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5-Point Stencil

* An easy way to denote 2D finite difference equations
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Numbering of unknowns

Picture:

Note: the values on the boundary are zero
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Natural ordering

* Ordering: first in the x-direction, then y-direction

— i.e., Tl,l' T2,1' ver ) Tm,l; T1’2, T2’2,

* The system of linear equations
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Matrix Form

* Example (m = 4,n =16)



Graph Representation of Matrices

* Given a sparse matrix 4, a node is associated with
each row.
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Graph for Symmetric Matrices

* For symmetric matrices, arrows can be dropped (as
well as self loops)
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Physical/Geometric Interpretation

* Graph of a matrix often has a simple
physical/geometric interpretation

— 1D Laplacian

A= G(A):

— 2D Laplacian
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GE and Matrix Graph

e “Visualize” eliminations by matrix graph
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GE and Matrix Graph

* Elimination of node i produces a new graph with

— Node i deleted, all edges containing node i deleted

— New edge (J, k) added (fill-in) if there was an edge (i,j) &
(i, k) in the old graph.

* Notes

— Matrix (with symmetric structure) graph is unchanged by
renumbering of the nodes

— But orderings (which nodes to be removed first) may result
in much less fill during GE.



Ordering Algorithms

* Consider the following matrix graph:
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* Assume m, > m,,. If we use the natural ordering,
what would the matrix look like?




Ordering Algorithms

* If we had numbered along y-direction first, the
matrix becomes:

 Which ordering results in less fill? Why?



Band Matrices

* Note: GE preserves band structure

— Picture:

 Amount of work to factor a band matrix:
— 0(m?n) where m = bandwidth
— x-first ordering = flops(GE) = 0(m2n)
— y-first ordering = flops(GE) = 0(m;n)



Envelope Methods

* In general, bandwidth is not the same for each row

— Example:

* In each row, fill can occur only between the 1
nonzero entry and the diagonal.

* To limit the amount of fill, keep the envelope as close
to the diagonal as possible



Envelope Methods

* Try to number nodes so that graph neighbours have
numbers as close together as possible

— Example:



