CS475 / CM 375
Lecture 18: Nov 10, 2011

QR Method with Shifts
Google Page Rank
Reading: [TB] Chapter 29
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Reduction to Hessenberg Algorithm

Fork=1,2,..,n—2
x=Ak + 1:n,k)
vy = sign(xy)||x||e; + x
Ve = Ui/ | |[vkel|

[ forj=kk+1,..,n
of x - Atk + 1:n, ) = A(k + 1:n, ) — 20y (v,fA(k + 1:n,j))
| end
[ fori=12,..,n
X Qr AGk+1:n) = A(L, k + 1:n) — 2(A3L k + L:n)vy) vl
end
end
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Symmetric Case

e IfA = AT, then
(QTAQ)T = QT AQ is also symmetric

e A symmetric Hessenberg matrix — tridiagonal
matrix

e Two-phase process:
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Shift QR Algorithm

* QR algorithm is both simultaneous iteration and
simultaneous inverse iteration
— Can apply shift technique
e Algorithm (Shifted QR)
A® =4
Fork =1,2,...
Pick a shift p (0
QWR®K  A(k=1) _ ()] (QR factorization)
A = Rt 4 (]
End
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e Similartor

200 — (Q(k))TA(Q(k)) where 00 = g _ 0(®

¢ Derivation:

Shift QR Algorithm

egular QR, we can show that
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Shift QR Algorithm

¢ We can also show that

(A — ,u(k)l)(A — u(k_l)l) (A — M(l)l) = Q(k)ﬂ(k)

¢ Derivation:
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Shift QR Algorithm

¢ Continued derivation:

 |f the shifts are good eigenvalue estimates, the last
column of Q(") converges quickly to an eigenvector.
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Rayleigh quotient shift

* To estimate the eigenvalue corresponding to the
eigenvector approximated by the last column of Q(k):

1= (4) 4 (a)

Equivalent to applying RQl on e,
— i.e., QR algo has cubic convergence to that eigenvector

T
Note: AW = (Q(k)) AQ®

48 = (4) 4(4) =

~ 1% comes for free!
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Google PageRank

* Problem: give a ranking, PageRank, to all webpages.

e |dea: surfing the web is like a random walk
—> a Markov chain or Markov process.

— PageRank = the limiting probability that an infinitely
dedicated random surfer visits any particular page.

— A page has high rank if other pages with high rank link to it.
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Google PageRank

e Example:
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Google PageRank

* Define connectivity matrix G by
_.={1 if 3 alink from page j to i
H 0 otherwise

* The jt column of G shows the links on the j"* page.
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Google PageRank

* Let p = prob. that the random walk follows a link
and 1 — p = prob. that an arbitrary page is chosen

— Typically p = 0.85

9ij 1
1 — -
TR (1-p)-

to be the prob. of jumping from page j to page i

* Definea;; =p
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Google PageRank

* Properties of A:
— Entries betweenOand 1: 0 <ga;; <1
— Columns sum to 1:

Xi9ij 1 _ _
2. Gy zpzigij,+(1—P);Zi1—P+(1—P) =1

* By Ferron-Frobenius theorem, a matrix A with the
above properties admits a vector x such that Ax = x

i.e., x is the eigenvector corresponding to eigenvalue 1

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Google PageRank

* Normalize x such that };; x; = 1. Then x is the state
vector of the Markov chain & is Google’s PageRank!

* The elements of x are all positive and less than 1.

* Inour example, x =
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Google PageRank

e To compute PageRank:
— Setup A
— Compute largest eigenvector by:
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