
CS472/CM472/CS672 - Fall 2006: Assignment 1

Instructor: Pascal Poupart Office: DC2514 Email: ppoupart@cs.uwaterloo.ca
Classroom: RCH305 Tu,Th 4:00-5:20 Office Hours: Mon; 10:00-11:00
Web Site: www.student.cs.uwaterloo.ca/ ˜cs472/

Due: Tuesday, October 3rd (at the beginning of class)

The main objective of this assignment is to familiarize yourself with the ia-ja data structures.
The matrix of interest is the 2D Laplacian arising from heat flow problems. You should find this
assignment fairly straightforward.

A model of heat flow is given by

qx = −
∂T

∂x
, qy = −

∂T

∂y
,

where (qx, qy) is the heat flow velocity, and T = T (x, y) is the temperature which satisfies the
Poisson equation

−
∂2T

∂x2
−

∂2T

∂y2
= f(x, y).

Here, f(x, y) is the heat source function.
We approximate the temperature function T (x, y) at discrete locations on a two dimensional

grid. Let the (i, j) grid point have location (xi, yj) where xi = ih, yj = jh, and h = 1/(n + 1) is
the grid size. Let Ti,j ≈ T (xi, yj). Then the finite difference approximation results in a set of linear
equations

1

h2
(4Ti,j − Ti−1,j − Ti+1,j − Ti,j−1 − Ti,j+1) = fi,j. (1)

Solve (1) on an n × n grid with i = 1, . . . , n; j = 1, . . . , n. (Note: we assume the boundary
temperature at the sides of the grid are zero.) We want to analyze the heat flow with multiple
central heating systems as shown in Figure 1; i.e.

fi,j =






1 if ‖(xi, yj) − (0.25, 0.25)‖2 ≤ 0.1
1 if ‖(xi, yj) − (0.25, 0.75)‖2 ≤ 0.1
1 if ‖(xi, yj) − (0.75, 0.25)‖2 ≤ 0.1
1 if ‖(xi, yj) − (0.75, 0.75)‖2 ≤ 0.1
0 otherwise.

Define a vector x such that
xk = Ti,j,

where k = (j − 1) ∗ n + i. Similarly, we define the vector b with bk = fi,j. Then we can write
equation (1) in the matrix form

Ax = b.

The coefficient matrix A is sparse of size N × N , where N = n2.

1



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: (a) Temperature function (b) Heat flow with four heat sources.

1. (10 marks) Set up the matrix A and the right-hand side (RHS) b. Use ia-ja data structure
for A and an 1D array (i.e. full vector) for b. The main program, main.c, can be downloaded
from the class homepage. It allocates appropriate memory for the arrays ia, ja and a as well
as the RHS array b. Then it calls the functions matrix and source to set up the values for A
and b, respectively. Your job is to complete the body of these functions in the file matrhs.c.
(Note: in C, indices start from 0.)

In order to black box test your code, place your version of matrhs.c, matrhs.h in a single
directory (nothing else in this directory) with the name

your_userid_your_student_id

Then zip up this directory using

zip -r your_userid_your_student_id your_userid_your_student_id

Mail the file

your_userid_your_student_id.zip

(as an attachment, use pine) to ppoupart@cs.uwaterloo.ca. Your code will be tested by
linking your code with the main.c calling routine (main.o), and running some tests. Submit
a hard copy listing of the code as well.

2. (4 marks) To test your code, for the case n = 50, uncomment the part of the code marked
”Dump data” in main.c. (Note: it automatically converts the index range from 0 to N − 1
in C to 1 to N in MATLAB.) It will then save all data to the file output.m. The MATLAB
program heatflow.m reads the data from output.m, solves the matrix equations and finally
displays the temperature and heat flow of your computed solution. Submit the plots.

2



3. (6 marks) In a modified heat equation, the finite difference approximation results in a set of
linear equations:

αTi−1,j−1+βTi,j−1+γTi+1,j−1+µTi−1,j +δTi,j +νTi+1,j +ρTi−1,j+1+ηTi,j+1+θTi+1,j+1 = fi,j.

Let A be the matrix of the linear system. Describe the sparsity structure of A and the nonzero
entries.

4. (6 marks) Consider solving the linear system: Ax = b where

A =




1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1


 , b =




4
1
−3
4


 .

Let L, U be the LU factorization of A, and [L\U] be the matrix whose upper triangular part
is U and lower triangular part is the same as the lower traingular part of L.

(a) Compute the [L\U] matrix using the standard Gaussian elimination. Show all your
steps.

(b) Compute the [L\U] matrix using the Doolittle algorithm. Show all your steps.

(c) Using the L, U factors computed from (a) (or (b)), compute the solution x.

5. (8 marks) Given a dense symmetric matrix aij = aji, we need only store the upper triangular
part of A, i.e.

Upper(A) = aij j ≥ i.

It is desired to factor this matrix so that

A = LU,

where L is unit lower triangular. Give precise pseudo code for converting an upper triangular
row i of A into row i of U (Doolittle form). For simplicity you may assume A and U are
stored in separate matrices. This algorithm should operate only on the upper triangular part
of A. (Hint: modify the pseudo code given in class for the Doolittle algorithm.) Then, give
precise pseudo code (e.g., pseudo code for forward solve and backward solve) for solving

LU x = b,

by using only elements of U . (Hint: for symmetric A, we can factor A = LDLT , where
L=lower triangular, unit diagonal and D=diagonal. Thus U = DLT , or equivalently, L =
UT D−1.)

6. (10 marks) Graduate student question. Suppose we have an ia-ja representation of the
nonzero structure of a matrix having symmetric structure. However, the list for each row
is unsorted. Assuming the number of nonzeros, nnz(A) = O(N), describe an algorithm for
sorting each of these lists in worst case complexity O(N). Note that there is no O(NlogN)
term in this complexity, even if there is a dense row.

3



Hint: Let Ci be the set of unsorted column indices for row i. Let C sorted
i be the sorted column

indices for row i. Given Ci, i = 1, . . . , N , then we can construct Csorted
i , i = 1, . . . , N in the

following way. Allocate Csorted
i of the correct size, i = 1, . . . , N . Then scan through the rows

in the order i = 1, . . . , N . At row i, if j ∈ Ci, add column index i to Csorted
j .

Implement the sorting algorithm. Submit a listing of your code, and the results of a small test
case from question 1. Name the sorting subroutine as symsort with the following prototype:

symsort(int *ia, int *ja, double *a, int N).

Include it in matrhs.c.

Practice Problems (Do not hand in)

1. Show that if A is diagonally dominant by rows, then so is A(k).

2. Describe an algorithm for computing the LU factorization of a matrix so that U is unit upper
triangular.

3. The Minimum Degree strategy for determining an ordering of nodes for Gaussian Elimination
is the following

• At each stage of the elimination, select the node which has the smallest degree (the
degree of a node is the number of its graph neighbours). Ties are broken arbitrarily.

Given a matrix with symmetric structure, whose graph is a tree, use the graph model of
Gaussian elimination to show that minimum degree ordering generates a perfect elimination
sequence (no fill-in is produced).

4


