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Sparse kernel techniques

 Kernel based approaches: complexity depends on
the amount of data, not the dimensionality of the
space. But for large datasets, this is not practical.
— Kernel matrix is square in # of data points

— Prediction requires inversion of the kernel matrix, which is
cubic in # of data points

* Can we use a sparse representation?
— i.e., kernel that depends on a subset of the data



Support Vector Machines

 Kernel depends on subset of data
* Picture



Max-Margin Classifier

* Find linear separator that maximizes the distance (or
margin) to closest data points

* Picture



Margin
e Linear separator: w/ ¢p(x) = 0

e Distance to linear separator:

wherey € {—1,1}

* Maximum margin:

max,, ! {min Vi qub(xn)}
[lwl| % 7




Comparison

Perceptron Support Vector Machine



Maximum Margin

Unique max margin linear separator
“ ” {mln yn T¢(x7’l)}

Alternatively, we can fix the minimal distance to 1
and minimize HWH

max,,

.1
min —HWH

w2
st.y, wio(x,) =1 vn

This is a convex quadratic optimization problem that
can easily be solved by many optimization packages



Derivation

1
argmaxy o {mln V, W Tqb(xn)}

= argmax,, s — “W” —38 st oy, wio(x,) =8 Vn

1 wT
= argmaxy s v H H s.t. yn?qb(xn) >1 Vn
replace — by w
1
[lwr|

= argmin,, ||w'| st. y,wiep(x,) =1 Vn

= argmax,,, st. y,wiop(x,) =1 Vn

2
= argmin,,, %Hw’l‘ st. ywlip(x,) =1 vn



Support Vectors

* Quadratic optimization problem
.1 2
min —“W”
w2
st.y, wlop(x,) >1 vn
* Only the points where y, wl¢p(x,,)) = 1 are

necessary. These points define the active constraints
and are known as the support vectors



Dual representation

* ldea: reformulation where ¢ (x) appears only in a
kernel

* Approach: find the dual of the optimization problem

e Result: (sparse) kernel support vector machines



Dual derivation

* Transform constrained optimization
2
min %“W” st.y, wio(x,) =1 Vn
w

into an unconstrained optimization problem
* Lagrangian

max min L(w, a)
az0 w

where L(w, @) = 2 |[[wl|" = £y anlyn W (xn) — 1]

\ J
|

penalty for violating
the nth constraint




Dual derivation

* Solve inner minimization: min L(w, a)
w
1 2
min [ Iwll* = > auly, wTh ) 1)
n
* Set derivative to O
d
T =0 = w= 2in AnYn® (%)

ow

 Substitute w by )., a, v, d(x;,) in L(w, @) to obtain:

L(a) = z an — _Z z A A Y VK (X, X))



Dual Problem

* We are then left with an optimization in a only
known as the dual problem

max L(a)
a

st.a, =0

* Sparse optimization: many a,;’s are 0



Classification

* Primal problem
Y. = sign(w' ¢(x.))

e Dual problem

Vi = Sign (Z an'ynqb(xn)Tqb(x*))

n

Vi = Sign (Z anYnk (xp, x*))

n



Generalization

* Support vector machines generalize quite well
— i.e., overfitting is rare

* Reason: maximizing the margin is equivalent to
minimizing an upper bound on the worst case loss
(worst loss for any underlying input distribution).



Case Study: Text Categorization

* T.Joachims, Text Categorization with Support Vector
Machines: Learning with Many Relevant Features.

Proceedings of the European Conference on Machine
Learning (ECML), Springer, 1998.

* Early success that helped SVMs become popular



Text Categorization

* Problem: how to categorize a news article as finance,
sports, politics, science, health, etc.?

 |dea: train a classifier with archives of news articles
that have already been classified



Representation

* How should we represent a document?

* |dea: vector of word counts (vector space model)

documents €—

University of Waterloo

L )n Win Wop

CS480/680 Spring 2019 Pascal Poupart

N

Tj 7—: . T‘v
D; wy wy .. Wy,
— Dy Wy Wiy Wis

Win

—> terms

18



Challenges

* High dimensional input space:
— Length of vector is # of words in dictionary (e.g., 10,000)
* Few irrelevant features:

— Most words carry some information that reflect their
meaning

* Need an approach that scales well with input
dimensionality: support vector machines



Experiment

e [Joachim 98]

— Data: Reuters dataset

— Compare precision/recall breakeven point

* i.e., precision = recall
|{relevant docs}|n|{retrieved docs}|

* Precision: :
|{retrieved docs}|

|{relevant docs}|n|{retrieved docs}|

* Recall:
|{relevant docs}|

— Algorithms
* Naive Bayes: 72.0%
Decision trees: 79.4%
Rochio: 79.9%
K-Nearest Neighbors: 82.3%
SVMs: 86.0% (polynomial kernel), 86.4% (Gaussian kernel)



SVM summary

Find (generalized) linear separator

— Dual representation (kernel): non-linear separator
Unique max-margin separator

— Good generalization

Convex quadratic optimization

— Polynomial complexity

— Global optimality

Sparse optimization

— many variables are 0

Can we do multi-class classification?

Can we handle data that is not linearly separable?



