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Neural Networks Can be Too Huge !!
- NNs have been growing a lot more complex with time
- Objective : learn efficient NNs, prune redundant 

parameters, connections
- Helps in reducing the processing time
- Reduces the run-time memory requirement



Categories of Model Compression
- Parameter pruning and sharing
- Low-rank factorization
- transferred/compact convolutional filters
- Knowledge distillation



Parameter Pruning and Sharing
- One of the oldest techniques
- Optimal Brain Damage : 

- objective function to characterize importance of parameters
- Delete the less important parameters 
- Done using second derivative and some other approximation 

- Quantization and binarization



Model Compression & Computer Vision
- A lot of work on Model Compression for Computer Vision 

problems
- Many Convolutional Neural Network specific approaches 

developed
- Channel Pruning has been successful

- CondenseNets  - Group the features; prune the less important
- Device a methodology to learn the groups 

- Network Slimming 



Pretrained Models for NLP 
- Paradigm of pre-trained models for NLP

- Transformer based models (BERT, GPT)
- BERT ⇒ Transformer based model with 300M parameters !!

- Pre-trained models are huge and cumbersome
- All the major works use knowledge distillation
- Future Work!!



Knowledge Distillation
- Model Agnostic approach
- Student-teacher system
- Teacher ⇒ Larger model, knows more
- Student ⇒ Smaller model, is limited
- Allow the student to learn “rich” representations from 

the teacher
- Using class probabilities produced by the teacher.
- Add a regression objective for “distilling knowledge”



Questions?
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