CS480/680 Lecture 18: July 8, 2019

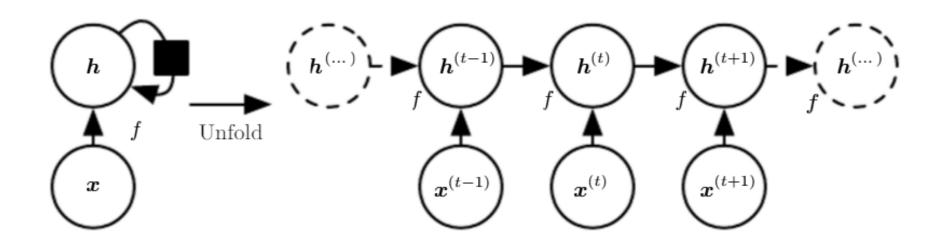
Recurrent and Recursive Neural Networks [GBC] Chap. 10

Variable length data

- Traditional feed forward neural networks can only handle fixed length data
- Variable length data (e.g., sequences, timeseries, spatial data) leads to a variable # of parameters
- Solutions:
 - Recurrent neural networks
 - Recursive neural networks

Recurrent Neural Network (RNN)

 In RNNs, outputs can be fed back to the network as inputs, creating a recurrent structure that can be unrolled to handle varying length data.



Training

- Recurrent neural networks are trained by backpropagation on the unrolled network

 E.g. backpropagation through time
- Weight sharing:
 - Combine gradients of shared weights into a single gradient
- Challenges:
 - Gradient vanishing (and explosion)
 - Long range memory
 - Prediction drift

RNN for belief monitoring

HMM can be simulated and generalized by a RNN

Bi-Directional RNN

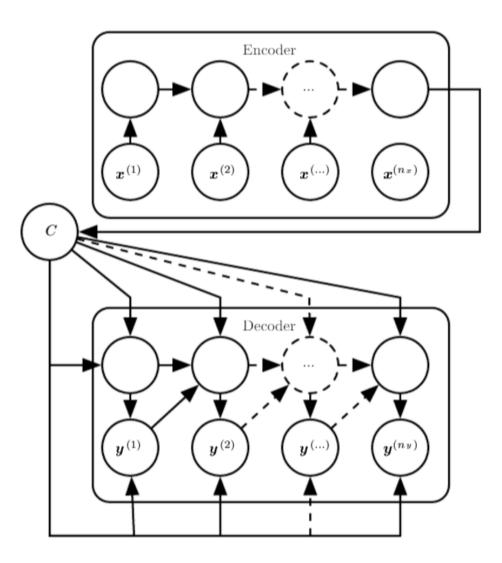
• We can combine past and future evidence in separate chains

Encoder-Decoder Model

Also known as sequence2sequence
 - x⁽ⁱ⁾: ith input
 - y⁽ⁱ⁾: ith output

– c: context (embedding)

- Usage:
 - Machine translation
 - Question answering
 - Dialog



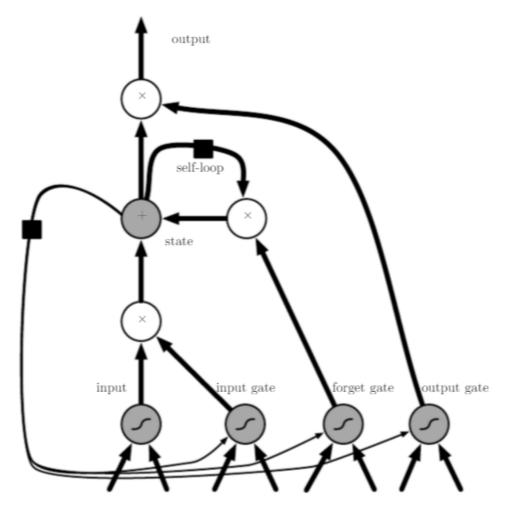
Machine Translation

 Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (2014) Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Translation Model	RNN Encoder–Decoder
[a la fin de la] [ŕ la fin des années] [être sup- primés à la fin de la]	[à la fin du] [à la fin des] [à la fin de la]
[r © pour la premirëre fois] [été donnés pour	[pour la première fois] [pour la première fois ,]
la première fois] [été commémorée pour la	[pour la première fois que]
première fois]	
[? aux ?tats-Unis et] [été ouvertes aux États-	[aux Etats-Unis et] [des Etats-Unis et] [des
Unis et] [été constatées aux États-Unis et]	États-Unis et]
[?s, qu'] [?s, ainsi que] [?re aussi bien que]	[, ainsi qu'] [, ainsi que] [, ainsi que les]
[?t ?l' un des plus] [?l' un des plus] [être retenue	[l' un des] [le] [un des]
comme un de ses plus]	
	 [a la fin de la] [f la fin des années] [être supprimés à la fin de la] [r © pour la premirëre fois] [été donnés pour la première fois] [été commémorée pour la première fois] [? aux ?tats-Unis et] [été ouvertes aux États-Unis et] [été constatées aux États-Unis et] [?s, qu'] [?s, ainsi que] [?re aussi bien que] [?t ?l' un des plus] [?l' un des plus] [être retenue

Long Short Term Memory (LSTM)

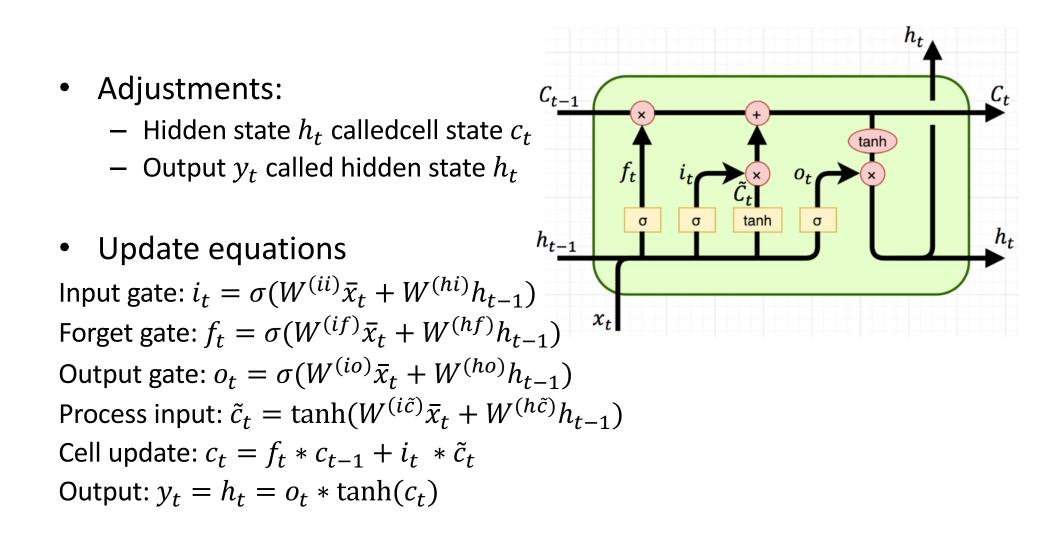
- Special gated structure to control memorization and forgetting in RNNs
- Mitigate gradient vanishing
- Facilitate long term memory



Unrolled LSTM

• Picture

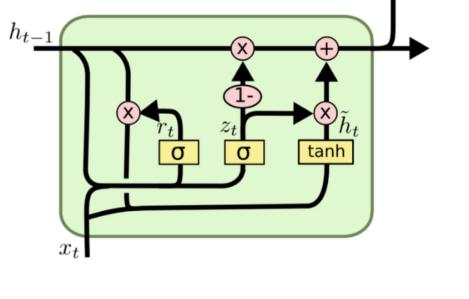
LSTM cell in practice



Gated Recurrent Unit (GRU)

- Simplified LSTM
 - No cell state
 - Two gates (instead of three)
 - Fewer weights
- Update equations

Reset gate: $r_t = \sigma(W^{(ir)}\bar{x}_t + W^{(hr)}h_{t-1})$ Update gate: $z_t = \sigma(W^{(iz)}\bar{x}_t + W^{(hz)}h_{t-1})$ Process input: $\tilde{h}_t = \tanh\left(W^{(i\tilde{h})}\bar{x}_t + r_t * \left(W^{(h\tilde{h})}h_{t-1}\right)\right)$ Hidden state update: $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$ Output: $y_t = h_t$



 h_t

Attention

- Mechanism for alignment in machine translation, image captioning, etc.
- Attention in machine translation: align each output word with relevant input words by computing a softmax of the inputs
 - Context vector c_i : weighted sum of input encodings h_i

 $c_i = \sum_j a_{ij} h_j$

– Where a_{ij} is an alignment weight between input encoding h_j and output encoding s_i

$$a_{ij} = \frac{\exp(alignment(s_{i-1},h_j))}{\sum_{j'} \exp(alignment(s_{i-1},h_{j'}))} \text{ (softmax)}$$

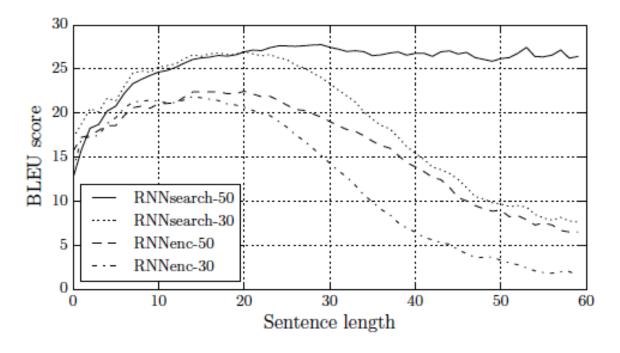
- Alignment example: $alignment(s_{i-1}, h_j) = s_{i-1}^T h_j$

Attention

• Picture

Machine Translation with Bidirectional RNNs, LSTM units and attention

• Bahdanau, Cho, Bengio (ICLR-2015)

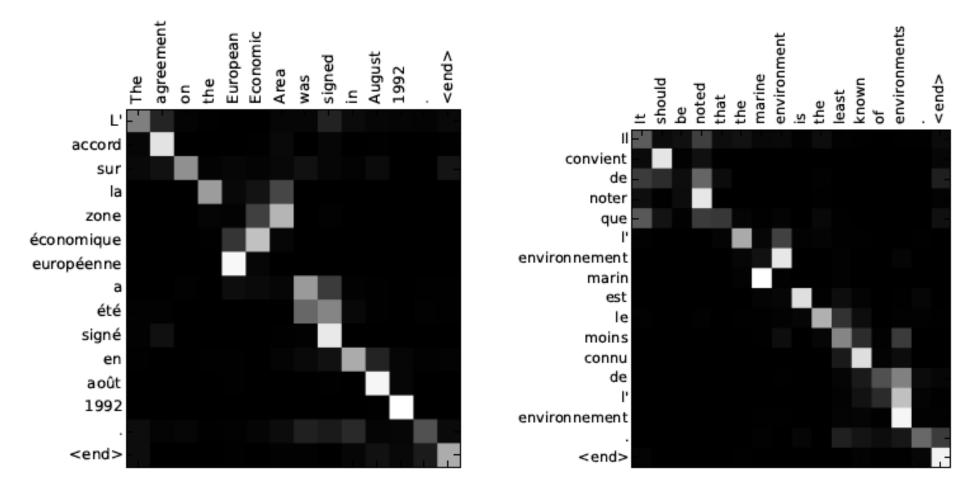


RNNsearch: with attention RNNenc: no attention

- Bleu: BiLingual Evaluation Understudy
 - Percentage of translated words that appear in ground truth

Alignment example

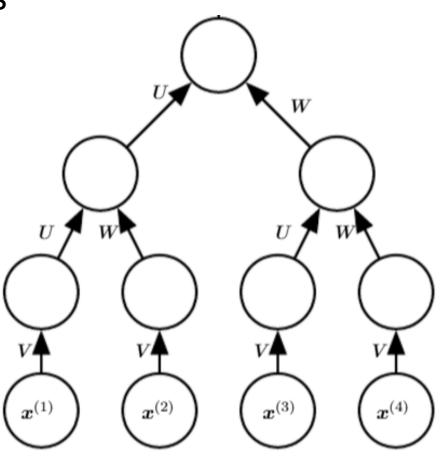
• Bahdanau, Cho, Bengio (ICLR-2015)



University of Waterloo

Recursive Neural network

- Recursive neural networks generalize recurrent neural networks from chains to trees.
- Weight sharing allows trees of different sizes to fit variable length data.
- What structure should the tree follow?



Example: Semantic Parsing

- Use a parse tree or dependency graph as the structure of the recursive neural network
- Example: