CS475 / CM375 Lecture 17: Nov 8, 2011

QR Algorithm and Reduction to Hessenberg Reading: [TB] Chapt 28

CS475/CM375 (c) 2011 P. Poupart & J. Wan

1

Simultaneous iteration vs QR algorithm

- QR algorithm can be viewed as simultaneous iteration with $\hat{Q}^{(0)} = I$ and p = n.
- We can drop the hats on $\widehat{Q}^{(k)}$, $\widehat{R}^{(k)}$
- $\underline{Q}^{(k)} = Q$'s from simultaneous iteration, $\overline{Q}^{(k)} = Q$'s from QR algorithm

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Simultaneous iteration revisited

• Simultaneous iteration can be written as:

$$\begin{split} & \underline{Q}^{(0)} = I \\ & \text{For } k = 1,\!2, \dots \\ & Z^{(k)} \leftarrow A \underline{Q}^{(k-1)} \\ & \underline{Q}^{(k)} R^{(k)} \leftarrow Z^{(k)} \\ & A^{(k)} = \left(\underline{Q}^{(k)}\right)^T A \underline{Q}^{(k)} \\ & \underline{R}^{(k)} = R^{(k)} R^{(k-1)} \dots R^{(1)} \end{split} \right\} \quad \text{New matrices for proof purpose} \\ & \underline{R}^{(k)} = R^{(k)} R^{(k-1)} \dots R^{(1)} \\ \text{end} \end{split}$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

3

QR algorithm revisited

• QR algorithm can be written as:

$$\begin{split} A^{(0)} &= A \\ \text{For } k = 1, 2, \dots \\ Q^{(k)} R^{(k)} &\leftarrow A^{(k-1)} \\ A^{(k)} &\leftarrow R^{(k)} Q^{(k)} \\ \underline{Q}^{(k)} &= Q^{(1)} Q^{(2)} \dots Q^{(k)} \\ \underline{R}^{(k)} &= R^{(k)} R^{(k-1)} \dots R^{(1)} \\ \end{split} \right\} \text{ New matrices for proof purpose} \\ \text{end} \end{split}$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Equivalence

- Theorem: The two algorithms generate identical sequences of matrices $\underline{R}^{(k)}$, $\underline{Q}^{(k)}$ and $A^{(k)}$ and they are
 - $(1) A^k = \underline{Q}^{(k)} \underline{R}^{(k)}$
 - (2) $A^{(k)} = \left(\underline{Q}^{(k)}\right)^T A \underline{Q}^{(k)}$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

5

Equivalence

• <u>Proof:</u> by induction. The case k=0 is trivial since $A^0=\underline{Q}^{(0)}=\underline{R}^{(0)}=I$ and $A^{(0)}=A$. Suppose it is true for k-1. Simultaneous iteration:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Equivalence

Proof continued...QR algorithm:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

7

Convergence of the QR algorithm

- (1) \Longrightarrow QR algorithm effectively computes Q, R factors of A^k i.e., orthonormal basis for A^k
- (2) \Longrightarrow The diagonal of $A^{(k)}$ are Rayleigh quotients of column vectors of $Q^{(k)}$
- As columns of $\underline{Q}^{(k)} \longrightarrow$ eigenvectors, the Rayleigh quotients \longrightarrow eigenvalues

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Convergence of the QR algorithm

- $A_{ij}^{(k)} = (q_i^{(k)})^T A(q_j^{(k)})$
 - Here $\underline{q}_i^{(k)}$, $\underline{q}_j^{(k)}$ are columns i and j of $\underline{Q}^{(k)}$
 - Eventually $\underline{q}_{j}^{(k)} o q_{j}$, $\underline{q}_{i}^{(k)} o q_{i}$, $A\underline{q}_{j}^{(k)} pprox \lambda_{j}q_{j}$
 - Therefore $A_{ij}^{(k)} \approx \lambda_j q_i^T q_j = 0 \quad \forall i \neq j$
- $\therefore A^{(k)}$ converges to a diagonal matrix

CS475/CM375 (c) 2011 P. Poupart & J. Wan

9

Convergence of the QR algorithm

• Theorem: Assume $|\lambda_1|>|\lambda_2|>\cdots>|\lambda_n|$ and Q has all nonsingular leading principal minors. As $k\to\infty$, $A^{(k)}$ converges linearly to $diag(\lambda_1,\ldots,\lambda_n)$ and $\underline{Q}^{(k)}$ converges at the same rate to Q. The rate of convergence is

$$C = \max_{k} \left| \frac{\lambda_{k+1}}{\lambda_k} \right|$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Example

•
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix} = A^{(0)}$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

11

Example

•
$$A = \begin{bmatrix} 21 & 7 & -1 \\ 5 & 7 & 7 \\ 4 & -4 & 20 \end{bmatrix} = A^{(0)}$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Practical QR

- It is expensive to compute the QR factorization of a square matrix $\left(\frac{4}{3}n^3 f lops\right)$
- In practice, we first reduce A to a Hessenberg matrix if $A \neq A^T$ and to a tridiagonal matrix if $A = A^T$
- The resulting QR factorization would be $O(n^2)$ if $A \neq A^T$ and O(n) if $A = A^T$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

13

Reduction to Hessenberg or Tridiagonal

- The matrix can be nonsymmetric in general
- Why Hessenberg? Why not triangular?

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Reduction to Hessenberg or Tridiagonal

 \bullet Be less ambitious and choose Q_1^T that leaves $\mathbf{1}^{\mathrm{st}}$ row unchanged

CS475/CM375 (c) 2011 P. Poupart & J. Wan

15

Reduction to Hessenberg or Tridiagonal

• In general:

$$Q = Q_1Q_2 \dots Q_{n-2}$$
 and $Q^TAQ =$ upper Hessenberg

- Complexity:
 - Flops(Reduction to Hessenberg) $\approx \frac{10}{3} n^3$
 - − Flops(Reduction to tridiagonal) $\approx \frac{4}{3}n^3$

CS475/CM375 (c) 2011 P. Poupart & J. Wan