# CS480/680 Lecture 22: July 22, 2019

#### Ensemble Learning [RN] Sec. 18.10, [M] Sec. 16.2.5, [B] Chap. 14, [HTF] Chap 15-16, [D] Chap. 11

## Outline

- Ensemble Learning
  - Bagging
  - Boosting

## Supervised Learning

- So far...
  - K-nearest neighbours
  - Mixture of Gaussians
  - Logistic regression
  - Support vector machines
  - HMMs
  - Perceptrons
  - Neural networks

#### • Which technique should we pick?

#### **Ensemble Learning**

- Sometimes each learning technique yields a different hypothesis
- But no perfect hypothesis...
- Could we combine several imperfect hypotheses into a better hypothesis?

## **Ensemble Learning**

- Analogies:
  - Elections combine voters' choices to pick a good candidate
  - Committees combine experts' opinions to make better decisions
- Intuitions:
  - Individuals often make mistakes, but the "majority" is less likely to make mistakes.
  - Individuals often have partial knowledge, but a committee can pool expertise to make better decisions.

## **Ensemble Learning**

- Definition: method to select and combine an ensemble of hypotheses into a (hopefully) better hypothesis
- Can enlarge hypothesis space
  - Perceptrons
    - linear separators
  - Ensemble of perceptrons
    - polytope



# Bagging

Majority Voting



# Bagging

- Assumptions:
  - Each h<sub>i</sub> makes error with probability p
  - The hypotheses are independent
- Majority voting of n hypotheses:
  - k hypotheses make an error:  $\binom{n}{k} p^{k} (1-p)^{n-k}$
  - Majority makes an error:  $\Sigma_{k>n/2} \binom{n}{k} p^k (1-p)^{n-k}$
  - With n=5, p=0.1 → err(majority) < 0.01</p>

# Weighted Majority

- In practice
  - Hypotheses rarely independent
  - Some hypotheses have less errors than others
- Let's take a weighted majority
- Intuition:
  - Decrease weight of correlated hypotheses
  - Increase weight of good hypotheses

## Boosting

- Very popular ensemble technique
- Computes a weighted majority
- Can "boost" a "weak learner"
- Operates on a weighted training set

# Weighted Training Set

- Learning with a weighted training set
  - Supervised learning  $\rightarrow$  minimize train. error
  - Bias algorithm to learn correctly instances with high weights
- Idea: when an instance is misclassified by a hypothesis, increase its weight so that the next hypothesis is more likely to classify it correctly

# **Boosting Framework**

- Set all instance weights w<sub>x</sub> to 1
- Repeat
  - $-h_i \leftarrow learn(dataset, weights)$
  - Increase  $w_x$  of misclassified instances x
- Until sufficient number of hypotheses
- Ensemble hypothesis is the weighted majority of h<sub>i</sub>'s with weights w<sub>i</sub> proportional to the accuracy of h<sub>i</sub>

#### **Boosting Framework**



# AdaBoost (Adaptive Boosting)

- $w_j \leftarrow 1/N \forall_j$
- For m=1 to M do
  - $-h_m \leftarrow learn(dataset,w)$
  - err ← 0
  - For each  $(x_j, y_j)$  in dataset do
    - If  $h_m(x_j) \neq y_j$  then err  $\leftarrow$  err +  $w_j$
  - For each  $(x_j, y_j)$  in dataset do
    - If  $h_m(x_j) = y_j$  then  $w_j \leftarrow w_j$  err / (1-err)
  - w ← normalize(w)
  - $z_m \leftarrow \log [(1-err) / err]$
- Return weighted-majority(h,z)

w: vector of N instance weights z: vector of M hypoth. weights

#### What can we boost?

- Weak learner: produces hypotheses at least as good as random classifier.
- Examples:
  - Rules of thumb
  - Decision stumps (decision trees of one node)
  - Perceptrons
  - Naïve Bayes models

# **Boosting Paradigm**

- Advantages
  - No need to learn a perfect hypothesis
  - Can boost any weak learning algorithm
  - Boosting is very simple to program
  - Good generalization
- Paradigm shift
  - Don't try to learn a perfect hypothesis
  - Just learn simple rules of thumbs and boost them

# **Boosting Paradigm**

 When we already have a bunch of hypotheses, boosting provides a principled approach to combine them

- Useful for
  - Sensor fusion
  - Combining experts

## Applications

- Any supervised learning task
  - Collaborative filtering (Netflix challenge)
  - Body part recognition (Kinect)
  - Spam filtering
  - Speech recognition/natural language processing
  - Data mining
  - Etc.

#### Netflix Challenge

• Problem: predict movie ratings based on database of ratings by previous users

- Launch: 2006
  - Goal: improve Netflix predictions by 10%
  - Grand Prize: 1 million \$

## Progress

- 2007: BellKor 8.43% improvement
- 2008:
  - No individual algorithm improves by > 9.43%
  - Top two teams BellKor and BigChaos unite
    - Start of ensemble learning
    - Jointly improve by > 9.43%
- June 26, 2009:
  - Top 3 teams BellKor, BigChaos and Pragmatic unite
  - Jointly improve > 10%
  - 30 days left for anyone to beat them

## The Ensemble

- Formation of "Grand Prize Team":
  - Anyone could join
  - Share of \$1 million grand prize proportional to improvement in team score
  - Improvement: 9.46%
- 5 days to the deadline
  - "The Ensemble" team is born
    - Union of Grand Prize team and Vanderlay Industries
    - Ensemble of many researchers

#### Finale

- Last Day: July 26, 2009
- 6:18 pm:
  - BellKor's Pragmatic Chaos: 10.06% improv.
- 6:38 pm:
  - The Ensemble: 10.06% improvement

• Tie breaker: time of submission