CS480/680
Lecture 8: June 3, 2019

Classification by Logistic Regression,
Generalized linear models

[RN] Sec 18.6.4, [B] Sec. 4.3, [M] Chapt.
8, [HTF] Sec. 4.4

University of Waterloo CS480/680 Spring 2019 Pascal Poupart



Beyond Mixtures of Gaussians

* Mixture of Gaussians:
— Restrictive assumption: each class is Gaussian

— Picture:

e Can we consider other distributions than
Gaussians?



Exponential Family

* More generally, when Pr(x|c;) are members of the
exponential family (e.g., Gaussian, exponential, Bernoulli,
categorical, Poisson, Beta, Dirichlet, Gamma, etc.)

Pr(x|0;) = exp(0;T(x) — A(8y) + B(x))

where 0,.: parameters of class k
T(x),A(0;,), B(x): arbitrary fns of the inputs and params

* the posterioris a sigmoid logistic linear function in x

Pr(c,|x) = o(w'x + wy)



Probabilistic Discriminative Models

* Instead of learning Pr(c;) and Pr(x|c;) by
maximum likelihood and finding Pr(c; |x) by
Bayesian inference, why not learn Pr(c,|x) directly
by maximum likelihood?

* We know the general form of Pr(cy|x):
— Logistic sigmoid (binary classification)
— Softmax (general classification)



Logistic Regression

* Consider a single data point (x, y):
w* = argmax,, c(w'x)¥ (1 — U(WTE))l_y
 Similarly, for an entire dataset (X, y):

w* = argmax,, 1_[ oc(WTx,)¥n(1 - U(WTEn))l_y"

n

Objective: negative log likelihood (minimization)

L(W) - = Zn Yn In O-(WTETL) + (1 o yn) ln(l R O-(WTfn))

Tip: 222 = 6(a)(1 — 0(a))




Logistic Regression

* NB: Despite the name, logistic regression is a form of
classification.

 However, it can be viewed as regression where the
goal is to estimate the posterior Pr(cy|x), which is a

continuous function



Maximum likelihood

e Convex loss: set derivativeto O

oL W(l_G(WTYn))En
0 = aw - = Zn Vn W
5 (1 =y )T 3
n TowlT,)
= 0 = — Y, VnXn — 2 JROWIL,)X,
+Xn oW X)X, + Xiynelx, )X,
= 0 =Y,loc(W'x,) —yn]x,
e Sigmoid prevents us from isolating w, so we use an
iterative method instead




Newton’s method

* |terative reweighted least square:
wew—H1VL(w)
where VL is the gradient (column vector)
and H is the Hessian (matrix)

oL oL
0%wy 0wy 0w,
H = : :
oL oL
Ow,,, 0w, (Ow,,)? _



Hessian

H=V{VL(w))
— Zg=1 O-(WTTn)(]- — O-(WTfn))fnTz;
= XRX"
—01(1 — 01)
where R =

on(1 —op)

and oy = oc(Ww'x,), oy = a(wixy)



Case study

* Applications: recommender systems, ad
placement

* Used by all major companies

* Advantages: logistic regression is simple,
flexible and efficient



App Recommendation

* Flexibility: millions of features (binary & numerical)

— Examples:

» Efficiency: classification by dot products
Two classes:

Multiple classes:

exp(WjX)

%k
C =argmax —
IMAk s expw, %)

= argmaxy wix

— Sparsity:
— Parallelization:

C

o

*

y

(1 o(wT™®) = 0.5
(0 otherwise.

(1 Wiz >0

(0 otherwise



Numerical Issues

* Logistic Regression is subject to overfitting

— Without enough data, logistic regression can classify each
data point arbitrarily well (i.e., Pr(correct class) — 1)

* Problems: weights - +o
Hessian — singular

* Picture



Regularization

* Solution: penalize large weights

* Objective: min L(w) + 1/1||W”2
w 2 2

1
= min — Z v, Inocw'x,) + (1 —y,)In(1 - ocw’'x,)) + 2—/1WTW
n

e Hessian
H = XRX" + I
where R,,,, = c(WwI'x,))(1 — a(W'x,)

the term Al ensures that H is not singular (eigenvalues = A)



Generalized Linear Models

* How can we do non-linear regression and
classification while using the same machinery?

* |dea: map inputs to a different space and do
linear regression/classification in that space



Example

e Suppose the underlying function is quadratic



Basis functions

e Use non-linear basis functions:
— Let ¢; denote a basis function

do(x) =1
$1(x) =x
P (x) = x°

— Let the hypothesis space H be
H = {x > wypo(x) + wi,(x) + wyp,(x)|w; € R}

e |f the basis functions are non-linear in x, then a non-

linear hypothesis can still be found by linear
regression



Common basis functions

* Polynomial: ¢j(x) = x/

(x-1))’

* Gaussian: ¢;(x) =e 252

* Sigmoid: ¢;(x) = 0o (x—suj)
1
1+e~2

where g(a) =

e Also Fourier basis functions, wavelets, etc.



Generalized Linear Models

* Linear regression'
_ N2 A 2
w* —argmmw _1 (tn —wTx,) +2—HWH2
* Generalized Imear regression:

w* —argmmw _1 (tn —ngb(xn)) +—Hw||

* Linear separator (classification):
w* = argmin,, — Y,y Ino(Ww'x,) + (1 — y,) In(1 —a(W'x,)) + '21—||w||§
* Generalized linear separator (classification):

w* = argmin,, — Y Vn Inoc(Wl¢(x,)) + (1 —y,) In(1 — oWl d(x,))) + /21—||W||§



