CS480/680

Lecture 19: July 10, 2019

Attention and Transformer Networks

[Vaswani et al., Attention is All You Need, NeurIPS, 2017]

Attention

- Attention in Computer Vision
- 2014: Attention used to highlight important parts of an image that contribute to a desired output

- Attention in NLP
- 2015: Aligned machine translation
- 2017: Language modeling with Transformer networks

Sequence Modeling

Challenges with RNNs

- Long range dependencies
- Gradient vanishing and explosion
- Large \# of training steps
- Recurrence prevents parallel computation

Transformer Networks

- Facilitate long range dependencies
- No gradient vanishing and explosion
- Fewer training steps
- No recurrence that facilitate parallel computation

Attention Mechanism

- Mimics the retrieval of a value v_{i} for a query q based on a key k_{i} in database
- Picture
$\operatorname{attention}(q, \boldsymbol{k}, \boldsymbol{v})=\sum_{i} \operatorname{similarity}\left(q, k_{i}\right) \times v_{i}$

Attention Mechanism

- Neural architecture
- Example: machine translation
- Query: s_{i-1} (hidden vector for $i-1^{\text {th }}$ output word)
- Key: h_{j} (hidden vector for $j^{\text {th }}$ input word)
- Value: h_{j} (hidden vector for $j^{\text {th }}$ input word)

Transformer Network

- Vaswani et al., (2017) Attention is all you need.
- Encoder-decoder based on attention (no recurrence)

Multihead attention

- Multihead attention: compute multiple attentions per query with different weights
multihead $(Q, K, V)=W^{O}$ concat $\left(\right.$ head $_{1}$, head $_{2}, \ldots$, head $\left._{h}\right)$ head $_{i}=\operatorname{attention}\left(W_{i}^{Q} Q, W_{i}^{K} K, W_{i}^{V} V\right)$
$\operatorname{attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q^{T} K}{\sqrt{d_{k}}}\right) V$

Masked Multi-head attention

- Masked multi-head attention: multi-head where some values are masked (i.e., probabilities of masked values are nullified to prevent them from being selected).
- When decoding, an output value should only depend on previous outputs (not future outputs). Hence we mask future outputs.
$\operatorname{attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q^{T} K}{\sqrt{d_{k}}}\right) V$
maskedAttention $(Q, K, V)=\operatorname{softmax}\left(\frac{Q^{T} K+M}{\sqrt{d_{k}}}\right) V$
where M is a mask matrix of 0 's and $-\infty$'s

Other layers

- Layer normalization:
- Normalize values in each layer to have 0 mean and 1 variance
- For each hidden unit h_{i} compute $h_{i} \leftarrow \frac{g}{\sigma}\left(h_{i}-\mu\right)$
where g is a variable, $\mu=\frac{1}{H} \sum_{i=1}^{H} h_{i}$ and $\sigma=\sqrt{\frac{1}{H} \sum_{i=1}^{H}\left(h_{i}-\mu\right)^{2}}$
- This reduces "covariate shift" (i.e., gradient dependencies between each layer) and therefore fewer training iterations are needed
- Positional embedding
- Embedding to distinguish each position

$$
\begin{gathered}
P E_{\text {position }, 2 i}=\sin \left(\text { position } / 10000^{2 i / d}\right) \\
P E_{\text {position }, 2 i+1}=\cos \left(\text { position } / 10000^{2 i / d}\right)
\end{gathered}
$$

Comparison

- Attention reduces sequential operations and maximum path length, which facilitates long range dependencies

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$	$O\left(\log _{k}(n)\right)$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n / r)$

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU			Training Cost (FLOPs)	
	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2			$1.0 \cdot 10^{20}$
GNMT + RL [31]	24.6	39.92		$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [8]	25.16	40.46		$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56		$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4			$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16		$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	$\mathbf{4 1 . 2 9}$		$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1		$\mathbf{3 . 3} \cdot \mathbf{1 0}^{\mathbf{1 8}}$	
Transformer (big)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 0}$		$2.3 \cdot 10^{19}$	

GPT and GPT-2

- Radford et al., (2018) Language models are unsupervised multitask learners
- Decoder transformer that predicts next word based on previous words by computing $P\left(x_{t} \mid x_{1 . . t-1}\right)$
- SOTA in "zero-shot" setting for 7/8 language tasks (where zero-shot means no task training, only unsupervised language modeling)

BERT (Bidirectional Encoder Representations from Transformers)

- Devlin et al., (2019) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Decoder transformer that predicts a missing word based on surrounding words by computing $P\left(x_{t} \mid x_{1 . . t-1, t+1 . . T}\right)$
- Mask missing word with masked multi-head attention
- Improved state of the art on 11 tasks

System	MNLI- $(\mathrm{m} / \mathrm{mm})$	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392 k	363 k	108 k	67 k	8.5 k	5.7 k	3.5 k	2.5 k	-
Pre-OpenAI SOTA	$80.6 / 80.1$	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	$76.4 / 76.1$	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	$82.1 / 81.4$	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT $_{\text {BASE }}$	$84.6 / 83.4$	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT $_{\text {LARGE }}$	$\mathbf{8 6 . 7 / 8 5 . 9}$	$\mathbf{7 2 . 1}$	$\mathbf{9 2 . 7}$	$\mathbf{9 4 . 9}$	$\mathbf{6 0 . 5}$	$\mathbf{8 6 . 5}$	$\mathbf{8 9 . 3}$	$\mathbf{7 0 . 1}$	$\mathbf{8 2 . 1}$

