
CS480/680
Lecture 10: June 10, 2019

Multi-layer Neural Networks, 
Error Backpropagation

[D] Chapt. 10, [HTF] Chapt. 11, [B] Sec. 
5.2, 5.3, [M] Sec. 16.5, [RN] Sec. 18.7
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Quick Recap: Linear Models

Linear Regression                  Linear Classification
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Quick Recap: Non-linear Models

Non-linear classification         Non-linear regression
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Non-linear Models

• Convenient modeling assumption: linearity

• Extension: non-linearity can be obtained by mapping 
! to a non-linear feature space " !

• Limit: the basis functions "#(!) are chosen a priori 
and are fixed

• Question: can we work with unrestricted non-linear 
models?

CS480/680 Spring 2019 Pascal Poupart 4University of Waterloo



Flexible Non-Linear Models

• Idea 1: Select basis functions that correspond to the training 
data and retain only a subset of them (e.g., Support Vector 
Machines)

• Idea 2: Learn non-linear basis functions (e.g., Multi-layer 
Neural Networks)
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Two-Layer Architecture

• Feed-forward neural network

• Hidden units: !" = ℎ%('"
(%))*)

• Output units: +, = ℎ-(',
(-)./)

• Overall: +, = ℎ- ∑" 1,"- ℎ% ∑2 1"2% 32
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Common activation functions ℎ
• Threshold: ℎ " = $ 1 " ≥ 0

−1 " < 0

• Sigmoid: ℎ " = * " = +
+,-./

• Gaussian: ℎ " = 01
2
3
/.4
5

3

• Tanh: ℎ " = tanh " = -/1-./
-/,-./

• Identity: ℎ " = "

CS480/680 Spring 2019 Pascal Poupart 7University of Waterloo



Adaptive non-linear basis functions

• Non-linear regression
– ℎ": non-linear function and ℎ#: identity

• Non-linear classification
– ℎ#: non-linear function and ℎ#: sigmoid 
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Weight training

• Parameters: < " # ," % ,… >
• Objectives:
– Error minimization
• Backpropagation (aka “backprop”)

– Maximum likelihood
– Maximum a posteriori
– Bayesian learning
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Least squared error

• Error function

! " = 1
2&'

!' " ( = 1
2&'

) *+," − .' (
(

• When ) *," = ∑0 120( 3 ∑4 1045 64

then we are optimizing a linear combination of non-
linear basis functions

Linear combo Non-linear basis functions
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Sequential Gradient Descent 

• For each example ("#, %#) adjust the weights as 
follows:

'() ← '() − ,
-.#
-'()

• How can we compute the gradient efficiently given 
an arbitrary network structure?

• Answer: backpropagation algorithm
• Today: automatic differentiation
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Backpropagation Algorithm

• Two phases:
– Forward phase: compute output !" of each unit #

– Backward phase: compute delta $" at each unit #
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Forward phase

• Propagate inputs forward to compute the output of 
each unit

• Output !" at unit #:
!" = ℎ &" where    a" = ∑) *")!)
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Backward phase

• Use chain rule to recursively compute gradient

– For each weight !"#: 
$%&
$'()

= $%&
$+(

$+(
$'()

= ,"-#

– Let ," ≡
$%&
$+(

then

," = /
ℎ′(3") -" − 6"
ℎ′(3")∑8!8",8

base case: ? is an output unit
recursion: ? is a hidden unit

– Since 3" = ∑# !"#-# then $+(
$'()

= -#

CS480/680 Spring 2019 Pascal Poupart 14University of Waterloo



Simple Example

• Consider a network with two layers:

– Hidden nodes: ℎ " = tanh " = ()*(+)
(),(+)

• Tip: -".ℎ/ " = 1 − (-".ℎ " )4
– Output node: ℎ " = "

• Objective: squared error
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Simple Example

• Forward propagation: 
– Hidden units: !" = $" =
– Output units: !% = $% =

• Backward propagation:
– Output units: &% =
– Hidden units: &" =

• Gradients:

– Hidden layers: 
'()
'*+,

=
– Output layer: 

'()
'*-+

=
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Non-linear regression examples

• Two layer network:
– 3 tanh hidden units and 1 identity output unit

! = #$ ! = sin #

! = |#| ! = )
*+

,
- . /.
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Analysis

• Efficiency: 
– Fast gradient computation: linear in number of weights

• Convergence: 
– Slow convergence (linear rate)
– May get trapped in local optima

• Prone to overfitting
– Solutions: early stopping, regularization (add ! "

"

penalty term to objective), dropout 
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Slow convergence

• Gradient direction is not always ideal
• Picture
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Adaptive Gradients

• Idea: adjust the learning rate of each dimension 
separately

• AdaGrad:

!" ← !"$% + '()
'*+,

-
(sum of squares of partial derivative)

./0 ← ./0 − 2
34
'()
'*+,

(update rule)

• Problem: learning rate 234
decays too quickly 
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RMSprop

• Idea: divide by root mean square (RMS) (instead of 
root of the sum) of partial derivatives

• RMSprop:

!" ← $!"%& + (1 − $) ,-.
,/01

2
(where 0 ≤ $ ≤ 1)

567 ← 567 − 8
9:
,-.
,/01

(update rule)

• Problem: gradient lacks momentum
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Adaptive moment estimation

• Idea: replace gradient by its moving average to 
induce momentum

• Adam:

!" ← $!"%& + (1 − $) ,-.
,/01

2
(where 0 ≤ $ ≤ 1)

5" ← 65"%& + (1 − 6) ,-.
,/01

(where 0 ≤ 6 ≤ 1)

789 ← 789 − :
;<
5" (update rule)
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Empirical Comparison

• From Kingma & Ba (ICLR-2015):
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