Lecture 10: Kernel Methods CS480/680 Intro to Machine Learning

2023-2-9

Pascal Poupart David R. Cheriton School of Computer Science

Non-linear Models Recap

Generalized linear models:

-firsed non-lenear basis functions - limited hypothesis grace - easy to oftimize (usually convex)

Neural networks:

-adaptive non-dureas basis functions - rich hypothesis space - hard to sptimize (usually non-convex)

Kernel Methods

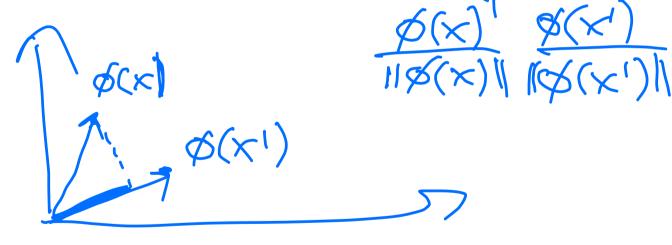
- Idea: use large (possibly infinite) set of fixed non-linear basis functions
- Normally, complexity depends on number of basis functions, but by a "dual trick", complexity depends on the amount of data
- Examples:
 - Gaussian Processes (next class)
 - Support Vector Machines (next week)
 - Kernel perceptron
 - Kernel logistic regression

Kernel Function

- Let φ(x) be a set of basis functions that map inputs x to a feature space.
- In many algorithms, this feature space only appears in the dot product $\phi(\mathbf{x})^T \phi(\mathbf{x}')$ of input pairs \mathbf{x}, \mathbf{x}' .
- Define the kernel function $k(x, x') = \phi(x)^T \phi(x')$ to be the dot product of any pair x, x' in feature space.
 - We only need to know k(x, x'), not $\phi(x)$

Illustration of Kernel Function

- $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$
- Intuition: k(x, x') measures degree of similarity



Dual Representations

Recall linear regression objective

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left[\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - \boldsymbol{y}_{n} \right]^{2} + \frac{\lambda}{2} \boldsymbol{w}^{T} \boldsymbol{w}$$

• Solution: set gradient to o

The call linear regression objective

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} [w^{T} \phi(x_{n}) - y_{n}]^{2} + \frac{\lambda}{2} w^{T} w$$

$$\text{lution: set gradient to O}$$

$$\nabla E(w) = \sum_{n} (w^{T} \phi(x_{n}) - y_{n}) \phi(x_{n}) + \lambda w = 0 \quad \checkmark$$

$$w = -\frac{1}{\lambda} \sum_{n} (w^{T} \phi(x_{n}) - y_{n}) \phi(x_{n})$$

$$w = -\frac{1}{\lambda} \sum_{n} (w^{T} \phi(x_{n}) - y_{n}) \phi(x_{n})$$

$$w = -\frac{1}{\lambda} \sum_{n} (w^{T} \phi(x_{n}) - y_{n}) \phi(x_{n})$$

 \therefore w is a linear combination of inputs in feature space $\{\phi(\boldsymbol{x}_n) | 1 \le n \le N\}$

Dual Representations

- Substitute $\mathbf{w} = \mathbf{\Phi} \mathbf{a}$
- Where $\boldsymbol{\Phi} = [\phi(\boldsymbol{x}_1) \phi(\boldsymbol{x}_2) \dots \phi(\boldsymbol{x}_N)]$

$$\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} \text{ and } a_n = -\frac{1}{\lambda} (\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n) - y_n)$$

• Dual objective: minimize *E* with respect to *a*

$$E(a) = \frac{1}{2}a^T \Phi^T \Phi \Phi^T \Phi a - a^T \Phi^T \Phi y + \frac{y^T y}{2} + \frac{\lambda}{2}a^T \Phi^T \Phi a$$

Gram Matrix

- Let $\mathbf{K} = \mathbf{\Phi}^T \mathbf{\Phi}$ be the Gram matrix
- Substitute in objective:

$$E(\boldsymbol{a}) = \frac{1}{2}\boldsymbol{a}^{T}\boldsymbol{K}\boldsymbol{K}\boldsymbol{a} - \boldsymbol{a}^{T}\boldsymbol{K}\boldsymbol{y} + \frac{\boldsymbol{y}^{T}\boldsymbol{y}}{2} + \frac{\lambda}{2}\boldsymbol{a}^{T}\boldsymbol{K}\boldsymbol{a}$$

• Solution: set gradient to o

$$\nabla E(a) = KKa - Ky + \lambda Ka = 0$$

$$K(K + \lambda I)a = Ky$$

$$a = (K + \lambda I)^{-1}y$$

Prediction:

$$y_* = \phi(\boldsymbol{x}_*)^T \boldsymbol{w} = \phi(\boldsymbol{x}_*)^T \boldsymbol{\Phi} \boldsymbol{a} = k(\boldsymbol{x}_*, \boldsymbol{X})(\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$$

where (X, y) is the training set and (x_*, y_*) is a test instance

 $\overset{>}{k}(x_{i}, x_{i}) = \varphi(x_{i})^{T} \varphi(x_{i})$ $\overset{>}{k}(x_{i}, x_{2}) = \varphi(x_{i})^{T} \varphi(x_{2})$

Dual Linear Regression

• Prediction: $y_* = \phi(\mathbf{x}_*)^T \mathbf{\Phi} \mathbf{a}$

$$= k(\boldsymbol{x}_*, \boldsymbol{X})(\boldsymbol{K} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}$$

- Linear regression where we find dual solution *a* instead of primal solution w.
- Complexity:
 - Primal solution: depends on *#* of basis functions
 - Dual solution: depends on amount of data
 - Advantage: can use very large # of basis functions
 - Just need to know kernel *k*

Constructing Kernels

- Two possibilities:
 - Find mapping ϕ to feature space and let $K = \phi^T \phi$
 - Directly specify *K*
- Can any function that takes two arguments serve as a kernel?
- No, a valid kernel must be positive semi-definite
 - In other words, *k* must factor into the product of a transposed matrix by itself (e.g., $K = \phi^T \phi$)
 - Or all eigenvalues must be greater than or equal to 0.

Example

• Let $k(x, z) = (x^T z)^2$

 $Z = \begin{pmatrix} 3_1 \\ 3_2 \end{pmatrix}$ $(\mathbf{x}_{\mathbf{r}})$ $=(x_1 g_1 + x_2 g_2)^2$ = x, 3, 2 + 2x, 3, x232 + x232 $= (\chi_{1}^{2}, \sqrt{2}\chi_{1}\chi_{2}, \chi_{2}^{2}) \begin{pmatrix} 3i^{2} \\ \sqrt{2}g_{1}^{2} \\ \sqrt{2}g_{1}^{2} \\ \sqrt{2}g_{1}^{2} \\ \sqrt{2}g_{1}^{2} \\ \sqrt{2}g_{1}^{2} \end{pmatrix}$

CS480/680 Winter 2023 - Lecture 10 - Pascal Poupart

Constructing Kernels

• Can we construct *k* directly without knowing ϕ ?

• Yes, any positive semi-definite *k* is fine since there is a corresponding implicit feature space. But positive semi-definiteness is not always easy to verify.

 Alternative, construct kernels from other kernels using rules that preserve positive semi-definiteness

Rules to construct Kernels

- Let $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$ be valid kernels
- The following kernels are also valid:

1.
$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \quad \forall c > 0$$

2.
$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}') \quad \forall f$$

3.
$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}')) \ q \text{ is polynomial with coeffs} \ge 0$$

4.
$$k(\boldsymbol{x}, \boldsymbol{x}') = \exp(k_1(\boldsymbol{x}, \boldsymbol{x}'))$$

5.
$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

6.
$$k(x, x') = k_1(x, x')k_2(x, x')$$

7.
$$k(x, x') = k_3(\phi(x), \phi(x'))$$

8. $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T A \mathbf{x}' A$ is symmetric positive semi-definite

9.
$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

10.
$$k(x, x') = k_a(x_a, x'_a)k_b(x_b, x'_b)$$

where
$$\boldsymbol{x} = \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$

Common Kernels

- Polynomial kernel: $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^M$
 - *M* is the degree
 - Feature space: all degree M products of entries in x
 - Example: Let *x* and *x'* be two images, then feature space could be all products of M pixel intensities

- More general polynomial kernel: $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^M$ with c > 0
 - Feature space: all products of up to M entries in \boldsymbol{x}

$X = \begin{pmatrix} X_{i} \\ X_{2} \end{pmatrix}$ Example $\times' = \begin{pmatrix} \times_{\ell}' \\ \times_{2}' \end{pmatrix}$ • $k(x, x') = (x^T x' + c)^2$ $= (x_{1}x_{1}' + x_{2}x_{2}' + C)^{2}$ $= x_{1}^{2}x_{1}^{2} + 2x_{1}x_{1}^{1}x_{2}x_{2}^{1} + x_{2}^{2}x_{2}^{12} + 2x_{1}x_{1}^{2}(c + 2x_{2}x_{2})^{2}(c + 2x_{2}x_{2})^{2$ $= (\chi_{i_{1}}^{2} \sqrt{2}\chi_{i}\chi_{2}, \chi_{2}^{2} \sqrt{2c}\chi_{i_{1}} \sqrt{2c}\chi_{2}, c) T$ $(\chi_{i_{1}}^{2} \sqrt{2}\chi_{i}'\chi_{2}', \chi_{2}', \chi_{2}', \sqrt{2c}\chi_{i_{1}}' \sqrt{2c}\chi_{2}', c) T$

Common Kernels

• Gaussian Kernel: $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\left|\left|\mathbf{x}-\mathbf{x}'\right|\right|^2}{2\sigma^2}\right)$ • Valid Kernel because: $= g^{-x'x'/2e^2}g^{-x'x'}g^{-x'x'/2e^2}g^{-x'x'}g^{-x'}g^{-x'x'}g^{-x'x'}g^{-x'x'$ x^Tx' is a valid kernel by mle 8 when A=I xTx'/62 ... 11 ne Ne 11 18/62 11 41 le le)) 17 27 21 R(x,x') " II II Implicit feature space is infinite!

Non-vectorial Kernels

- Kernels can be defined with respect to other things than vectors such as sets, strings or graphs
- Example for strings: k(d₁, d₂) = similarity between two documents (weighted sum of all non-contiguous strings that appear in both documents d₁ and d₂).
- Lodhi, Saunders, Shawe-Taylor, Christianini, Watkins, Text
 Classification Using String Kernels, JMLR, p. 419-444, 2002.

