
CS472 / CM472 / CS672 - Fall 2006: Assignment 3

Instructor: Pascal Poupart Office: DC2514 Email: ppoupart@cs.uwaterloo.ca
Classroom: RCH305 MWF 4:00-5:20 Office Hours: Mon, 10-11
Web Site: www.student.cs.uwaterloo.ca/ ˜cs472/

Due: Tuesday, November 14, (at the beginning of class)

In PDE-based image processing, the simple diffusion approach produces images with smeared
edges. Employing the total variation regularization approach, images with sharp edges can be
restored by solving the following equation repeatedly (for k ≥ 0):

−α∇ · 1
||∇uk||2

∇uk+1(x, y) + uk+1(x, y) = u0(x, y) in Ω = (0, 1) × (0, 1), (1)

where ∇u = (∂u/∂x, ∂u/∂y) and ||∇u||2 =
√

(∂u/∂x)2 + (∂u/∂y)2. α > 0 is the parameter
controlling how much noise is to be removed. Figure 1 shows a reconstructed image after 20
iterations.

Figure 1: (Left) Original image, (Middle) Noisy image, (Right) Denoised image after 20 iterations.

Applying a standard finite difference discretization, at each grid point (xi, yj), we have

ACuk+1
i,j + AWuk+1

i−1,j + AEuk+1
i+1,j + ASuk+1

i,j−1 + ANuk+1
i,j+1 = u0

i,j, (2)

where

AW = −
α

h2

1

2

√
(

uk
i,j

−uk
i−1,j

h
)2 + (

uk
i,j

−uk
i,j−1

h
)2 + β

+
1

2

√
(

uk
i,j

−uk
i−1,j

h
)2 + (

uk
i−1,j+1

−uk
i−1,j

h
)2 + β

AE = −
α

h2

1

2

√
(

uk
i+1,j

−uk
i,j

h
)2 + (

uk
i+1,j

−uk
i+1,j−1

h
)2 + β

+
1

2

√
(

uk
i+1,j

−uk
i,j

h
)2 + (

uk
i,j+1

−uk
i,j

h
)2 + β

AS = −
α

h2

1

2

√
(

uk
i,j

−uk
i−1,j

h
)2 + (

uk
i,j

−uk
i,j−1

h
)2 + β

+
1

2

√
(

uk
i+1,j−1

−uk
i,j−1

h
)2 + (

uk
i,j

−uk
i,j−1

h
)2 + β

1

AN = −
α

h2

1

2

√
(

uk
i+1,j

−uk
i,j

h
)2 + (

uk
i,j+1

−uk
i,j

h
)2 + β

+
1

2

√
(

uk
i,j+1

−uk
i−1,j+1

h
)2 + (

uk
i,j+1

−uk
i,j

h
)2 + β

AC = −(AW + AE + AS + AN) + 1.

Here h is mesh size, and β = 10−6 is a constant parameter. Conceptually, the finite difference
equation (2) corresponds to solving the linear system:

A(uk)uk+1 = u0, (3)

where the coefficient matrix A(uk) depends on the current values of uk and its nonzero structure is
the same as the standard 5-point stencil 2D Laplacian matrix. (Assume zero boundary condition.)

To summarize, the algorithm of the image denoising process is:

Given noisy image u0.
for k = 0, 1, . . . ,K

Solve A(uk) uk+1 = u0 for uk+1

end

To solve equation (3), we apply different iterative methods. Let uk+1,m be the approximate solution
of uk+1 given by m iterations of an iterative method. Then the denoising algorithm can be written
as:

Given noisy image u0.
for k = 0, 1, . . . ,K

uk+1,0 = uk

for m = 0, 1, . . ., until convergence
uk+1,m+1 = IterativeMethod(uk+1,m, A(uk), u0)

end
end

(For this assignment, use K = 10, and α = 4 × 10−2, 3 × 10−2, 1.5 × 10−2, and 1.2 × 10−2 for
n = 16, 32, 64, and 128, respectively.)

You are to implement Gauss-Seidel (GS), successive overrelaxation (SOR), conjugate gradient
(CG), and preconditioned conjugate gradient (PCG) using ILU(0) preconditioner. The skeleton
main.c code is set up to produce the matrix of image denoising and the right-hand side of noisy
image as well as the outer iteration of the denoising algorithm. In itsolver.c, the code for Jacobi
iteration is provided for you.

To speed up the convergence of CG, you are to implement ILU(0), which consists of the symbolic
factorization (ilusym, given), the numeric incomplete factorization (ilufac), and the solve (ilusol)
phases. For the factor phase, you just need to modify your factor routine from assignment 2. You
should be able to reuse your solve routine from assignment 2. The prototypes of these functions
can be found in ilu.c.

To test convergence of the iterative methods, use the stopping criterion:

‖rk‖2 ≤ 10−2‖b‖2.

(Here, b = u0.) In practice, one usually uses a much smaller tolerance, e.g. 10−6. However, for image
denoising, the result is not distinguishable by eyes; more importantly, the number of iterations can
be dramatically reduced. For Jacobi, Gauss-Seidel, and SOR, rk is not readily available. Since

2

Jacobi and Gauss-Seidel usually take thousands of iterations to convergence, you may want to do
the convergence test every 100 iterations to save up time. For SOR, do the convergence test every
10 iterations. Also, impose the maximum number of iterations, say, 100000.

1. (15 marks) Submit a listing of your code. In order to black box test your code, place your
version of itsolver.c, itsolver.h, ilu.c, ilu.h in a single directory (nothing else in this directory)
with the name

your_userid_your_student_id

Then zip up this directory using

zip -r your_userid_your_student_id your_userid_your_student_id

Mail the file

your_userid_your_student_id.zip

to cs472@student.cs.uwaterloo.ca. This code will be linked with main.o, etc, by the TA.
The total marks for this question are apportioned as: Gauss-Seidel (2 marks), SOR (3 marks),
CG (5 marks), PCG (5 marks).

2. (15 marks) Construct a table of execution times and number of iterations for the following
solutions methods: Jacobi, GS, SOR, CG, and PCG. For SOR, by trial and error, figure the
optimal omega and report the value. For ILU(0), use natural, RCM, and minimum degree
orderings. Use image size 16 × 16, 32 × 32, 64 × 64, 128 × 128. Comment on the results. Be
sure to compile all your code with make opt (optimization option) to get the timing results.
Use the MATLAB program vizimage.m to display the denoised image. Submit the denoised
images for the grid sizes specified above.

(bonus 3 marks) Report also the timings for sparse Gaussian elimination from assignment 2.

3. (10 marks) Let A be a strictly row diagonally dominant matrix, i.e.

|aii| >
∑

j 6=i

|aij |.

(a) Show that Jacobi method converges.
Hint: you could use the result that ρ(M) ≤ ‖M‖∞ for any matrix M . Recall the
definition of infinity norm:

‖x‖∞ = maxi|xi|,

‖M‖∞ = maxi

N∑

j=1

|aij |.

(b) Let G be the iteration matrix of the Gauss-Seidel method; i.e.

G = I − (D − L)−1A

where D − L is the lower triangular part of A. Suppose x is any vector with ‖x‖∞ = 1
and let y = Gx. Show that ‖y‖∞ < 1.

(c) Use part (b), show that Gauss-Seidel method converges.

3

4. (10 marks) Let {pi} be a set of A-orthogonal search direction vectors. We want to look for
xk+1 in all of these directions. Thus, we write

xk+1 = x0 +
k∑

i=0

αip
i.

We determine {αi} by minimizing F (xk+1), where

F (xk+1) ≡
1

2
xT Ax − bT x =

1

2
(x, x)A − (b, x),

over all search directions.

(a) (5 marks) Show that

F (xk+1) =
1

2
(x0, x0)A +

k∑

i=0

αi(x
0, pi)A +

1

2

k∑

i=0

k∑

j=0

αiαj(p
i, pj)A − (b, x0) −

k∑

i=0

αi(b, p
i).

(b) (2 marks) By using the A-orthogonal property, show that

F (xk+1) =
1

2
(x0, x0)A +

k∑

i=0

αi(x
0, pi)A +

1

2

k∑

i=0

α2
i (p

i, pi)A − (b, x0) −
k∑

i=0

αi(b, p
i).

(c) (3 marks) To minimize F (xk+1), we set ∂F
∂αj

(xk+1) = 0. Show that

αj =
(r0, pj)

(pj, pj)A
.

Thus αj depends only on pj, not on any other search directions. Once we have minimized
in direction pj , we are done with that direction. In other words, each of the pj minimizes
F (xk+1) in a subspace and we never have to look in that subspace again.

5. (10 marks) We want to prove the orthogonality property of the residual vectors; i.e. rk ⊥
span{r0, r1, . . . , rk−1}. We prove it by induction.

(a) (5 marks) Suppose it holds that ri ⊥ span{r0, r1, . . . , ri−1}, i = 1, 2, . . . , k. Let {pi} be
a set of A-orthogonal search direction vectors, where

pk = rk +
k−1∑

i=0

βip
i.

Show that (rk, pk) = (rk, rk). (Hint: span{r0, . . . , rk−1} = span{p0, . . . , pk−1})

(b) (5 marks) Consider rk+1 = rk − αkApk. Show that

(rk+1, pk) = 0, and

(rk+1, pi) = 0, i = 0, 1, . . . , k − 1.

Conclude your result.

6. Graduate Student Question (10 marks) Redo question 2 using the 3D Laplacian matrix
of assignment 2.

4

Practice Questions (Do not hand in)

1. Consider a row diagonally dominant M matrix A. Show that A(k) (the submatrix after k
steps of an incomplete factorization) is also a diagonally dominant M matrix. Recall that an
M matrix has positive diagonals, and non-positive off diagonals.

2. Consider a sparse matrix A which is stored in the ia−ja format by rows and by columns (two
separate data structures). It is desired to form AT A. Assume that the maximum number
of nonzeros in any row or column of A is α. Describe an algorithm (precise pseudo code) to
form AT A with computational complexity O(α2N).

3. Consider the matrix with symmetric structure, whose graph is given by

22 --- 23 --- 24 --- 19 --- 25

| | | | |

| | | | |

18 --- 17 --- 14 --- 13 --- 20

| | | | |

| | | | |

16 --- 15 --- 21 --- 12 --- 11

| | | | |

| | | | |

6 --- 7 --- 8 --- 9 --- 10

| | | | |

| | | | |

1 --- 2 --- 3 --- 4 --- 5

Assume that Gaussian elimination is carried out on this matrix in the order indicated (diag-

onals used as pivots). Label all possible fill entries a
(k+1)
ij , k = 1, ..., 20 for row 21 with the

level of fill (make a copy of the graph and label the nodes). Use the reachable set definition
of level of fill. Show all your work. What is the meaning of an infinite level of fill?

4. On high performance architectures, it is desirable to to carry out the sparse forward and back
solve of an iterative solver as efficiently as possible. Maximum parallelization can be obtained
if it is noted that when solving for variable i, only some of the previous (i − 1) variables are
needed. Hence, only these have to be solved at a previous stage. Unknowns can then be
partitioned into sets:

• Set 1: All equations that do not depend on any other one (normally, only one equation,
i.e first equation in L).

• Set 2: All equations that depend only on Set 1.

• Set i: All equations that depend only on unknowns in Sets {1, 2, ..., i − 1}.

All unknowns in a given Set (or wavefront) can be solved concurrently, after all unknowns of
previous wavefronts have been determined. Given a matrix which has a graph given by the
test problem of assignment 2, determine the wavefront sets for L, for and ILU(0) incomplete
factorization. Suggest an algorithm for determining the wavefront sets for an arbitrary L.

5

5. A new iterative algorithm for solution of nonsymmetric systems is the CGS method (unpre-
conditioned algorithm given below):

r0 = b − Ax0

q0 = p−1 = 0

ρ−1 = 1 ;

For n = 0, 1, 2, 3, ...

ρn = (r0, rn) ; βn = ρn/ρn−1

un = rn + βnqn

pn = un + βn(qn + βnpn−1)

vn = Apn

σn = (r0, vn) ; αn = ρn/σn

qn+1 = un − αnvn

rn+1 = rn − αnA(un + qn+1)

xn+1 = xn + αn(un + qn+1)

if converged, then quit

End

Convert the above algorithm into a preconditioned CGS method, using the preconditioning
matrix C = (LU)−1. Use right preconditioning. Your algorithm should not require more
than two forward and back solves, and two matrix vector multiplies per iteration.

6. Consider the example matrix given in main.c (assignment 3) which is a cube of size nx×ny×nz
nodes. This is a band matrix. Draw the picture of this band matrix. Label all the distances
to the bands (from the diagonal) in terms of nx, ny, nz. Draw the picture of the level 1 ILU
for this matrix, and label all the bands (including the level 1 fill) as above.

7. Let A be a symmetric positive definite matrix. Consider solving Ax = b using conjugate
gradient with x0 = 0.

(a) Suppose b = v1 where v1 is an eigenvector of A, i.e.

Av1 = λ1v1.

Verify by direct computation that CG converges in one iteration.

(b) Suppose b =
∑m

k=1 vk where vk are eigenvectors of A corresponding to the eigenvalues
λk. Assume the eigenvalues are distinct. What is the exact solution of Ax = b?

(c) For the right-hand side in part (b), show that CG converges in m iterations.
(Hint: note that r0 = b. Consider the subspace that r0 belongs to in terms of {vk}.
What is the subspace span{r0, Ar0, . . . , Amr0}?)

6

