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Non-linear Models Recap

Generahzed linear models:
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Kernel Methods

= Idea: use large (possibly infinite) set of fixed non-linear basis
functions

= Normally, complexity depends on number of basis functions, but by a
“dual trick”, complexity depends on the amount of data

= Examples:
» Gaussian Processes (next class)
= Support Vector Machines (next week)
= Kernel perceptron
= Kernel logistic regression
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Kernel Function

= Let ¢(x) be a set of basis functions that map inputs x to a feature
space.

= In many algorithms, this feature space only appears in the dot product
d(x)Td(x") of input pairs x, x'.

» Define the kernel function k(x, x') = ¢(x)" ¢(x") to be the dot product
of any pair x, x' in feature space.

= We only need to know k(x,x"), not ¢p(x)
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llustration of Kernel Function
= k(x,x") = p(x)" Pp(x")

= Intuition: k(x, x") measures degree of similarity -
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Dual Representations

= Recall linear regression objective

Ew) = 23N W ¢ (xa) — yal” +2wTw c«e@}?uém‘f
= Solution: set gradient to 0
VE(W) = YW (xn) — yp)d(xp) + Aw =0 ?ééﬂ
W= =T e - mw D =Z 0 B
oy ocaken flr'lc,cﬂ

~ w is a linear combination of inputs in feature space
{p(xp)|1 <n < Nj
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Dual Representations

= Substitute w = ®a

= Where ® = [¢(x1) ¢(x2) ... ¢d(xy)]

a=|["| anda, = —%(WTfﬁ(xn) — Vn)

= Dual objective: minimize E with respect to a

T
E(@) =:a"®" 00 da — a’d oy + L2 + 2 a’ T da
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Gram Matrix
—
Let K = ®T® be the Gram matrix

Substitute in objective:

T
E(a) =*a"KKa - aTKy + 22 + a"Ka
2 2 2

Solution: set gradient to 0
VE(a) = KKa— Ky + AKa =0
K(K + A)a = Ky

a=(K+ADy NEwr /\/{QGl
—

v, = dp(x)'w=0¢px)TPa=k(x,X)K+ D1y

where (X, y) is the training set and (x,, y,) is a test instance

Prediction:
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Dual Linear Regression

» Prediction: y, = ¢(x,) T ®a
=k(x, X)(K+AD™ 1y

» Linear regression where we find dual solution a
instead of primal solution w.

= Complexity:
= Primal solution: depends on # of basis functions

= Dual solution: depends on amount of data
= Advantage: can use very large # of basis functions

= Just need to know kernel k
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Constructing Kernels

= Two possibilities:
» Find mapping ¢ to feature space and let K = ¢ ¢
= Directly specify K

= Can any function that takes two arguments serve as a kernel?

= No, a valid kernel must be positive semi-definite
= In other words, k must factor into the product of a transposed matrix by itself

(e.g., K = ¢pT)

= Or all eigenvalues must be greater than or equal to 0.
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Example Xf—c(i() _ (?;)
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Constructing Kernels

= Can we construct k directly without knowing ¢?

= Yes, any positive semi-definite k is fine since there is a corresponding
implicit feature space. But positive semi-definiteness is not always
easy to verify.

= Alternative, construct kernels from other kernels using rules that
preserve positive semi-definiteness
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Rules to construct Kernels

= Let k1(x,x") and k,(x, x") be valid kernels

= The following kernels are also valid:
1. k(x,x")=cki(x,x") Vc>0

2. k(x') =f@)ki(x,x)f(x") Vf

3. k(x,x')=q(ki(x,x")) qis polynomial with coeffs > o

4. k(x,x") = exp(ky(x,x"))

5. k(xe,x")=ki(x,x")+k,(x,x")

6. k(x,x")=ki(x,x)k,(x,x")

7. k(X)) = kz(p(x), p(x))

8. k(x,x') =xTAx' Aissymmetric positive semi-definite

9.  k(x,x") = kq(xq, x3) + kp(xp, x3) h _ (x,
10, k(x%x") = kq(Xq XDk (%p, %) where x = ()
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Common Kernels

» Polynomial kernel: k(x, x") = (x"x")™
= M is the degree
= Feature space: all degree M products of entries in x

= Example: Let x and x’ be two images, then feature space could be all products
of M pixel intensities

= More general polynomial kernel:
k(x,x) = (x"x +c)M withc >0

= Feature space: all products of up to M entries in x
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Common Kernels

2
= Gaussian Kernel: k(x, x') eXP( |x2—:2|| )

= Valid Kernel because: 2§¥ Y/"LG K
>‘ x5 = MQ&JM ’Q"‘} /\"“&Q ¥ NK_QM A=T_
KT{/GL (¢ | ¢ A ¢ . ‘
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= Implicit feature space is infinite!
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Non-vectorial Kernels

= Kernels can be defined with respect to other things than vectors such
as sets, strings or graphs

= Example for strings: k(d,, d,) = similarity between two documents
(weighted sum of all non-contiguous strings that appear in both
documents d, and d,).

= Lodhi, Saunders, Shawe-Taylor, Christianini, Watkins, Text
Classification Using String Kernels, JMLR, p. 419-444, 2002.
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