CS480/680 Lecture 24: July 29, 2019

Gradient Boosting, Bagging, Decision Forest [RN] Sec. 18.10, [M] Sec. 16.2.5, 16.4.5 [B] Chap. 14, [HTF] Chap 10, 15-16, [D] Chap. 13

Gradient Boosting

- AdaBoost designed for classification
- How can we use boosting for regression?
- Answer: Gradient Boosting

Gradient Boosting

Idea:

- Predictor f_k at stage k incurs loss $L(f_k(x), y)$
- Train h_{k+1} to approximate negative gradient: $h_{k+1}(\mathbf{x}) \approx -\frac{\partial L(f_k(\mathbf{x}), y)}{\partial f_k(\mathbf{x})}$
- Update predictor by adding a multiple η_{k+1} of h_{k+1} : $f_{k+1}(\mathbf{x}) \leftarrow f_k(\mathbf{x}) + \eta_{k+1} h_{k+1}(\mathbf{x})$

Squared Loss

• Consider squared loss

$$L(f_k(\boldsymbol{x}_n), y_n) = \frac{1}{2}(f_k(\boldsymbol{x}_n) - y_n)^2$$

- Negative gradient corresponds to residual \boldsymbol{r}

$$-\frac{\partial L(f_k(\boldsymbol{x}_n), y_n)}{\partial f_k(\boldsymbol{x}_n)} = y_n - f_k(\boldsymbol{x}_n) = r_n$$

- Train base learner h_{k+1} with residual dataset $\{(x_n, r_n)_{\forall n}\}$
- Base learner h_{k+1} can be any **non-linear predictor** (often a small decision tree)

Gradient Boosting Algorithm

• Initialize predictor with a constant *c*:

$$f_0(\boldsymbol{x}_n) = argmin_c \sum_n L(c, y_n)$$

- For k = 1 to K do
 - Compute pseudo residuals: $r_n = -\frac{\partial L(f_{k-1}(x_n), y_n)}{\partial f_{k-1}(x_n)}$
 - Train a base learner h_k with residual dataset $\{(x_n, r_n)_{\forall n}\}$
 - Optimize step length:

 $\eta_k = \operatorname{argmin}_{\eta} \sum_n L(f_{k-1}(\boldsymbol{x}_n) + \eta h_k(\boldsymbol{x}_n), y_n)$

- Update predictor:
$$f_k(\mathbf{x}) \leftarrow f_{k-1}(\mathbf{x}) + \eta_k h_k(\mathbf{x})$$

XGBoost

- eXtreme Gradient Boosting
 - Package optimized for speed and accuracy
 - XGBoost used in >12 winning entries for various challenges <u>https://github.com/dmlc/xgboost/tree/master/demo#mac</u> <u>hine-learning-challenge-winning-solutions</u>

Boosting vs Bagging

• Review

Independent classifiers/predictors

- How can we obtain independent classifiers/predictors for bagging?
- Bootstrap sampling
 - Sample (without replacement) subset of data
- Random projection
 - Sample (without replacement) subset of features
- Learn different classifiers/predictors based on each data subset and feature subset

Bagging

For k = 1 to K

 $\boldsymbol{D}_k \leftarrow \text{sample data subset}$

 $F_k \leftarrow \text{sample feature subset}$

 $h_k \leftarrow \text{train classifier/predictor based on } \boldsymbol{D}_k \text{ and } \boldsymbol{F}_k$

Classification: $majority(h_1(\mathbf{x}), ..., h_K(\mathbf{x}))$ Regression: $average(h_1(\mathbf{x}), ..., h_K(\mathbf{x}))$

Random forest: bag of decision trees

Application: Xbox 360 Kinect

- Microsoft Cambridge
- Body part recognition: supervised learning

Depth camera

XBOX 360

• Kinect

Infrared image

Gray scale depth map

Kinect Body Part Recognition

• Problem: label each pixel with a body part

Kinect Body Part Recognition

• Features: depth differences between pairs of pixels

• Classification: forest of decision trees

Large Scale Machine Learning

- Big data
 - Large number of data instances
 - Large number of features
- Solution: distribute computation (parallel computation)
 - GPU (Graphics Processing Unit)
 - Many cores

GPU computation

- Many Machine Learning algorithms consist of vector, matrix and tensor operations
 - A tensor is a multidimensional array
- GPU (Graphics Processing Units) can perform arithmetic operations on all elements of a tensor in parallel
- Packages that facilitate ML programming on GPUs: Keras, PyTorch, TensorFlow, MXNet, Theano, Caffe, DL4J

Multicore Computation

- Idea: Train a different classifier/predictor with a subset of the data on each core
- How can we combine the classifiers/predictors?
- Should we take the average of the parameters of the classifiers/predictors?

No, this might lead to a worse classifier/predictor. This is especially problematic for models with hidden variables/units such as neural networks and hidden Markov models

Bad case of parameter averaging

• Consider two threshold neural networks that encode the exclusive-or Boolean function

• Averaging the weights yields a new neural network that does not encode exclusive-or

Safely Combining Predictions

- A safe approach to ensemble learning is to combine the predictions (not the parameters)
- **Classification:** majority vote of the classes predicted by the classifiers
- **Regression:** average of the predictions computed by the regressors

Other UW Courses Related to ML

- CS486/686: Artificial Intelligence
- CS475/675: Computational Linear Algebra
- CS485/685: Theoretical Foundations of ML (Shai Ben-David)
- CS794 Optimization for Data Science
- CS795 Fundamentals of Optimization
- CS870: Biologically Plausible Neural Networks (Jeff Orchard)
- CS898: Deep Learning and its Applications (Ming Li)
- CS885: Reinforcement Learning (Pascal Poupart)
- STAT440/840: Computational Inference
- STAT441/841: Statistical Learning Classification
- STAT442/890: Data visualization
- STAT444/844: Statistical Learning Regression
- STAT450/850: Estimation and hypothesis testing

Data Science at UW

- <u>https://uwaterloo.ca/data-science/</u>
- Intersection of AI, Machine Learning, Data Systems, Statistics and Optimization
- Bachelor in Data Science
- Master in Data Science (and Artificial Intelligence)
 - Course-based option
 - Thesis-based option