CS475 / CM 375 Lecture 18: Nov 10, 2011

QR Method with Shifts
Google Page Rank
Reading: [TB] Chapter 29

CS475/CM375 (c) 2011 P. Poupart & J. Wan

1

Reduction to Hessenberg Algorithm

$$\begin{aligned} &\text{For } k = 1, 2, \dots, n-2 \\ & x = A(k+1;n,k) \\ & v_k = sign(x_1)\big||x|\big|e_1 + x \\ & v_k = v_k/||v_k|| \\ &\text{for } j = k, k+1, \dots, n \\ & A(k+1;n,j) = A(k+1;n,j) - 2v_k\left(v_k^TA(k+1;n,j)\right) \\ &\text{end} \\ &\text{for } i = 1, 2, \dots, n \\ & A(i,k+1;n) = A(i,k+1;n) - 2(A(i,k+1;n)v_k)v_k^T \\ &\text{end} \end{aligned}$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Symmetric Case

- If $A = A^T$, then $(Q^TAQ)^T = Q^TAQ$ is also symmetric
- A symmetric Hessenberg matrix → tridiagonal matrix
- Two-phase process:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

3

Shift QR Algorithm

- QR algorithm is both simultaneous iteration and simultaneous inverse iteration
 - Can apply shift technique
- Algorithm (Shifted QR)

$$\begin{split} A^{(0)} &= A \\ \text{For } k = 1,2, \dots \\ & \text{Pick a shift } \mu^{(k)} \\ & Q^{(k)}R^{(k)} \leftarrow A^{(k-1)} - \mu^{(k)}I \quad \text{(QR factorization)} \\ & A^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I \end{split}$$
 End

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Shift QR Algorithm

- Similar to regular QR, we can show that $A^{(k)} = \left(\underline{Q}^{(k)}\right)^T A(\underline{Q}^{(k)}) \ \ \text{where} \ \underline{Q}^{(k)} = Q^{(1)} \dots Q^{(k)}$
- Derivation:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

5

Shift QR Algorithm

- We can also show that $\big(A-\mu^{(k)}I\big)\big(A-\mu^{(k-1)}I\big)\ldots\big(A-\mu^{(1)}I\big)=\underline{Q}^{(k)}\underline{R}^{(k)}$
- Derivation:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Shift QR Algorithm

Continued derivation:

• If the shifts are good eigenvalue estimates, the last column of $Q^{(k)}$ converges quickly to an eigenvector.

CS475/CM375 (c) 2011 P. Poupart & J. Wan

7

Rayleigh quotient shift

• To estimate the eigenvalue corresponding to the eigenvector approximated by the last column of $Q^{(k)}$:

$$\mu^{(k)} = \left(\underline{q}_n^{(k)}\right)^T A\left(\underline{q}_n^{(k)}\right)$$

- Equivalent to applying RQI on e_n i.e., QR algo has cubic convergence to that eigenvector
- $\begin{array}{ll} \bullet & \text{Note:} & A^{(k)} = \left(\underline{Q}^{(k)}\right)^T A \underline{Q}^{(k)} \\ & A^{(k)}_{nn} = \left(\underline{q}^{(k)}_n\right)^T A \left(\underline{q}^{(k)}_n\right) = \mu^{(k)} \\ \end{array}$

 $\therefore \mu^{(k)}$ comes for free!

CS475/CM375 (c) 2011 P. Poupart & J. Wan

- Problem: give a ranking, PageRank, to all webpages.
- Idea: surfing the web is like a random walk
 - → a Markov chain or Markov process.
 - PageRank = the limiting probability that an infinitely dedicated random surfer visits any particular page.
 - A page has high rank if other pages with high rank link to it.

CS475/CM375 (c) 2011 P. Poupart & J. Wan

9

Google PageRank

• Example:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

• Define connectivity matrix G by $g_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } \exists \text{ a link from page } j \text{ to } i \\ 0 & \text{otherwise} \end{array} \right.$

G =

• The j^{th} column of G shows the links on the j^{th} page.

CS475/CM375 (c) 2011 P. Poupart & J. Wan

11

Google PageRank

- Let p= prob. that the random walk follows a link and 1-p= prob. that an arbitrary page is chosen Typically p=0.85
- Define $a_{ij}=p\frac{g_{ij}}{\sum_i g_{ij}}+(1-p)\frac{1}{n}$ to be the prob. of jumping from page j to page i

CS475/CM375 (c) 2011 P. Poupart & J. Wan

- Properties of A:
 - Entries between 0 and 1: $0 < a_{ij} < 1$
 - Columns sum to 1:

$$\sum_{i} a_{ij} = p \frac{\sum_{i} g_{ij}}{\sum_{i} g_{ij}} + (1 - p) \frac{1}{n} \sum_{i} 1 = p + (1 - p) = 1$$

• By Ferron-Frobenius theorem, a matrix A with the above properties admits a vector x such that Ax = x i.e., x is the eigenvector corresponding to eigenvalue 1

CS475/CM375 (c) 2011 P. Poupart & J. Wan

13

Google PageRank

- Normalize x such that $\sum_i x_i = 1$. Then x is the state vector of the Markov chain & is Google's PageRank!
- The elements of x are all positive and less than 1.
- In our example, x =

CS475/CM375 (c) 2011 P. Poupart & J. Wan

- To compute PageRank:
 - Setup *A*
 - Compute largest eigenvector by:

CS475/CM375 (c) 2011 P. Poupart & J. Wan