CS475/CM375 Lecture 5: Sept. 27

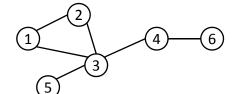
Ordering Methods Reading: [Saad] Sect 3.3

CS475/CM375 (c) 2011 P. Poupart & J. Wan

1

Degree

- Definition: Degree of a node = # of nodes adjacent to a given node
 - E.g.



deg(1) = 2

deg(3) =

deg(5) =

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Level Sets

- Envelope ordering strategies are often based on level sets S_i
 - $-S_1 \rightarrow$ consists of a single node, the starting node
 - $-S_2 \rightarrow \text{all (graph)}$ neighbours of the node in S_1
 - $-S_3$ → all neighbours of nodes in S_2 that are not in S_1 , S_2 .
- In general, S_i consists of all neighbours of S_{i-1} that are not in $S_1, S_2, ..., S_{i-2}$.
- Ordering: nodes in S_1 , nodes in S_2 , etc.

CS475/CM375 (c) 2011 P. Poupart & J. Wan

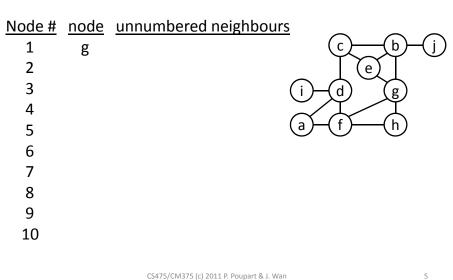
3

Cuthill-McKee Ordering (1969)

- 1. Determine starting node
- 2. For i = 1, ..., n find all unnumbered neighbours of node i and number them in order of degree (smallest first). Surprisingly, the reverse ordering is better, so add 3)
- 3. Reverse Cuthill McKee (RCM, 1971, George) $node_i^{RCM} = node_{n-i+1}^{CM} \quad i=1,2,\ldots,n$

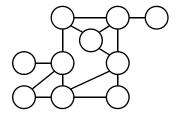
CS475/CM375 (c) 2011 P. Poupart & J. Wan

Example 1

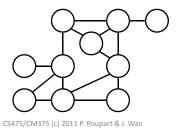


Example 1

• CM ordering



• RCM ordering



Example 2

Node # node unnumbered neighbours

1 b

2

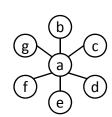
3

4

5

6

7

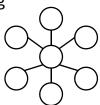


CS475/CM375 (c) 2011 P. Poupart & J. Wan

7

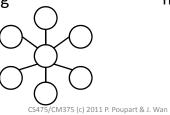
Example 2

• CM ordering



matrix

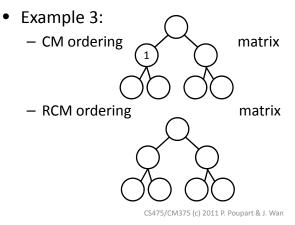
• RCM ordering



matrix

RCM Properties

• If graph is a tree, then no matter what node you start with, RCM ordering produces no fill (not true for CM)



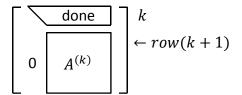
RCM properties

- Notes:
 - 1. RCM does not necessarily produce an optimal ordering (i.e., ordering which introduces least amount of fill)
 - 2. In general, NP-complete problem to find optimal ordering

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Local Strategy (Markowitz 1957)

Min fill-in only for the current step of GE
 E.g., after k steps of GE:



CS475/CM375 (c) 2011 P. Poupart & J. Wan

11

Local Strategy (Markowitz 1957)

- Let $r_i^{(k)} =$ number of entries in row i of $A^{(k)}$ $c_j^{(k)} =$ number of entries in col j of $A^{(k)}$
- Then the max possible amount of fill is:

$$\left(r_i^{(k)} - 1\right)\left(c_j^{(k)} - 1\right)$$

– E.g.

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Local Strategy (Markowitz 1957)

- Markowitz strategy: select $a_{ij}^{(k)}$ that minimizes $\left(r_i^{(k)}-1\right)\left(c_j^{(k)}-1\right)$
- Note: different from $r_i^{(k)}c_j^{(k)}$, which prefers $r_i=1$ or $c_j=1$.
- For symmetric structure, $\min_i r_i^{(k)} = \min_j c_j^{(k)}$
 - \div We find node i, $k+1 \le i \le n$ such that $\min_i r_i^{(k)} 1$
 - Then we use $a_{ii}^{\left(k\right)}$ as the pivot

CS475/CM375 (c) 2011 P. Poupart & J. Wan

13

Minimum degree ordering

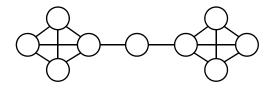
- In the matrix graph, choose the node with least edges connected to it.
- A tree graph will be ordered correctly.
- It is a local strategy; no guarantee it will produce the least amount of total fill

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Example

• Minimum degree ordering

amount of fill



Optimal ordering

amount of fill

1

Tie-breaking

- 1. Select the node that has the smallest node number in original order
- 2. RCM preordering: minimum degree
 Tie broken by selecting earlier RCM ordered node

CS475/CM375 (c) 2011 P. Poupart & J. Wan