
CS480/680
Lecture 10: June 10, 2019

Multi-layer Neural Networks,
Error Backpropagation

[D] Chapt. 10, [HTF] Chapt. 11, [B] Sec.
5.2, 5.3, [M] Sec. 16.5, [RN] Sec. 18.7

CS480/680 Spring 2019 Pascal Poupart 1University of Waterloo

Quick Recap: Linear Models

Linear Regression Linear Classification

CS480/680 Spring 2019 Pascal Poupart 2University of Waterloo

Quick Recap: Non-linear Models

Non-linear classification Non-linear regression

CS480/680 Spring 2019 Pascal Poupart 3University of Waterloo

Non-linear Models

• Convenient modeling assumption: linearity

• Extension: non-linearity can be obtained by mapping
! to a non-linear feature space " !

• Limit: the basis functions "#(!) are chosen a priori
and are fixed

• Question: can we work with unrestricted non-linear
models?

CS480/680 Spring 2019 Pascal Poupart 4University of Waterloo

Flexible Non-Linear Models

• Idea 1: Select basis functions that correspond to the training
data and retain only a subset of them (e.g., Support Vector
Machines)

• Idea 2: Learn non-linear basis functions (e.g., Multi-layer
Neural Networks)

CS480/680 Spring 2019 Pascal Poupart 5University of Waterloo

Two-Layer Architecture

• Feed-forward neural network

• Hidden units: !" = ℎ%('"
(%))*)

• Output units: +, = ℎ-(',
(-)./)

• Overall: +, = ℎ- ∑" 1,"- ℎ% ∑2 1"2% 32

CS480/680 Spring 2019 Pascal Poupart 6University of Waterloo

Common activation functions ℎ
• Threshold: ℎ " = $ 1 " ≥ 0

−1 " < 0

• Sigmoid: ℎ " = * " = +
+,-./

• Gaussian: ℎ " = 01
2
3
/.4
5

3

• Tanh: ℎ " = tanh " = -/1-./
-/,-./

• Identity: ℎ " = "

CS480/680 Spring 2019 Pascal Poupart 7University of Waterloo

Adaptive non-linear basis functions

• Non-linear regression
– ℎ": non-linear function and ℎ#: identity

• Non-linear classification
– ℎ#: non-linear function and ℎ#: sigmoid

CS480/680 Spring 2019 Pascal Poupart 8University of Waterloo

Weight training

• Parameters: < " # ," % ,… >
• Objectives:
– Error minimization
• Backpropagation (aka “backprop”)

– Maximum likelihood
– Maximum a posteriori
– Bayesian learning

CS480/680 Spring 2019 Pascal Poupart 9University of Waterloo

Least squared error

• Error function

! " = 1
2&'

!' " (= 1
2&'

) *+," − .' (
(

• When) *," = ∑0 120(3 ∑4 1045 64

then we are optimizing a linear combination of non-
linear basis functions

Linear combo Non-linear basis functions

CS480/680 Spring 2019 Pascal Poupart 10University of Waterloo

Sequential Gradient Descent

• For each example ("#, %#) adjust the weights as
follows:

'() ← '() − ,
-.#
-'()

• How can we compute the gradient efficiently given
an arbitrary network structure?

• Answer: backpropagation algorithm
• Today: automatic differentiation

CS480/680 Spring 2019 Pascal Poupart 11University of Waterloo

Backpropagation Algorithm

• Two phases:
– Forward phase: compute output !" of each unit #

– Backward phase: compute delta $" at each unit #

CS480/680 Spring 2019 Pascal Poupart 12University of Waterloo

Forward phase

• Propagate inputs forward to compute the output of
each unit

• Output !" at unit #:
!" = ℎ &" where a" = ∑) *")!)

CS480/680 Spring 2019 Pascal Poupart 13University of Waterloo

Backward phase

• Use chain rule to recursively compute gradient

– For each weight !"#:
$%&
$'()

= $%&
$+(

$+(
$'()

= ,"-#

– Let ," ≡
$%&
$+(

then

," = /
ℎ′(3") -" − 6"
ℎ′(3")∑8!8",8

base case: ? is an output unit
recursion: ? is a hidden unit

– Since 3" = ∑# !"#-# then $+(
$'()

= -#

CS480/680 Spring 2019 Pascal Poupart 14University of Waterloo

Simple Example

• Consider a network with two layers:

– Hidden nodes: ℎ " = tanh " = ()*(+)
(),(+)

• Tip: -".ℎ/ " = 1 − (-".ℎ ")4
– Output node: ℎ " = "

• Objective: squared error

CS480/680 Spring 2019 Pascal Poupart 15University of Waterloo

Simple Example

• Forward propagation:
– Hidden units: !" = $" =
– Output units: !% = $% =

• Backward propagation:
– Output units: &% =
– Hidden units: &" =

• Gradients:

– Hidden layers:
'()
'*+,

=
– Output layer:

'()
'*-+

=

CS480/680 Spring 2019 Pascal Poupart 16University of Waterloo

Non-linear regression examples

• Two layer network:
– 3 tanh hidden units and 1 identity output unit

! = #$! = sin #

! = |#| ! =)
*+

,
- . /.

CS480/680 Spring 2019 Pascal Poupart 17University of Waterloo

Analysis

• Efficiency:
– Fast gradient computation: linear in number of weights

• Convergence:
– Slow convergence (linear rate)
– May get trapped in local optima

• Prone to overfitting
– Solutions: early stopping, regularization (add ! "

"

penalty term to objective), dropout

CS480/680 Spring 2019 Pascal Poupart 18University of Waterloo

Slow convergence

• Gradient direction is not always ideal
• Picture

CS480/680 Spring 2019 Pascal Poupart 19University of Waterloo

Adaptive Gradients

• Idea: adjust the learning rate of each dimension
separately

• AdaGrad:

!" ← !"$% + '()
'*+,

-
(sum of squares of partial derivative)

./0 ← ./0 − 2
34
'()
'*+,

(update rule)

• Problem: learning rate 234
decays too quickly

CS480/680 Spring 2019 Pascal Poupart 20University of Waterloo

RMSprop

• Idea: divide by root mean square (RMS) (instead of
root of the sum) of partial derivatives

• RMSprop:

!" ← $!"%& + (1 − $) ,-.
,/01

2
(where 0 ≤ $ ≤ 1)

567 ← 567 − 8
9:
,-.
,/01

(update rule)

• Problem: gradient lacks momentum

CS480/680 Spring 2019 Pascal Poupart 21University of Waterloo

Adaptive moment estimation

• Idea: replace gradient by its moving average to
induce momentum

• Adam:

!" ← $!"%& + (1 − $) ,-.
,/01

2
(where 0 ≤ $ ≤ 1)

5" ← 65"%& + (1 − 6) ,-.
,/01

(where 0 ≤ 6 ≤ 1)

789 ← 789 − :
;<
5" (update rule)

CS480/680 Spring 2019 Pascal Poupart 22University of Waterloo

Empirical Comparison

• From Kingma & Ba (ICLR-2015):

CS480/680 Spring 2019 Pascal Poupart 23University of Waterloo

