
CS 475/CM 375 - Fall 2011: Assignment 2

Instructor: Pascal Poupart Office: DC2514 Email: ppoupart@uwaterloo.ca
Classroom: DWE3519 TuTh 10-11:20am Office hours: We 10-11:20am
Class homepage: www.student.cs.uwaterloo.ca/ c̃s475/

Due: October 25, Tuesday (in class)

1. (10 marks) Let a(k−1)
ij be the entries of A after (k − 1) steps of elimination. Suppose A(k−1) is

column diagonally dominant; i.e.

|a(k−1)
ii | >

∑
j≥k,j 6=i

|a(k−1)
ji | i = k, . . . , n.

If Gaussian elimination without pivoting is used; i.e.

a
(k)
ji = a

(k−1)
ji −

a
(k−1)
jk a

(k−1)
ki

a
(k−1)
kk

j = k + 1, . . . , n, i = k + 1, . . . , n,

prove that

|a(k)
ii | >

∑
j≥k+1,j 6=i

|a(k)
ji | i = k + 1, . . . , n.

i.e. the submatrix A(k) is also column diagonally dominant. (Hint: pay very careful attention to

the precise range of the index j. Start with:
∑
j≥k+1,j 6=i |a

(k)
ji | =

∑
j≥k+1,j 6=i |a

(k−1)
ji − a

(k−1)
jk

a
(k−1)
ki

a
(k−1)
kk

|
and then apply triangle inequality.)

2. (15 marks) Let A be a strictly row diagonally dominant matrix; i.e.

|aii| >
∑
j 6=i
|aij|.

(a) Show that Jacobi method converges.
(Hint: you could use the result that ρ(J) ≤ ‖J‖∞ for any matrix J . Recall the definition of
infinity norm:

‖x‖∞ = max
i
|xi|,

‖J‖∞ = max
i

n∑
j=1

|Jij|.

Consider J = iteration matrix of the Jacobi method.)

(b) Let G be the iteration matrix of the Gauss-Seidel method; i.e.

G = I − (D − L)−1A

where D−L is the lower triangular part of A. Suppose x is any vector with ‖x‖∞ = 1, and
let y = Gx. Show that ‖y‖∞ < 1. (Hint: consider (D − L)y.)

1

(c) By definition of matrix norm,

‖G‖∞ ≡ max
‖x‖∞=1

‖Gx‖∞.

Use part (b), show that the Gauss-Seidel method converges.

3. (10 marks) Let {pi} be a set of A-orthogonal search direction vectors. We want to look for xk+1

in all of these directions. Thus, we write

xk+1 = x0 +
k∑
i=0

αip
i.

We determine {αi} by minimizing F (xk+1), where

F (x) ≡ 1

2
xTAx− bTx =

1

2
(x, x)A − (b, x),

over all search directions.

(a) Show that

F (xk+1) =
1

2
(x0, x0)A +

k∑
i=0

αi(x
0, pi)A +

1

2

k∑
i=0

k∑
j=0

αiαj(p
i, pj)A − (b, x0)−

k∑
i=0

αi(b, p
i).

(b) By using the A-orthogonal property, show that

F (xk+1) =
1

2
(x0, x0)A +

k∑
i=0

αi(x
0, pi)A +

1

2

k∑
i=0

α2
i (p

i, pi)A − (b, x0)−
k∑
i=0

αi(b, p
i).

(c) To minimize F (xk+1), we set ∂F
∂αj

(xk+1) = 0. Show that

αj =
(r0, pj)

(pj, pj)A
.

Thus αj depends only on pj , not on any other search directions. Once we have minimized in
direction pj , we are done with that direction. In other words, each of the pj minimizes F (xk+1)
in a subspace and we never have to look in that subspace again.

4. (15 marks) Consider the least squares problem Ax = b where

A =

3 −3 −5
0 4 8
4 −4 −15
0 3 6

 , b =

1
1
1
1

 .
(a) Solve the least squares problem using normal equations.

(b) Solve the least squares problem using (classical or modified) Gram-Schmidt. Determine
the Q̂ and R̂ factors.

2

(c) Solve the least squares problem using Householder transformation. Determine the Q and R
factors.

5. (40 marks) In PDE-based image processing, the simple diffusion approach produces images
with smeared edges. Employing the total variation regularization approach, images with sharp
edges can be restored by solving the following equation repeatedly (for k ≥ 0):

−α∇ · 1
||∇uk||2∇u

k+1(x, y) + uk+1(x, y) = u0(x, y) in Ω = (0, 1)× (0, 1), (1)

where ∇u = (∂u/∂x, ∂u/∂y) and ||∇u||2 =
√

(∂u/∂x)2 + (∂u/∂y)2. α > 0 is the parameter
controlling how much noise is to be removed. Figure 1 shows a reconstructed image after 20
iterations.

Figure 1: (Left) original, (middle) noisy, and (right) denoised images.

Applying a standard finite difference discretization, at each grid point (xi, yj), we have

ACuk+1
i,j + AWuk+1

i−1,j + AEuk+1
i+1,j + ASuk+1

i,j−1 + ANuk+1
i,j+1 = u0

i,j, (2)

where

AW = − α
h2

 1

2

√
(
uk

i,j−u
k
i−1,j

h
)2 + (

uk
i,j−u

k
i,j−1

h
)2 + β

+
1

2

√
(
uk

i,j−u
k
i−1,j

h
)2 + (

uk
i−1,j+1−u

k
i−1,j

h
)2 + β

AE = − α
h2

 1

2

√
(
uk

i+1,j−u
k
i,j

h
)2 + (

uk
i+1,j−u

k
i+1,j−1

h
)2 + β

+
1

2

√
(
uk

i+1,j−u
k
i,j

h
)2 + (

uk
i,j+1−u

k
i,j

h
)2 + β

AS = − α
h2

 1

2

√
(
uk

i,j−u
k
i−1,j

h
)2 + (

uk
i,j−u

k
i,j−1

h
)2 + β

+
1

2

√
(
uk

i+1,j−1−u
k
i,j−1

h
)2 + (

uk
i,j−u

k
i,j−1

h
)2 + β

AN = − α
h2

 1

2

√
(
uk

i+1,j−u
k
i,j

h
)2 + (

uk
i,j+1−u

k
i,j

h
)2 + β

+
1

2

√
(
uk

i,j+1−u
k
i−1,j+1

h
)2 + (

uk
i,j+1−u

k
i,j

h
)2 + β

AC = −(AW + AE + AS + AN) + 1.

Here h is mesh size, and β = 10−6 is a constant parameter. Conceptually, the finite difference
equation (2) corresponds to solving the linear system:

A(uk)uk+1 = u0, (3)

3

where the coefficient matrix A(uk) depends on the current values of uk and its nonzero struc-
ture is the same as the standard 5-point stencil 2D Laplacian matrix. (Assume zero boundary
condition.)

To summarize, the algorithm of the image denoising process is:

Given noisy image u0.
for k = 0, 1, . . . , K

Solve A(uk) uk+1 = u0 for uk+1

end

To solve equation (3), we apply different iterative methods. Let uk+1,j be the approximate
solution of uk+1 given by j iterations of an iterative method. Then the denoising algorithm can
be written as:

Given noisy image u0.
for k = 0, 1, . . . , K

uk+1,0 = uk

for j = 0, 1, . . ., until convergence
uk+1,j+1 = IterativeMethod(uk+1,j, A(uk), u0)

end
end

(For this assignment, use K = 10, and α = 4× 10−2, 3× 10−2, 1.5× 10−2, and 1.2× 10−2 for
the image size 16× 16, 32× 32, 64× 64, and 128× 128, respectively.)

(a) Create a MATLAB function:

[A,u0] = ImageMatrix(X)

The input is the noisy image X and the outputs are the matrix A (equation (2)) and the
vector representation u0 of X . Note that if the image size of X is m ×m, then the size of
A should be n × n where n = m2 and the size of u0 is n × 1. Noisy images of different
sizes can be generated by set image which can be downloaded from the class homepage.
Submit a listing of your code.

(b) Implement the iterative methods: Jacobi, Gauss-Seidel, SOR and Conjugate Gradient. Cre-
ate the following MATLAB functions:

x = Jacobi(A,b,x_initial,maxiter,tol)
x = GS(A,b,x_initial,maxiter,tol)
x = SOR(omega,A,b,x_initial,maxiter,tol)
x = CG(A,b,x_initial,maxiter,tol)

These MATLAB functions take as inputs the matrixA, the right-hand size b, the initial guess
x initial, the maximum number of iterations maxiter and the tolerance tol, and compute
the approximate solution x using the corresponding iterative method. (SOR has one more

4

input parameter, omega.) The iteration stops either when it reaches the maximum number
of iterations or the residual vector satisfies:

‖rj‖2 ≤ tol ‖b‖2.

Note that for Jacobi, Gauss-Seidel, and SOR, rj is not readily available. Since Jacobi and
Gauss-Seidel usually take thousands of iterations to converge, you may want to do the
convergence test every 100 iterations to save up time. For SOR, do the convergence test
every 10 iterations.
Assume that A is sparse and it has the 5-point stencil nonzero structure. Thus, A has
at most 5 nonzeros per row. You can and you should hard code this assumption in your
implementations for optimal speed. Also, for GS and SOR, keep only one vector. Submit
all your code.

(c) Create a MATLAB script, Denoise, that solves (3) using different iterative methods.
In particular, for each k, set up the matrix A and right-hand side b = u0 by calling
ImageMatrix. Then solve the linear system by calling one of the iterative methods in
part (b). (Note: if you have trouble setting up correctly the matrix in part (a), you may
replace A by Lap2D in assignment 1 for partial credits.)
In this assignment, use a relatively large tolerance, tol = 10−2. In practice, one usually
uses a much smaller tolerance, e.g. 10−6. However, for image denoising, the result is not
distinguishable by eyes; more importantly, the number of iterations can be dramatically re-
duced. Also, impose the maximum number of iterations, say, 100000. For SOR, determine
the optimal omega to 2 significant digits by trial-and-error and report the value.
Record the CPU times and number of iterations. Construct a table of execution times and
a table of total number of iterations for solving (2) using Jacobi, Gauss-Seidel, SOR and
Conjugate Gradient iterations. Use image size 16×16, 32×32, 64×64, 128×128 (optional,
depending on time). Comment on the results. Use x1to2.m and the MATLAB command
imshow or imagesc to display the denoised image. Submit the denoised images for the
grid sizes specified above.

5

