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Outline

• Deep Neural Networks
– Gradient Vanishing
• Rectified linear units

– Overfitting
• Dropout

• Breakthroughs
– Acoustic modeling in speech recognition
– Image recognition
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Deep Neural Networks

• Definition: neural network with many hidden layers

• Advantage: high expressivity
• Challenges:
– How should we train a deep neural network?
– How can we avoid overfitting?
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Expressiveness

• Neural networks with one hidden layer of 
sigmoid/hyperbolic units can approximate arbitrarily 
closely neural networks with several layers of 
sigmoid/hyperbolic units

• However as we increase the number of layers, the 
number of units needed may decrease exponentially 
(with the number of layers)
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Example – Parity Function

• Single layer of hidden nodes
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Example – Parity Function

• 2" − 2 layers of hidden nodes
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The power of depth (practice)

• Challenge: how to train deep NNs?
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Speech
• 2006 (Hinton, al.): first effective algo for deep NN 

– layerwise training of Stacked Restricted Boltzmann 
Machines (SRBM)s

• 2009: Breakthrough in acoustic modeling
– replace Gaussian Mixture Models by SRBMs
– Improved speech recognition at Google,Microsoft,IBM

• 2013-today: recurrent neural nets (LSTM)
– Google error rate: 23% (2013) à 8% (2015)
– Microsoft error rate: 5.9% (Oct 17, 2016) same as 

human performance
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Image Classification
• ImageNet Large Scale Visual Recognition Challenge
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Vanishing Gradients

• Deep neural networks of sigmoid and 
hyperbolic units often suffer from vanishing 
gradients
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Sigmoid and hyperbolic units

• Derivative is always less than 1

sigmoid hyperbolic
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Simple Example
• ! = # $% # $& # $' # $( )

• Common weight initialization in (-1,1)
• Sigmoid function and its derivative always less than 1
• This leads to vanishing gradients:
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Avoiding Vanishing Gradients

• Several popular solutions:
– Pre-training
– Rectified linear units and maxout units
– Skip connections
– Batch normalization
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Rectified Linear Units

• Rectified linear: ℎ " = max(0, ")
– Gradient is 0 or 1
– Sparse computation

• Soft version
(“Softplus”) :
ℎ " = log(1 + 0!)

• Warning: softplus
does not prevent gradient vanishing (gradient < 1) 

Rectified
Linear

Softplus
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Maxout Units

• Generalization of rectified linear units
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Overfitting

• High expressivity increases the risk of 
overfitting
– # of parameters is often larger than the amount of 

data

• Some solutions: 
– Regularization
– Dropout
– Data augmentation
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Dropout

• Idea: randomly “drop” some units from the network 
when training

• Training: at each iteration of gradient descent
– Each input unit is dropped with probability !! (e.g., 0.2)
– Each hidden unit is dropped with probability !" (e.g., 0.5)

• Prediction (testing):
– Multiply each input unit by 1 − !!
– Multiply each hidden unit by 1 − !"
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Dropout Algorithm

Training: let ⨀ denote elementwise multiplication
• Repeat

– For each training example (#! , %!) do
• Sample '(()) from *+,-./001 1 − 4) 5! for 1 ≤ 0 ≤ 7
• Neural network with dropout applied:
8! #! , '!;: = ℎ" : # …ℎ$ : $ ℎ% : % >#!⨀'!% ⨀'!$ …⨀'!#
• Loss: ?,,(%(, 8((#(, '(;:)
• Update: @5A ← @5A − C DEFFDG"#

– End for
• Until convergence

Prediction:
8 #!;: = ℎ" : # …ℎ$ : $ ℎ% : % >#!(1 − 4% 1 − 4$ …(1 − 4#)
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Intuition

• Dropout can be viewed as an approximate form 
of ensemble learning

• In each training iteration, a different 
subnetwork is trained

• At test time, these subnetworks are “merged” 
by averaging their weights
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Applications of Deep Neural Networks

• Speech Recognition
• Image recognition
• Machine translation
• Control
• Any application of shallow neural networks
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Acoustic Modeling in Speech Recognition
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Acoustic Modeling in Speech Recognition
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Image Recognition

• Convolutional Neural Network
– With rectified linear units and dropout
– Data augmentation for transformation invariance
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ImageNet Breakthrough

• Results: ILSVRC-2012

• From Krizhevsky, Sutskever, Hinton
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ImageNet Breakthrough

• From Krizhevsky, Sutskever, Hinton

University of Waterloo


