CS480/680
Lecture 10: June 10, 2019

Multi-layer Neural Networks,
Error Backpropagation

[D] Chapt. 10, [HTF] Chapt. 11, [B] Sec.
5.2,5.3, [M] Sec. 16.5, [RN] Sec. 18.7

University of Waterloo CS480/680 Spring 2019 Pascal Poupart

Quick Recap: Linear Models

Linear Regression Linear Classification

Quick Recap: Non-linear Models

Non-linear classification Non-linear regression

Non-linear Models

Convenient modeling assumption: linearity

Extension: non-linearity can be obtained by mapping
x to a non-linear feature space ¢ (x)

Limit: the basis functions ¢;(x) are chosen a priori
and are fixed

Question: can we work with unrestricted non-linear
models?

Flexible Non-Linear Models

* |dea 1: Select basis functions that correspond to the training

data and retain only a subset of them (e.g., Support Vector
Machines)

* |dea 2: Learn non-linear basis functions (e.g., Multi-layer
Neural Networks)

Two-Layer Architecture

Feed-forward neural network

Hidden units: z; = hl(w(l)_)

Output units: y, = hz(w _)
Overall: y,, = h, (Z W,g)hl (Z

(1)
l]l

)

Common activation functions h

. _J1 a=0
Threshold: h(a) = {_1 20
Sigmoid: h(a) = a(a) = 1+Z_a

a1 2
Gaussian: h(a) = e_;{TH)

e—a

Tanh: h(a) = tanh(a) = e -

ed+e~4a

Identity: h(a) = a

Adaptive non-linear basis functions

* Non-linear regression

— h4: non-linear function and h,: identity

e Non-linear classification

— h,: non-linear function and h,: sigmoid

Weight training

e Parameters: < WL w2 >
* Objectives:
— Error minimization
* Backpropagation (aka “backprop”)
— Maximum likelihood
— Maximum a posteriori

— Bayesian learning

Least squared error

* Error function

1 1
EW) =3) En(W)? = Esz(xw W) = ynll;

. Whenf(x,W)ﬁZj],‘ (Zl Jl);

Linear combo Non- Imear basis functions

then we are optimizing a linear combination of non-
linear basis functions

Sequential Gradient Descent

* For each example (x,,, y,,) adjust the weights as
follows:

* How can we compute the gradient efficiently given
an arbitrary network structure?

 Answer: backpropagation algorithm
* Today: automatic differentiation

Backpropagation Algorithm

 Two phases:

— Forward phase: compute output z; of each unit j

— Backward phase: compute delta §; at each unit j

Forward phase

* Propagate inputs forward to compute the output of
each unit

* Output z; at unit j:

zi = h(a;) where a; = wj;z;

Backward phase

e Use chain rule to recursively compute gradient

OE 0E, 0aj
— For each weight w;;: —% = —2—L = §;z;
or each weight wy; ow; 9a; 0w 0iZ;

OF
— Let 5j = — then
aaj

5. = h,(aj)(zj — yj) base case: j is an output unit
J 7 |W(a;) X w6 recursion: jis a hidden unit

aaj

— Since a; =),; wj;Z; then = Z;

aWji

Simple Example

* Consider a network with two layers:

ed—e—a

ed+e~a

— Hidden nodes: h(a) = tanh(a) =
e Tip: tanh'(a) = 1 — (tanh(a))?
— Output node: h(a) = a

* Objective: squared error

Simple Example

* Forward propagation:
— Hidden units: a; = 7. =
— Output units: a; = Z, =
 Backward propagation:
— Output units: 05, =

— Hidden units: 5]- =

e Gradients:
. OF
— Hidden layers: — =
aWji
OE,

— Output layer: e =

Non-linear regression examples

* Two layer network:

— 3 tanh hidden units and 1 identity output unit

y = |x|

University of Waterloo

y =sinx

y = J;(S(t)dt

CS480/680 Spring 2019 Pascal Poupart

17

Analysis

e Efficiency:
— Fast gradient computation: linear in number of weights

* Convergence:
— Slow convergence (linear rate)
— May get trapped in local optima

* Prone to overfitting

: : C . 2
— Solutions: early stopping, regularization (add HWI‘2
penalty term to objective), dropout

Slow convergence

* Gradient direction is not always ideal
* Picture

Adaptive Gradients

* |dea: adjust the learning rate of each dimension
separately
 AdaGrad:

* Problem: learning rate \%decays too quickly
t

RMSprop

e |dea: divide by root mean square (RMS) (instead of
root of the sum) of partial derivatives

* RMSprop:

* Problem: gradient lacks momentum

Adaptive moment estimation

* |dea: replace gradient by its moving average to
induce momentum

e Adam:

0E,
aWji

2
rt<—art_1+(1—a)() (where 0 < a < 1)

)
aWji

[St —fBsi_1+(1—-p) ()} (where0 < < 1)

T
VTt

wj; < wj; — —=5S; (update rule)

Empirical Comparison

* From Kingma & Ba (ICLR-2015):

MNIST LOgIStIC Regressnon

IMDB BoW feature Loglstlc Regressmn

0.7 0.50
— AdaGrad Adagrad+dropout
— SGDNesterov RMSProp+dropout
— Adam 0.45} a
: ‘ SGDNesterov+dropout
Adam+dropout
0.40 ' ' '
I 0
8
2 2 0.35
= [=
o T
0.30 !
0.25}
P I S S N S S B B o0 i
0 5 10 15 20 25 30 35 40 45 0O 20 40 60 80 100 120 140 160

iterations over entire dataset

University of Waterloo

iterations over entire dataset

CS480/680 Spring 2019 Pascal Poupart 23

