functions, but by a 

“dual trick”, complexity depends on the amount of data

§ Examples: 
§ Gaussian Processes (next class)
§ Support Vector Machines (next week)
§ Kernel perceptron
§ Kernel logistic regression
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Kernel Function
§ Let 𝜙(𝒙) be a set of basis functions that map inputs 𝒙 to a feature 

space.

§ In many algorithms, this feature space only appears in the dot product 
𝜙 𝒙 !𝜙(𝒙") of input pairs 𝒙, 𝒙′.

§ Define the kernel function 𝑘 𝒙, 𝒙" = 𝜙 𝒙 !𝜙(𝒙") to be the dot product 
of any pair 𝒙, 𝒙′ in feature space.
§ We only need to know 𝒌(𝒙, 𝒙!), not 𝜙(𝒙)
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Illustration of Kernel Function
§ 𝑘 𝒙, 𝒙" = 𝜙 𝒙 !𝜙(𝒙")
§ Intuition: 𝑘 𝒙, 𝒙! measures degree of similarity
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Dual Representations
§ Recall linear regression objective

𝐸 𝒘 = !
"
∑#$!% 𝒘&𝜙 𝒙# − 𝑦#

" + '
"
𝒘&𝒘

§ Solution: set gradient to 0
𝛻𝐸 𝒘 = ∑# 𝒘&𝜙 𝒙# − 𝑦# 𝜙 𝒙# + 𝜆𝒘 = 0

𝒘 = − !
'
∑# 𝒘&𝜙 𝒙𝒏 − 𝑦# 𝜙(𝒙𝒏)

∴ 𝒘 is a linear combination of inputs in feature space
𝜙 𝒙# |1 ≤ 𝑛 ≤ 𝑁
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Dual Representations
§ Substitute 𝐰 = 𝚽𝒂

§ Where 𝚽 = [𝜙 𝒙# 𝜙 𝒙$ … 𝜙 𝒙𝑵 ]

𝒂 =

𝑎#
𝑎$
⋮
𝑎&

and 𝑎' = − #
(
𝒘!𝜙 𝒙' − 𝑦'

§ Dual objective: minimize 𝐸 with respect to 𝒂

𝐸 𝒂 = "
#
𝒂𝑻𝚽𝑻𝚽𝚽𝑻𝚽𝒂− 𝒂𝑻𝚽𝑻𝚽𝒚 + 𝒚𝑻𝒚

#
+ &
#
𝒂𝑻𝚽𝑻𝚽𝒂
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Gram Matrix
§ Let 𝑲 = 𝚽!𝚽 be the Gram matrix
§ Substitute in objective:

𝐸 𝒂 = "
#
𝒂𝑻𝑲𝑲𝒂 − 𝒂𝑻𝑲𝒚 + 𝒚𝑻𝒚

#
+ %

#
𝒂𝑻𝑲𝒂

§ Solution: set gradient to 0
𝛻𝐸 𝒂 = 𝑲𝑲𝒂 − 𝑲𝒚 + 𝜆𝑲𝒂 = 0

𝑲 𝑲 + 𝜆𝑰 𝒂 = 𝑲𝒚

𝒂 = 𝑲 + 𝜆𝑰 &"𝒚

§ Prediction: 
𝑦∗ = 𝜙 𝒙∗ "𝒘 = 𝜙 𝒙∗ "𝚽𝒂 = 𝑘 𝒙∗, 𝑿 𝑲 + 𝜆𝑰 #$𝒚

where 𝑿, 𝒚 is the training set and 𝒙∗, 𝑦∗ is a test instance
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Dual Linear Regression
§ Prediction: 𝑦∗ = 𝜙 𝒙∗ &𝚽𝒂

= 𝑘 𝒙∗, 𝑿 𝑲 + 𝜆𝑰 5!𝒚
§ Linear regression where we find dual solution 𝒂

instead of primal solution w.

§ Complexity:
§ Primal solution: depends on # of basis functions

§ Dual solution: depends on amount of data
§ Advantage: can use very large # of basis functions

§ Just need to know kernel 𝑘
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Constructing Kernels
§ Two possibilities:

§ Find mapping 𝝓 to feature space and let 𝑲 = 𝝓𝑻𝝓
§ Directly specify 𝑲

§ Can any function that takes two arguments serve as a kernel?

§ No, a valid kernel must be positive semi-definite
§ In other words, 𝑘 must factor into the product of a transposed matrix by itself  

(e.g., 𝑲 = 𝝓𝑻𝝓)
§ Or all eigenvalues must be greater than or equal to 0.
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Example
§ Let 𝑘 𝒙, 𝒛 = 𝒙𝑻𝒛

#
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Constructing Kernels
§ Can we construct 𝑘 directly without knowing 𝜙?

§ Yes, any positive semi-definite 𝑘 is fine since there is a corresponding 
implicit feature space.  But positive semi-definiteness is not always 
easy to verify.

§ Alternative, construct kernels from other kernels using rules that 
preserve positive semi-definiteness
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Rules to construct Kernels
§ Let 𝑘" 𝒙, 𝒙! and 𝑘#(𝒙, 𝒙!) be valid kernels
§ The following kernels are also valid:

1. 𝑘 𝒙, 𝒙% = 𝑐𝑘$ 𝒙, 𝒙% ∀𝑐 > 0
2. 𝑘 𝒙, 𝒙% = 𝑓 𝒙 𝑘$ 𝒙, 𝒙% 𝑓 𝒙% ∀𝑓
3. 𝑘 𝒙, 𝒙% = 𝑞(𝑘$ 𝒙, 𝒙% ) 𝑞 is polynomial with coeffs ≥ 0
4. 𝑘 𝒙, 𝒙% = exp 𝑘$ 𝒙, 𝒙%

5. 𝑘 𝒙, 𝒙% = 𝑘$ 𝒙, 𝒙% + 𝑘& 𝒙, 𝒙%

6. 𝑘 𝒙, 𝒙% = 𝑘$ 𝒙, 𝒙% 𝑘&(𝒙, 𝒙%)
7. 𝑘 𝒙, 𝒙% = 𝑘'(𝜙 𝒙 , 𝜙 𝒙% )
8. 𝑘 𝒙, 𝒙% = 𝒙𝑻𝑨𝒙% 𝑨 is symmetric positive semi-definite
9. 𝑘 𝒙, 𝒙% = 𝑘) 𝒙𝒂, 𝒙)% + 𝑘+(𝒙𝒃, 𝒙+% )
10. 𝑘 𝒙, 𝒙% = 𝑘) 𝒙), 𝒙)% 𝑘+(𝒙+, 𝒙+% ) where 𝒙 = 𝒙'

𝒙(
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Common Kernels
§ Polynomial kernel: 𝑘 𝒙, 𝒙" = 𝒙!𝒙" E

§ 𝑀 is the degree

§ Feature space: all degree M products of entries in 𝒙
§ Example: Let 𝒙 and 𝒙′ be two images, then feature space could be all products 

of M pixel intensities 

§ More general polynomial kernel: 
𝑘 𝒙, 𝒙" = 𝒙!𝒙" + 𝑐 E with 𝑐 > 0

§ Feature space: all products of up to M entries in 𝒙
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Example
§ 𝑘 𝒙, 𝒙′ = 𝒙𝑻𝒙! + 𝑐

#
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Common Kernels

§ Gaussian Kernel:  𝑘 𝒙, 𝒙" = exp −
𝒙F𝒙"

#

$G#

§ Valid Kernel because:

§ Implicit feature space is infinite!
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Non-vectorial Kernels
§ Kernels can be defined with respect to other things than vectors such 

as sets, strings or graphs

§ Example for strings: 𝑘 𝑑#, 𝑑$ = similarity between two documents 
(weighted sum of all non-contiguous strings that appear in both 
documents 𝑑# and 𝑑$).

§ Lodhi, Saunders, Shawe-Taylor, Christianini, Watkins, Text 
Classification Using String Kernels, JMLR, p. 419-444, 2002.
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