CS480/680
Lecture 9: June 5, 2019

Perceptrons, Neural Networks

[D] Chapt. 4, [HTF] Chapt. 11, [B] Sec.
4.1.7,5.1, [M] Sec. 8.5.4, [RN] Sec. 18.7

University of Waterloo CS480/680 Spring 2019 Pascal Poupart

Outline

e Neural networks

— Perceptron
— Supervised learning algorithms for neural networks

Brain

Seat of human intelligence

Where memory/knowledge resides
Responsible for thoughts and decisions
Can learn

Consists of nerve cells called neurons

Neuron

Axonal gorization

\ Axon from another cell

Synapse

Dendrite

\/

Synapses

Cell bodv or Soma

Comparison

* Brain
— Network of neurons
— Nerve signals propagate in a neural network
— Parallel computation
— Robust (neurons die everyday without any impact)

* Computer
— Bunch of gates
— Electrical signals directed by gates
— Sequential and parallel computation
— Fragile (if a gate stops working, computer crashes)

Artificial Neural Networks

* |dea: mimic the brain to do computation

e Artificial neural network:
— Nodes (a.k.a. units) correspond to neurons
— Links correspond to synapses

* Computation:

— Numerical signal transmitted between nodes corresponds
to chemical signals between neurons

— Nodes modifying numerical signal corresponds to neurons
firing rate

ANN Unit

e For each uniti:

* Weights: W
— Strength of the link from unit i to unit j
— Input signals x; weighted by W; and linearly combined:

a; =Zinixl-+W0=ij

* Activation function: h
— Numerical signal produced: y; = h(a;)

ANN Unit

* Picture

University of Waterloo CS480/680 Spring 2019 Pascal Poupart

Activation Function

e Should be nonlinear

— Otherwise network is just a linear function

e Often chosen to mimic firing in neurons

— Unit should be “active” (output near 1) when fed with the
“right” inputs

— Unit should be “inactive” (output near 0) when fed with
the “wrong” inputs

Common Activation Functions

Threshold Sigmoid

Logic Gates

 McCulloch and Pitts (1943)

— Design ANNSs to represent Boolean functions

 What should be the weights of the following units to
code AND, OR, NOT ?

AND OR NOT

Network Structures

* Feed-forward network
— Directed acyclic graph
— No internal state
— Simply computes outputs from inputs

* Recurrent network
— Directed cyclic graph
— Dynamical system with internal states
— Can memorize information

Feed-forward network

* Simple network with two inputs, one hidden layer of
two units, one output unit

Perceptron

* Single layer feed-forward network

Supervised Learning

* Given list of (x,y) pairs

* Train feed-forward ANN
— To compute proper outputs y when fed with inputs x

— Consists of adjusting weights W;

* Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

* Learning is done separately for each unit j
— Since units do not share weights

* Perceptron learning for unit j:
— For each (x, y) pair do:

e Case 1: correct output produced
Vi Wi « Wj;
e Case 2: output produced is O instead of 1
Vi Wi « Wy + x;
e Case 3: output produced is 1 instead of O
Vi Wi « Wy — x;
— Until correct output for all training instances

Threshold Perceptron Learning

Dot products: XIx > 0 and —x'x < 0

Perceptron computes
1 whenw!x =Y, x;w; + wy >0
0 when wix =Y, x;w; + wy < 0

If output should be 1 instead of 0 then
wew+Xx sincew+x)Tx>wlx

If output should be 0 instead of 1 then
wew-—X since(w—x)Tx<wlx

Alternative Approach

lety € {—1,1} Vy
Let M = {(x,, ¥,)vn} be set of misclassified examples
—ie,ywlx, <0

Find w that minimizes misclassification error

E(w) = — Z(xn,yn)EM anTfn

Algorithm: gradient descent
we<w-—nVE

~ learning rate
or step length

Sequential Gradient Descent
* Gradient: VE = — Y, yem YnXn

* Sequential gradient descent:

— Adjust w based on one example (x, y) at a time
W< W+ nyx

* Whenn =1, we recover the threshold perceptron
learning algorithm

Threshold Perceptron
Hypothesis Space

Hypothesis space h,,:

— All binary classifications with parameters w s.t.
wix>0- +1
wix<0- -1

Since w!'X is linear in w, perceptron is called a linear
separator

Theorem: Threshold perceptron learning converges iff
the data is linearly separable

Linear Separability

* Examples:

Linearly separable Non-linearly separable

Sigmoid Perceptron

* Represent “soft” linear separators
 Same hypothesis space as logistic regression

S —

Perceptron output
1

Sigmoid Perceptron Learning

* Possible objectives

— Minimum squared error

E(w)—zz E, (w)? = 22 2 —o(W'x,))

— Maximum likelihood
e Same algorithm as for logistic regression

— Maximum a posteriori hypothesis
— Bayesian Learning

Gradient

e Gradient:
0E 0E,,
aWi - Zn En(W) aWi

= —2nEn (W)O-,(WTfn)xi

Recall that o’ = 0(1 — o)
= —2n En(W)O-(WTfn)(l — O-(WTfn))xi

Sequential Gradient Descent

* Perceptron-Learning(examples,network)

— Repeat
* For each (x,,, y,) in examples do

En < yn — O_(WTfn)

wew+nE, o(w'x,) (1 — G(WTI,,)) X,
— Until some stopping criterion satisfied

— Return learnt network

* N.B.nis alearning rate corresponding to the step size
in gradient descent

Multilayer Networks

* Adding two sigmoid units with parallel but
opposite “cliffs” produces a ridge

Network output

Multilayer Networks

)

\

.......
)
)

QA
A
QUYL
.................N...............
0 L
il
i

0
)
R

|
.\.\V\ i ..
24000
:...:\\\ 2:)
IO
=il
0

P
SO
=<y
AL
T
i

NI
Y
A

W

.... ..

...............
i
b

tersecting ridges (and

N

ing) produces a bump

Network output

* Adding two
threshold

Multilayer Networks

* By tiling bumps of various heights together, we
can approximate any function

* Training algorithm:
— Back-propagation

— Essentially sequential gradient descent performed
by propagating errors backward into the network

— Derivation next class

Neural Net Applications

* Neural nets can approximate any function,
hence millions of applications
— Speech recognition
— Word embeddings
— Machine translation
— Vision-based object recognition
— Vision-based autonomous driving
— Etc.

