CS475 / CS675 Lecture 20: July 7, 2016

Bidiagonalization

SVD Image Compression

Reading: [TB] Chapter 31

Alternative SVD Technique

- Assume A is square, i.e., m = n
- Consider the $2n \times 2n$ symmetric matrix:

$$H = \begin{bmatrix} 0 & A^T \\ A & 0 \end{bmatrix}$$

• Since $A = U\Sigma V^T$, $AV = U\Sigma$, $A^TU = V\Sigma^T = V\Sigma$

then
$$\begin{bmatrix} 0 & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} A^T U & -A^T U \\ AV & AV \end{bmatrix}$$
$$= \begin{bmatrix} V\Sigma & -V\Sigma \\ U\Sigma & U\Sigma \end{bmatrix}$$
$$= \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix}$$

Alternative SVD Technique

- Hence, $HQ = Q\Lambda \rightarrow \text{eigendeomposition of } H$
- Algorithm:
 - Compute eigendecomposition of *H*.
 - Set $\sigma_A = |\lambda_H|$
 - Extract *U*, *V* from *Q*
- Stable algorithm

Two-phase SVD

- Idea: First reduce the matrix to bidiagonal form, then diagonalize it.
- Picture:

Golub-Kahan Bidiagonalization

Apply Householder reflectors on the left and the right

- n reflectors on the left, n-2 on the right
- $flops(bidiag) = 2 \times flops(QR) \approx 4mn^2 \frac{4}{3}n^3$

• Theorem: *A* is the sum of *r* rank-one matrices:

$$A = \sum_{j=1}^{r} \sigma_j U_j V_j^T$$

Proof:

• Theorem: For any k, $0 \le k \le r$, define

$$A_k = \sum_{j=1}^k \sigma_j U_j V_j^T$$
 Then $\left| |A - A_k| \right|_2 = \inf_{rank(B) \le k} \left| |A - B| \right|_2 = \sigma_{k+1}$

• Proof: first note that

$$A - A_k = \sum_{j=k+1}^r \sigma_j U_j V_j^T = \begin{bmatrix} U_1 \dots U_m \end{bmatrix} \begin{bmatrix} 0 & & & \\ & \sigma_{k+1} & & \\ & & \ddots & \\ & & & \sigma_r \end{bmatrix} \begin{bmatrix} V_1^T \\ \vdots \\ V_n^T \end{bmatrix}$$

It is the SVD of $A - A_k$

Hence:
$$||A - A_k||_2 = \sigma_{k+1}$$

- Suppose $\exists B$ with $rank(B) \le k$ such that $\left| |A B| \right|_2 < \left| |A A_k| \right|_2 = \sigma_{k+1}$
- Then $\exists (n-k)$ -dim subspace W such that $w \in W \Longrightarrow Bw = 0$
- Note Aw = (A B)w. Then $||Aw||_2 = ||(A B)w||_2$ $\leq ||A B||_2 ||w||_2$ $< \sigma_{k+1} ||w||_2$

- But $\exists (k+1)$ -dim subspace V_{k+1} such that $||Av|| \ge \sigma_{k+1} ||v||$
 - $\text{ E.g., } V_{k+1} = span\{v_1, v_2, \dots, v_{k+1}\}$
 - Note: $Av_j = \sigma_j v_j$, $||Av_j|| = \sigma_j \ge \sigma_{k+1} ||v_j||$
- But $\dim(W) + \dim(V_{k+1}) > n$ \Rightarrow contradiction

Notes

1.
$$A_{k} = \begin{bmatrix} u_{1} \dots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{k} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ \vdots \\ v_{n}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} u_{1} \dots u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{k} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ \vdots \\ v_{k}^{T} \end{bmatrix}$$
$$= U_{k} \Sigma_{k} V_{k}^{T}$$

2. A_k is the best rank-k approximation of A. The error of approximation is σ_{k+1} (in L_2 -norm)

Application: Image Compression

- An $m \times n$ image can be represented by $m \times n$ matrix A where A_{ij} = pixel value at (i,j)
- Compress the image by storing less than mn entries
- Let $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$, the best rank-k approx of A
- Keep the first k singular values and use A_k to approximate A; i.e., A_k = compressed image

Application: Image Compression

- Example: m = 320, n = 200
- To store A_k , only need to store u_1, \dots, u_k and $\sigma_1 v_1, \dots, \sigma_k v_k$
 - This requires only (m+n)k words
- In contrast, to store A one needs mn words
- Compression ratio: $\frac{(m+n)k}{mn} \approx \frac{k}{123}$

Application: Image Compression

k	Relative error $\frac{\sigma_{k+1}}{\sigma_1}$	Compression rate
3		
10		
20		