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Large networks

• What kind of neural networks can be used for 
large or variable length input vectors (e.g., 
time series)?

• Common networks:
– Convolutional networks
– Recursive networks
– Recurrent networks
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Convolution

• Convolution: mathematical operation on two 
functions 𝑥() and 𝑤() that produces a third 
function 𝑦() that can be viewed as a modified 
version of one of the original functions 𝑥()

𝑦 𝑖 = (
!
𝑥 𝑡 𝑤 𝑖 − 𝑡 𝑑𝑡

𝑦 𝑖 = (𝑥 ∗ 𝑤)(𝑖)

Where ∗ is an operator denoting a convolution
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Example Smoothing
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Discrete convolution

• Discrete convolution

𝑦 𝑖 = $
!"#$

$

𝑥 𝑡 𝑤(𝑖 − 𝑡)

• Multidimensional convolution

𝑦 𝑖, 𝑗 = $
!!"#$

$

$
!""#$

$

𝑥 𝑡%, 𝑡& 𝑤(𝑖 − 𝑡%, 𝑗 − 𝑡&)
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Example: Edge Detection

• Consider a grey scale image
• Detect vertical edges:  𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 − 𝑥(𝑖 − 1, 𝑗)

hence 𝑤 𝑖 − 𝑡!, 𝑗 − 𝑡" = (
1 𝑡! = 𝑖, 𝑡" = 𝑗
−1 𝑡! = 𝑖 − 1, 𝑡" = 𝑗
0 otherwise
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Convolutions for feature extraction

• In neural networks
– A convolution denotes the linear combination of a subset 

of units based on a specific pattern of weights.

𝑎! =,
"

𝑤!"𝑧"

– Convolutions are often combined with an activation 
function to produce a feature

𝑧! = ℎ(𝑎!) = ℎ ,
"

𝑤!"𝑧"
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Gabor filters

• Gabor filters: common feature maps inspired by the 
human vision system

• Weights: 
Grey: zero White: positive Black: negative 
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Convolution Neural Network

• A convolutional neural network refers to any network that 
includes an alternation of convolution and pooling layers, 
where some of the convolution weights are shared.

• Architecture: 
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Pooling

• Pooling: commutative mathematical operation that 
combines several units 

• Examples:
– max, sum, product, average, Euclidean norm, etc.

• Commutative property (order does not matter):
max 𝑎, 𝑏 = max(𝑏, 𝑎)
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Example: Digit Recognition
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Benefits

• Sparse interactions 
– Fewer connections

• Parameter sharing
– Fewer weights

• Locally equivariant representation
– Locally invariant to translations
– Handle inputs of varying length
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Parameters

• # of filters: integer indicating the # of filters applied 
to each window.

• kernel size: tuple (width, height) indicating the size 
of the window.

• Stride: tuple (horizontal, vertical) indicating the 
horizontal and vertical shift between each window.

• Padding: “valid” or ”same”.  Valid indicates no input 
padding. Same indicates that the input is padded 
with a border of zeros to ensure that the output has 
the same size as the input. 
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Examples
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Training

• Convolutional neural networks are trained in 
the same way as other neural networks
– E.g., backpropagation

• Weight sharing:
– Combine gradients of shared weights into a single 

gradient
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Architecture design

• What is the preferred filter size?
• VGG (Visual Geometry Group at Oxford, 2014): stack 

of small filters is often preferred to single large filter
– Fewer parameters
– Deeper network

• Picture
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Residual Networks

• Problem: even with ReLU, very deep networks suffer 
from vanishing gradients

• Solution [He et al., 2015]: introduce residual 
connections (a.k.a. skip connections) to shorten 
paths

• Picture:
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Applications

• Image processing
• Data with sequential, spatial, or tensor patterns
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