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Non-linear Models Recap

= Generalized linear models:

= Neural networks:
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Kernel Methods

= Idea: use large (possibly infinite) set of fixed non-linear basis
functions

= Normally, complexity depends on number of basis functions, but by a
“dual trick”, complexity depends on the amount of data

= Examples:
= Gaussian Processes (next class)
= Support Vector Machines (next week)
= Kernel perceptron
= Kernel logistic regression
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Kernel Function

= Let ¢(x) be a set of basis functions that map inputs x to a feature
space.

= In many algorithms, this feature space only appears in the dot product
d(x)"p(x") of input pairs x, x'.

» Define the kernel function k(x, x') = ¢(x)? ¢p(x") to be the dot product
of any pair x, x' in feature space.

= We only need to know k(x, x'), not ¢p(x)
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lllustration of Kernel Function
= k(x,x") = p(x) p(x)

= Intuition: k(x, x") measures degree of similarity
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Dual Representations

= Recall linear regression objective
EW) = ;501w o () = yn]” + 5w w
= Solution: set gradient to 0
VE(w) = YW d(xn) — yn)p(x,) + Aw = 0
w = =22, (W (x) — y)b(xn)

- w is a linear combination of inputs in feature space
p(xp)[1 <n < Nj
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Dual Representations

= Substitute w = ®a
= Where ® = [¢p(x;) d(x3) ... dp(xpy)]

a=|_. and a,, = —%(qub(xn) — Yn)

= Dual objective: minimize E with respect to a

T
E(a) =>a"®"odTda — a’d oy + L2+ a’dTda
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Gram Matrix

» Let K = ®7® be the Gram matrix
= Substitute in objective:
E(a) = %aTKKa —a’Ky + %’ + %aTKa
= Solution: set gradient to 0
VE(a) = KKa— Ky + AKa =0
K(K + ADa = Ky
a=(K+ D)1y

» Prediction:
yv. = d(x)'w=0¢x)T®Pa=k(x,X)K+A) 1y

where (X, y) is the training set and (x,, y,) is a test instance
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Dual Linear Regression

» Prediction: y, = ¢(x,) ®a
= k(x, X)(K+AD™ 1y

» Linear regression where we find dual solution a
instead of primal solution w.

= Complexity:
= Primal solution: depends on # of basis functions

= Dual solution: depends on amount of data
= Advantage: can use very large # of basis functions

= Just need to know kernel k
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Constructing Kernels

= Two possibilities:
« Find mapping ¢ to feature space and let K = ¢p' ¢
= Directly specify K

= Can any function that takes two arguments serve as a kernel?

= No, a valid kernel must be positive semi-definite
= In other words, k must factor into the product of a transposed matrix by itself

(e.g., K = ¢pT )

= Or all eigenvalues must be greater than or equal to 0.
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Example

« Letk(x, 2z) = (J|cTz)2
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Constructing Kernels

= Can we construct k directly without knowing ¢?

= Yes, any positive semi-definite k is fine since there is a corresponding
implicit feature space. But positive semi-definiteness is not always
easy to verify.

= Alternative, construct kernels from other kernels using rules that
preserve positive semi-definiteness

W UNIVERSITY OF
CS480/680 Winter 2023 - Lecture 10 - Pascal Poupart PAGE 12 @ WATERLOO



Rules to construct Kernels

= Let k;(x,x") and k,(x, x") be valid kernels

= The following kernels are also valid:
1.  k(x,x")=cki(x,x') Vc>0

2.  k(x,x') = f()ki(x,x)f(x') Vf

3.  k(x,x") =q(ki(x,x")) qispolynomial with coeffs > 0

4. k(x,x") = exp(ky(x,x"))

5. k(x,x)=ki(x,x") + k,(x,x")

6. k(x,x")=ki(x,x)k,(x,x")

7. k(xx) = k3(p(x), ¢(x))

8. k(x,x") =xTAx' Aissymmetric positive semi-definite

9.  k(x,x") = kq(xq,x5) + kp(xp, Xp) h — [ Xa
10.  k(x,x') = ko(xq, x0)kp (Xp, X}) Where x = (xb)
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Common Kernels

» Polynomial kernel: k(x, x") = (x"x")M
= M is the degree
= Feature space: all degree M products of entries in x

= Example: Let x and x’ be two images, then feature space could be all products
of M pixel intensities

= More general polynomial kernel:
k(x,x) = (x"x + )™ withc > 0

= Feature space: all products of up to M entries in x
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Example

f k(xx) = (xTx' +¢)°
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Common Kernels

2
= Gaussian Kernel: k(x,x') = exp (_ “x_x ” )

2072

» Valid Kernel because:

= Implicit feature space is infinite!
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Non-vectorial Kernels

= Kernels can be defined with respect to other things than vectors such
as sets, strings or graphs

« Example for strings: k(d,, d,) = similarity between two documents
(weighted sum of all non-contiguous strings that appear in both
documents d, and d,).

= Lodhi, Saunders, Shawe-Taylor, Christianini, Watkins, Text
Classification Using String Kernels, JMLR, p. 419-444, 2002.
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