CS480/680 Lecture 9: June 5, 2019

Perceptrons, Neural Networks [D] Chapt. 4, [HTF] Chapt. 11, [B] Sec. 4.1.7, 5.1, [M] Sec. 8.5.4, [RN] Sec. 18.7

Outline

- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

Brain

- Seat of human intelligence
- Where memory/knowledge resides
- Responsible for thoughts and decisions
- Can learn
- Consists of nerve cells called **neurons**

Comparison

- Brain
 - Network of neurons
 - Nerve signals propagate in a neural network
 - Parallel computation
 - Robust (neurons die everyday without any impact)
- Computer
 - Bunch of gates
 - Electrical signals directed by gates
 - Sequential and parallel computation
 - Fragile (if a gate stops working, computer crashes)

Artificial Neural Networks

- Idea: mimic the brain to do computation
- Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

ANN Unit

- For each unit i:
- Weights: W
 - Strength of the link from unit *i* to unit *j*
 - Input signals x_i weighted by W_{ji} and linearly combined: $a_j = \sum_i W_{ji} x_i + w_0 = W_j \overline{x}$
- Activation function: *h*

- Numerical signal produced: $y_j = h(a_j)$

ANN Unit

• Picture

Activation Function

• Should be nonlinear

Otherwise network is just a linear function

- Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

Common Activation Functions

Threshold

Sigmoid

Logic Gates

• McCulloch and Pitts (1943)

Design ANNs to represent Boolean functions

• What should be the weights of the following units to code AND, OR, NOT ?

Network Structures

• Feed-forward network

- Directed acyclic graph
- No internal state
- Simply computes outputs from inputs

Recurrent network

- Directed cyclic graph
- Dynamical system with internal states
- Can memorize information

Feed-forward network

• Simple network with two inputs, one hidden layer of two units, one output unit

Perceptron

• Single layer feed-forward network

Supervised Learning

- Given list of (x, y) pairs
- Train feed-forward ANN
 - To compute proper outputs \boldsymbol{y} when fed with inputs \boldsymbol{x}
 - Consists of adjusting weights W_{ji}
- Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

- Learning is done separately for each unit *j*
 - Since units do not share weights
- Perceptron learning for unit *j*:
 - For each (x, y) pair do:
 - Case 1: correct output produced
 - $\forall_i \; W_{ji} \leftarrow W_{ji}$
 - Case 2: output produced is 0 instead of 1 $\forall_i W_{ji} \leftarrow W_{ji} + x_i$
 - Case 3: output produced is 1 instead of 0 $\forall_i W_{ji} \leftarrow W_{ji} - x_i$
 - Until correct output for all training instances

Threshold Perceptron Learning

- Dot products: $\overline{x}^T \overline{x} \ge 0$ and $-\overline{x}^T \overline{x} \le 0$
- Perceptron computes

1 when $\boldsymbol{w}^T \overline{\boldsymbol{x}} = \sum_i x_i w_i + w_0 > 0$ 0 when $\boldsymbol{w}^T \overline{\boldsymbol{x}} = \sum_i x_i w_i + w_0 < 0$

- If output should be 1 instead of 0 then $w \leftarrow w + \overline{x}$ since $(w + \overline{x})^T \overline{x} \ge w^T \overline{x}$
- If output should be 0 instead of 1 then $w \leftarrow w - \overline{x}$ since $(w - \overline{x})^T \overline{x} \le w^T \overline{x}$

Alternative Approach

- Let $y \in \{-1,1\} \forall y$
- Let $M = \{(x_n, y_n)_{\forall n}\}$ be set of misclassified examples - i.e., $y_n w^T \overline{x}_n < 0$
- Find w that minimizes misclassification error $E(w) = -\sum_{(x_n, y_n) \in M} y_n w^T \overline{x}_n$
- Algorithm: gradient descent $w \leftarrow w - \eta \nabla E$ learning rate

Sequential Gradient Descent

- Gradient: $\nabla E = -\sum_{(x_n, y_n) \in M} y_n \overline{x}_n$
- Sequential gradient descent:

 Adjust w based on one example (x, y) at a time
 w ← w + ηyx
- When $\eta=1,$ we recover the threshold perceptron learning algorithm

Threshold Perceptron Hypothesis Space

- Hypothesis space h_w :
 - All binary classifications with parameters w s.t. $w^T \overline{x} > 0 \rightarrow +1$ $w^T \overline{x} < 0 \rightarrow -1$
- Since $w^T \overline{x}$ is linear in w, perceptron is called a **linear** separator
- **Theorem:** Threshold perceptron learning converges iff the data is linearly separable

Linear Separability

• Examples:

Linearly separable

Non-linearly separable

Sigmoid Perceptron

- Represent "soft" linear separators
- Same hypothesis space as logistic regression

Sigmoid Perceptron Learning

- Possible objectives
 - Minimum squared error

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n} E_{n}(\boldsymbol{w})^{2} = \frac{1}{2} \sum_{n} \left(y_{n} - \sigma \left(\boldsymbol{w}^{T} \overline{\boldsymbol{x}}_{n} \right) \right)^{2}$$

- Maximum likelihood
 - Same algorithm as for logistic regression
- Maximum a posteriori hypothesis
- Bayesian Learning

Gradient

• Gradient:

$$\frac{\partial E}{\partial w_i} = \sum_n E_n(w) \frac{\partial E_n}{\partial w_i}$$

= $-\sum_n E_n(w) \sigma'(w^T \bar{x}_n) x_i$
Recall that $\sigma' = \sigma(1 - \sigma)$
= $-\sum_n E_n(w) \sigma(w^T \bar{x}_n) (1 - \sigma(w^T \bar{x}_n)) x_i$

Sequential Gradient Descent

- Perceptron-Learning(examples, network)
 - Repeat

For each
$$(\boldsymbol{x}_n, \boldsymbol{y}_n)$$
 in examples do
 $E_n \leftarrow \boldsymbol{y}_n - \sigma(\boldsymbol{w}^T \overline{\boldsymbol{x}}_n)$
 $\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta E_n \sigma(\boldsymbol{w}^T \overline{\boldsymbol{x}}_n) \left(1 - \sigma(\boldsymbol{w}^T \overline{\boldsymbol{x}}_n)\right) \overline{\boldsymbol{x}}_n$

- Until some stopping criterion satisfied
- Return learnt network
- N.B. η is a learning rate corresponding to the step size in gradient descent

Multilayer Networks

 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge

Multilayer Networks

 Adding two intersecting ridges (and thresholding) produces a bump

Multilayer Networks

- By tiling bumps of various heights together, we can approximate any function
- Training algorithm:
 - Back-propagation
 - Essentially sequential gradient descent performed by propagating errors backward into the network
 - Derivation next class

Neural Net Applications

- Neural nets can approximate any function, hence millions of applications
 - Speech recognition
 - Word embeddings
 - Machine translation
 - Vision-based object recognition
 - Vision-based autonomous driving
 - Etc.