
CS480/680
Lecture 9: June 5, 2019

Perceptrons, Neural Networks

[D] Chapt. 4, [HTF] Chapt. 11, [B] Sec. 
4.1.7, 5.1, [M] Sec. 8.5.4, [RN] Sec. 18.7
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Outline

• Neural networks
– Perceptron
– Supervised learning algorithms for neural networks

University of Waterloo



CS480/680 Spring 2019 Pascal Poupart 3

Brain

• Seat of human intelligence
• Where memory/knowledge resides
• Responsible for thoughts and decisions
• Can learn
• Consists of nerve cells called neurons
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Neuron
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Comparison

• Brain
– Network of neurons
– Nerve signals propagate in a neural network
– Parallel computation
– Robust (neurons die everyday without any impact)

• Computer
– Bunch of gates
– Electrical signals directed by gates
– Sequential and parallel computation
– Fragile (if a gate stops working, computer crashes)
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Artificial Neural Networks
• Idea: mimic the brain to do computation

• Artificial neural network:
– Nodes (a.k.a. units) correspond to neurons
– Links correspond to synapses

• Computation:
– Numerical signal transmitted between nodes corresponds 

to chemical signals between neurons
– Nodes modifying numerical signal corresponds to neurons 

firing rate

University of Waterloo
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ANN Unit

• For each unit i:

• Weights: !
– Strength of the link from unit " to unit #
– Input signals $" weighted by %#" and linearly combined:  

&# = ∑)%*) $) + ,- = !. /0

• Activation function: 1
– Numerical signal produced: 2* = ℎ(&*)

University of Waterloo
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ANN Unit

• Picture
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Activation Function

• Should be nonlinear
– Otherwise network is just a linear function

• Often chosen to mimic firing in neurons
– Unit should be “active” (output near 1) when fed with the 

“right” inputs
– Unit should be “inactive” (output near 0) when fed with 

the “wrong” inputs

University of Waterloo
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Common Activation Functions

Threshold Sigmoid
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Logic Gates

• McCulloch and Pitts (1943)
– Design ANNs to represent Boolean functions

• What should be the weights of the following units to 
code AND, OR, NOT ?

University of Waterloo
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Network Structures

• Feed-forward network
– Directed acyclic graph
– No internal state
– Simply computes outputs from inputs

• Recurrent network
– Directed cyclic graph
– Dynamical system with internal states
– Can memorize information

University of Waterloo
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Feed-forward network

• Simple network with two inputs, one hidden layer of 
two units, one output unit
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Perceptron

• Single layer feed-forward network
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Supervised Learning

• Given list of (", $) pairs
• Train feed-forward ANN
– To compute proper outputs $ when fed with inputs "
– Consists of adjusting weights &'(

• Simple learning algorithm for threshold perceptrons

University of Waterloo
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Threshold Perceptron Learning

• Learning is done separately for each unit !
– Since units do not share weights

• Perceptron learning for unit !:
– For each (#, %) pair do:

• Case 1: correct output produced
∀( )*( ← )*(

• Case 2: output produced is 0 instead of 1
∀( )*( ← )*( + -(

• Case 3: output produced is 1 instead of 0
∀( )*( ← )*( − -(

– Until correct output for all training instances

University of Waterloo
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Threshold Perceptron Learning

• Dot products: !"#!" ≥ 0 and −!"#!" ≤ 0

• Perceptron computes 
1 when )#!" = ∑, -,., + .0 > 0
0 when )#!" = ∑, -,., + .0 < 0

• If output should be 1 instead of 0 then
) ← )+ !" since )+ !" 4!" ≥ )#!"

• If output should be 0 instead of 1 then
) ← )− !" since )− !" 4!" ≤ )#!"

University of Waterloo
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Alternative Approach

• Let ! ∈ −1,1 ∀!
• Let ' = { *+, !+ ∀+} be set of misclassified examples
– i.e., !+-./*0 < 0

• Find - that minimizes misclassification error
3(-) = −∑ *7,87 ∈9 !+-./*0

• Algorithm: gradient descent
- ← -− ;<=

learning rate 
or step length

University of Waterloo



CS480/680 Spring 2019 Pascal Poupart 19

Sequential Gradient Descent

• Gradient: !" = −∑ &',)' ∈+ ,-./0

• Sequential gradient descent:
– Adjust 1 based on one example /, , at a time

1 ← 1 + 4,./

• When 4 = 1, we recover the threshold perceptron 
learning algorithm

University of Waterloo
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Threshold Perceptron 
Hypothesis Space

• Hypothesis space ℎ":
– All binary classifications with parameters " s.t.

"#$% > 0 → +1
"#$% < 0 → −1

• Since "#$% is linear in ", perceptron is called a linear 
separator

• Theorem: Threshold perceptron learning converges iff
the data is linearly separable

University of Waterloo
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Linear Separability

• Examples:
Linearly separable          Non-linearly separable
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Sigmoid Perceptron 

• Represent “soft” linear separators
• Same hypothesis space as logistic regression
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Sigmoid Perceptron Learning 

• Possible objectives
– Minimum squared error

! " = 1
2&'

!' " ( = 1
2&'

)' − + ",-./
(

– Maximum likelihood
• Same algorithm as for logistic regression

– Maximum a posteriori hypothesis
– Bayesian Learning

University of Waterloo
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Gradient

• Gradient:
!"
!#$

= ∑' (' ) !"*
!#$

= −∑'(' ) ,- ).0̅' 01
Recall that ,- = ,(1 − ,)

= −∑'(' ) , ).0̅' 1 − , ).0̅' 01
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Sequential Gradient Descent

• Perceptron-Learning(examples,network)
– Repeat

• For each ("#, %&) in examples do
(& ← %& − +(,-."#)
, ← , + 0 (& + ,-."# 1 − + ,-."# ."#

– Until some stopping criterion satisfied
– Return learnt network

• N.B. 0 is a learning rate corresponding to the step size 
in gradient descent
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Multilayer Networks 

• Adding two sigmoid units with parallel but 
opposite “cliffs” produces a ridge

University of Waterloo
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Multilayer Networks 

• Adding two intersecting ridges (and 
thresholding) produces a bump

University of Waterloo
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Multilayer Networks 

• By tiling bumps of various heights together, we 
can approximate any function

• Training algorithm:
– Back-propagation
– Essentially sequential gradient descent performed 

by propagating errors backward into the network
– Derivation next class

University of Waterloo
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Neural Net Applications 

• Neural nets can approximate any function, 
hence millions of applications
– Speech recognition
– Word embeddings
– Machine translation
– Vision-based object recognition
– Vision-based autonomous driving
– Etc.
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