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Variable length data

• Traditional feed forward neural networks can 
only handle fixed length data

• Variable length data (e.g., sequences, time-
series, spatial data) leads to a variable # of 
parameters

• Solutions:
– Recurrent neural networks
– Recursive neural networks
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Recurrent Neural Network (RNN)

• In RNNs, outputs can be fed back to the 
network as inputs, creating a recurrent 
structure that can be unrolled to handle 
varying length data.
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Training

• Recurrent neural networks are trained by 
backpropagation on the unrolled network 
– E.g. backpropagation through time

• Weight sharing:
– Combine gradients of shared weights into a single 

gradient
• Challenges:
– Gradient vanishing (and explosion)
– Long range memory
– Prediction drift
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RNN for belief monitoring

• HMM can be simulated and generalized by a 
RNN
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Bi-Directional RNN

• We can combine past and future evidence in 
separate chains
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Encoder-Decoder Model
• Also known as 

sequence2sequence
– !(#): %&' input
– ((#): %&' output
– ): context (embedding)

• Usage:
– Machine translation
– Question answering
– Dialog
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Machine Translation

• Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, 
Schwenk, Bengio (2014) Learning Phrase Representations 
using RNN Encoder-Decoder for Statistical Machine 
Translation 
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Long Short Term Memory (LSTM)

• Special gated structure to 
control memorization and 
forgetting in RNNs

• Mitigate gradient vanishing

• Facilitate long term memory
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Unrolled LSTM

• Picture
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LSTM cell in practice

• Adjustments:
– Hidden state ℎ" calledcell state #"
– Output $" called hidden state ℎ"

• Update equations
Input gate: %" = '() ** ,̅" +)(.*)ℎ"01)
Forget gate: 2" = '() *3 ,̅" +)(.3)ℎ"01)
Output gate: 4" = '() *5 ,̅" +)(.5)ℎ"01)
Process input: #̃" = tanh() *;̃ ,̅" +)(.;̃)ℎ"01)
Cell update: #" = 2" ∗ #"01 + %" ∗ #̃"
Output: $" = ℎ" = 4" ∗ tanh(#")
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Gated Recurrent Unit (GRU)
• Simplified LSTM

– No cell state
– Two gates (instead of three)
– Fewer weights

• Update equations
Reset gate: !" = $(& '( *̅" +&(,()ℎ"/0)
Update gate: 1" = $(& '2 *̅" +&(,2)ℎ"/0)
Process input: 3ℎ" = tanh & '8, *̅" + !" ∗ & ,8, ℎ"/0
Hidden state update: ℎ" = (1 − 1") ∗ ℎ"/0 + 1" ∗ 3ℎ"
Output: <" = ℎ"
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Attention
• Mechanism for alignment in machine translation, image 

captioning, etc.
• Attention in machine translation: align each output word 

with relevant input words by computing a softmax of the 
inputs
– Context vector !": weighted sum of input encodings ℎ$

!" = ∑$ '"$ℎ$
– Where '"$ is an alignment weight between input encoding ℎ$

and output encoding ("
'"$ =

)*+ ,-"./01/2(4567,9:)
∑:< )*+(,-"./01/2(4567,9:<))

(softmax)

– Alignment example: '=>?@AB@C ("DE, ℎ$ = ("DEF ℎ$
CS480/680 Spring 2019 Pascal Poupart 13University of Waterloo



Attention

• Picture
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Machine Translation with Bidirectional 
RNNs, LSTM units and attention

• Bahdanau, Cho, Bengio (ICLR-2015)

• Bleu: BiLingual Evaluation Understudy
– Percentage of translated words that appear in ground truth
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Alignment example

• Bahdanau, Cho, Bengio (ICLR-2015)
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Recursive Neural network

• Recursive neural networks 
generalize recurrent 
neural networks from 
chains to trees.  

• Weight sharing allows 
trees of different sizes 
to fit variable length 
data.

• What structure should
the tree follow?
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Example: Semantic Parsing

• Use a parse tree or dependency graph as the 
structure of the recursive neural network

• Example:
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