CS475/CS675 Lecture 4: May 12, 2016

Sparse Gaussian Elimination,
Graph Representation
Reading: [Saad] Sect 3.1-3.2

5-Point Stencil

An easy way to denote 2D finite difference equations

$$\begin{bmatrix} 0 & -\frac{1}{h^2} & 0 \\ -\frac{1}{h^2} & \frac{4}{h^2} & -\frac{1}{h^2} \\ 0 & -\frac{1}{h^2} & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -\frac{1}{h^2} & 0 \\ -\frac{1}{h^2} & \frac{4}{h^2} & -\frac{1}{h^2} \\ 0 & -\frac{1}{h^2} & 0 \end{bmatrix} \qquad T_{i-1,j} \xrightarrow{T_{i,j+1}} T_{i+1,j}$$

$$T_{i-1,j} \xrightarrow{T_{i,j-1}} T_{i,j-1}$$

Numbering of unknowns

• Picture:

Note: the values on the boundary are zero

• The unknowns are:
$$egin{array}{ccccc} T_{1,1} & T_{2,1} & \cdots & T_{m,1} \\ T_{1,2} & T_{2,2} & \cdots & T_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ T_{1,m} & T_{2,m} & \cdots & T_{m,m} \end{array}$$

• Total number = $m \times m = m^2 \equiv n$

Natural ordering

Ordering: first in the x-direction, then y-direction

- i.e.,
$$T_{1,1}, T_{2,1}, \dots, T_{m,1}; T_{1,2}, T_{2,2}, \dots$$

The system of linear equations

$$i = 1, j = 1: \quad \frac{4}{h^2} T_{1,1} - \frac{1}{h^2} T_{2,1} - \frac{1}{h^2} T_{1,2} = f_{1,1}$$

$$i = 2, j = 1: \quad -\frac{1}{h^2} T_{1,1} + \frac{4}{h^2} T_{2,1} - \frac{1}{h^2} T_{3,1} - \frac{1}{h^2} T_{2,2} = f_{2,1}$$

$$\vdots$$

$$i = m, j = m: -\frac{1}{h^2} T_{m,m-1} - \frac{1}{h^2} T_{m-1,m} + \frac{4}{h^2} T_{m,m} = f_{m,m}$$

Matrix Form

• Example (m = 4, n = 16)

Graph Representation of Matrices

- Given a sparse matrix A, a node is associated with each row.
- If $a_{i,j} \neq 0$, there exists an edge from node i to j

Graph for Symmetric Matrices

 For symmetric matrices, arrows can be dropped (as well as self loops)

Physical/Geometric Interpretation

- Graph of a matrix often has a simple physical/geometric interpretation
 - 1D Laplacian

$$A =$$

$$G(A)$$
:

2D Laplacian

$$A =$$

$$G(A)$$
:

GE and Matrix Graph

"Visualize" eliminations by matrix graph

G(A):

GE and Matrix Graph

- Elimination of node i produces a new graph with
 - Node i deleted, all edges containing node i deleted
 - New edge (j, k) added (fill-in) if there was an edge (i, j) & (i, k) in the old graph.

Notes

- Matrix (with symmetric structure) graph is unchanged by renumbering of the nodes
- But orderings (which nodes to be removed first) may result in much less fill during GE.

Ordering Algorithms

Consider the following matrix graph:

• Assume $m_\chi \gg m_y$. If we use the natural ordering, what would the matrix look like?

Ordering Algorithms

• If we had numbered along y-direction first, the matrix becomes:

Which ordering results in less fill? Why?

Band Matrices

- Note: GE preserves band structure
 - Picture:

- Amount of work to factor a band matrix:
 - $-O(m^2n)$ where m= bandwidth
 - x-first ordering $\rightarrow flops(GE) = O(m_{\chi}^2 n)$
 - y-first ordering $\rightarrow flops(GE) = O(m_y^2 n)$

Envelope Methods

- In general, bandwidth is not the same for each row
 - Example:

- In each row, fill can occur only between the 1st nonzero entry and the diagonal.
- To limit the amount of fill, keep the envelope as close to the diagonal as possible

Envelope Methods

- Try to number nodes so that graph neighbours have numbers as close together as possible
 - Example: