
CS480/680

Lecture 18: July 8, 2019

Recurrent and Recursive Neural

Networks

[GBC] Chap. 10

CS480/680 Spring 2019 Pascal Poupart 1University of Waterloo

Variable length data

• Traditional feed forward neural networks can
only handle fixed length data

• Variable length data (e.g., sequences, time-
series, spatial data) leads to a variable # of
parameters

• Solutions:
– Recurrent neural networks
– Recursive neural networks

CS480/680 Spring 2019 Pascal Poupart 2University of Waterloo

Recurrent Neural Network (RNN)

• In RNNs, outputs can be fed back to the
network as inputs, creating a recurrent
structure that can be unrolled to handle
varying length data.

CS480/680 Spring 2019 Pascal Poupart 3University of Waterloo

Training

• Recurrent neural networks are trained by
backpropagation on the unrolled network
– E.g. backpropagation through time

• Weight sharing:
– Combine gradients of shared weights into a single

gradient
• Challenges:
– Gradient vanishing (and explosion)
– Long range memory
– Prediction drift

CS480/680 Spring 2019 Pascal Poupart 4University of Waterloo

RNN for belief monitoring

• HMM can be simulated and generalized by a
RNN

CS480/680 Spring 2019 Pascal Poupart 5University of Waterloo

Bi-Directional RNN

• We can combine past and future evidence in
separate chains

CS480/680 Spring 2019 Pascal Poupart 6University of Waterloo

Encoder-Decoder Model
• Also known as

sequence2sequence
– !(#): %&' input
– ((#): %&' output
–): context (embedding)

• Usage:
– Machine translation
– Question answering
– Dialog

CS480/680 Spring 2019 Pascal Poupart 7University of Waterloo

Machine Translation

• Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares,
Schwenk, Bengio (2014) Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine
Translation

CS480/680 Spring 2019 Pascal Poupart 8University of Waterloo

Long Short Term Memory (LSTM)

• Special gated structure to
control memorization and
forgetting in RNNs

• Mitigate gradient vanishing

• Facilitate long term memory

CS480/680 Spring 2019 Pascal Poupart 9University of Waterloo

Unrolled LSTM

• Picture

CS480/680 Spring 2019 Pascal Poupart 10University of Waterloo

LSTM cell in practice

• Adjustments:
– Hidden state ℎ" calledcell state #"
– Output $" called hidden state ℎ"

• Update equations
Input gate: %" = '() ** ,̅" +)(.*)ℎ"01)
Forget gate: 2" = '() *3 ,̅" +)(.3)ℎ"01)
Output gate: 4" = '() *5 ,̅" +)(.5)ℎ"01)
Process input: #̃" = tanh() *;̃ ,̅" +)(.;̃)ℎ"01)
Cell update: #" = 2" ∗ #"01 + %" ∗ #̃"
Output: $" = ℎ" = 4" ∗ tanh(#")

CS480/680 Spring 2019 Pascal Poupart 11University of Waterloo

Gated Recurrent Unit (GRU)
• Simplified LSTM

– No cell state
– Two gates (instead of three)
– Fewer weights

• Update equations
Reset gate: !" = $(& '(*̅" +&(,()ℎ"/0)
Update gate: 1" = $(& '2 *̅" +&(,2)ℎ"/0)
Process input: 3ℎ" = tanh & '8, *̅" + !" ∗ & ,8, ℎ"/0
Hidden state update: ℎ" = (1 − 1") ∗ ℎ"/0 + 1" ∗ 3ℎ"
Output: <" = ℎ"

CS480/680 Spring 2019 Pascal Poupart 12University of Waterloo

Attention
• Mechanism for alignment in machine translation, image

captioning, etc.
• Attention in machine translation: align each output word

with relevant input words by computing a softmax of the
inputs
– Context vector !": weighted sum of input encodings ℎ$

!" = ∑$ '"$ℎ$
– Where '"$ is an alignment weight between input encoding ℎ$

and output encoding ("
'"$ =

)*+ ,-"./01/2(4567,9:)
∑:<)*+(,-"./01/2(4567,9:<))

(softmax)

– Alignment example: '=>?@AB@C ("DE, ℎ$ = ("DEF ℎ$
CS480/680 Spring 2019 Pascal Poupart 13University of Waterloo

Attention

• Picture

CS480/680 Spring 2019 Pascal Poupart 14University of Waterloo

Machine Translation with Bidirectional
RNNs, LSTM units and attention

• Bahdanau, Cho, Bengio (ICLR-2015)

• Bleu: BiLingual Evaluation Understudy
– Percentage of translated words that appear in ground truth

CS480/680 Spring 2019 Pascal Poupart 15

RNNsearch: with attention
RNNenc: no attention

University of Waterloo

Alignment example

• Bahdanau, Cho, Bengio (ICLR-2015)

CS480/680 Spring 2019 Pascal Poupart 16University of Waterloo

Recursive Neural network

• Recursive neural networks
generalize recurrent
neural networks from
chains to trees.

• Weight sharing allows
trees of different sizes
to fit variable length
data.

• What structure should
the tree follow?

CS480/680 Spring 2019 Pascal Poupart 17University of Waterloo

Example: Semantic Parsing

• Use a parse tree or dependency graph as the
structure of the recursive neural network

• Example:

CS480/680 Spring 2019 Pascal Poupart 18University of Waterloo

