CS475 / CM375 Lecture 13: Oct 25, 2011

Singular Value Decomposition
Conditioning
Reading: [TB] Chapters 4, 12

CS475/CM375 (c) 2011 P. Poupart & J. Wan

1

Singular Value Decomposition

- A third method to solve least square problems:
 - Singular Value Decomposition (SVD)
- Idea: compute $A = \widehat{U}\widehat{\Sigma}V^T$
 - Picture:

— Where \widehat{U} , V have orthonormal cols and $\widehat{\Sigma}=diag$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Singular Value Decomposition

• Geometry:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Singular Value Decomposition

•
$$Ax = b \implies \widehat{U}\widehat{\Sigma}V^Tx = b$$

$$\widehat{\Sigma}V^Tx = \widehat{U}^Tb \qquad (\widehat{U}^T\widehat{U} = I)$$

$$V^Tx = \widehat{\Sigma}^{-1}\widehat{U}^Tb$$

$$x = V\widehat{\Sigma}^{-1}\widehat{U}^Tb \qquad (VV^T = I)$$

• Pseudoinverse: $A^{\dagger} = V \hat{\Sigma}^{-1} \hat{U}^T$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Singular Value Decomposition

• Normal equations view:

$$A^T A x = A^T b$$

- \Leftrightarrow
- \Leftrightarrow
- \Leftrightarrow
- \Leftrightarrow
- \Leftrightarrow
- \Leftrightarrow

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Conditioning

- <u>Def:</u> Conditioning refers to the perturbation behavior of a mathematical problem
- Consider a problem $f: X \to Y$
 - Well-conditioned: small changes in $x \rightarrow$ small changes in y
 - Ill-conditioned: small changes in $x \rightarrow \mathsf{large}$ changes in y
- Picture:

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Condition number

- Let δx denote a small perturbation of x
- Let $\delta f = f(x + \delta x) f(x)$
- Absolute condition number: $\hat{\kappa} = \sup_{\delta x} \frac{||\delta f||}{||\delta x||}$
- Relative condition number: $\kappa = \sup_{\delta x} \left(\frac{||\delta f||}{||f(x)||} / \frac{||\delta x||}{||x||} \right)$
- Well-conditioned: small κ
- Ill-conditioned: large κ

CS475/CM375 (c) 2011 P. Poupart & J. Wan

7

Conditioning of Matrix-Vector Multiplication

- Let f(x) = Ax
- Then $\kappa = \sup_{\delta x} \left(\frac{||A(x+\delta x)-Ax||}{||Ax||} / \frac{||\delta x||}{||x||} \right)$ $= \sup_{\delta x} \frac{||A\delta x||}{||\delta x||} / \frac{||Ax||}{||x||}$

Recall the matrix norm: $|A| = \sup_{x} \frac{|Ax|}{|x|}$

$$= \left| |A| \right| \frac{||x||}{||Ax||}$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Condition number of a matrix

- Let $\kappa(A)$ be the condition number of matrix A
 - Def: largest condition number achieved by multiplying some vector x by A
- Hence $\kappa(A) = \sup_{x} ||A|| \frac{||x||}{||Ax||}$ $= \sup_{x} ||A|| \frac{||A^{-1}x||}{||x||}$ $= ||A|| ||A^{-1}||$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

٥

Condition number of a matrix

• For Euclidean norm:

$$\kappa(A) = \left| |A| \right|_2 \left| |A^{-1}| \right|_2$$

$$= \left| |A| \right|_2 \left| |A^{\dagger}| \right|_2 \quad \text{(when A is rectangular)}$$

$$= \frac{\sigma_1}{\sigma_m}$$

where $\sigma_1=$ largest singular value and $\sigma_m=$ smallest singular value

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Conditioning of LS problems

• Theorem: Suppose $A \in \Re^{m \times n}$ has full rank and that x minimizes $\big| |Ax - b| \big|_2$. Let r = b - Ax. Let \tilde{x} minimizes $\big| |(A + \delta A)\tilde{x} - (b + \delta b)| \big|_2$.

Assume
$$\epsilon = \max\left(\frac{||\delta A||}{||A||}, \frac{||\delta b||}{||b||}\right) < \frac{1}{\kappa(A)}$$

Then
$$\frac{||\tilde{x}-x||}{||x||} \le \epsilon \left[\frac{2\kappa(A)}{\cos \theta} + \tan \theta \, \kappa^2(A) \right] + O(\epsilon^2)$$

 $\equiv \epsilon \kappa_{IS} + O(\epsilon^2)$

where $\theta = \measuredangle(b, Ax)$, $\kappa_{LS} = \text{condition number of LS}$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

1

Conditioning of LS problems

- Recall $\frac{||\tilde{x}-x||}{||x||} \le \epsilon \left[\frac{2\kappa(A)}{\cos \theta} + \tan \theta \, \kappa^2(A) \right] + O(\epsilon^2)$ $\equiv \epsilon \kappa_{LS} + O(\epsilon^2)$
- Notes
 - If $\theta \approx 0$, then $\kappa_{LS} \approx 2\kappa(A)$
 - If $0 < \theta < \frac{\pi}{2}$, then κ_{LS} is much larger due to $\kappa^2(A)$
 - If $heta pprox rac{\pi}{2}$, then $\kappa_{LS} = \infty$ even if $\kappa(A)$ is small

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Stability of LS algorithms

- Recall
 - Normal equations: $A^T A x = A^T b$ $\Rightarrow \kappa(A^T A)$
 - QR factorization: $Ax = QRx = b \implies \kappa(A)$
 - $SVD: Ax = U\Sigma Vx = b \qquad \Longrightarrow \kappa(A)$
- Notes
 - 1. Normal equations: $\kappa(A^TA) = \kappa(A)^2$

$$\Rightarrow \frac{||\tilde{x}-x||}{||x||} = O(\epsilon \kappa(A)^2)$$

- 2. If $\theta \ll \frac{\pi}{2}$, then $\kappa(A) \leq \kappa_{LS} \leq \kappa(A)^2$
- 3. SVD is most stable and most expensive

CS475/CM375 (c) 2011 P. Poupart & J. Wan

13

Eigenvalue Problems

• <u>Def:</u> Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $x \in \mathbb{R}^n$ is an eigenvector and $\lambda \in \mathbb{C}$ is its corresponding eigenvalue if

$$Ax = \lambda x$$

• If x is an eigenvector, then αx (s.t. $\alpha \neq 0$) is also an eigenvector

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Eigenvalue Problems

- <u>Def:</u> The set $\Lambda(A) = \{\lambda : \lambda \text{ is an eigenvalue of } A\}$ is the spectrum of A.
- An eigen decomposition of A is: $A = X\Lambda X^{-1}$ where

CS475/CM375 (c) 2011 P. Poupart & J. Wan

15

Characteristic Polynomial

• <u>Def:</u> The characteristic polynomial of A, $p_A(x)$, is the degree n polynomial defined by

$$p_A(z) = \det(zI - A)$$

- Theorem: λ is an eigenvalue of A iff $p_A(\lambda) = 0$
- Proof: λ is an eigenvalue

$$\Leftrightarrow \lambda x - Ax = 0$$

for some $x \neq 0$

 $\Leftrightarrow \lambda I - A$ is singular

$$\Leftrightarrow \det(\lambda I - A) = 0$$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

Characteristic Polynomial

- 1. By the fundamental theorem of algebra, $p_A(z)$ has n (complex) roots. So A has n (complex) eigenvalues
- 2. Given a monic polynomial of degree n,

$$p(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$$

Consider A =

Then $\Lambda(A) = \{\text{roots of } p(z)\}$

CS475/CM375 (c) 2011 P. Poupart & J. Wan

17

Characteristic Polynomial

- 3. No analytic formula for roots of polynomial of degree ≥ 5
 - → Numerical approximation: eigen decomposition techniques

CS475/CM375 (c) 2011 P. Poupart & J. Wan