
Asymmetric Clustering in Federated
Continual Learning

by

Zehao Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Zehao Zhang 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Asymmetric clustering represents a critical yet under-explored challenge in Clustered
Federated Learning (CFL). Existing methods often compromise data utilization or model
accuracy by either separating devices with different data quality into distinct clusters or
merging all devices into a single cluster. The need for asymmetric clustering arises in
practical scenarios where not all devices contribute equally due to varying data quality
or quantity. For example, in healthcare, devices at a research hospital might generate
high-quality medical imaging data compared to a small clinic. Asymmetric clustering allows
high-quality data sources to enhance the learning of models on devices with lower-quality
data without the need for reciprocity, which is crucial in such imbalanced environments.
We introduce a novel federated learning technique that enables selective contributions from
some devices to others’ model training without requiring equal give-and-take. Crucially,
our approach excels in the Federated Continual Learning (FCL) setting by addressing
temporal heterogeneity and concept drift through its ensemble features. Through detailed
empirical evaluations, we validate that our approach not only efficiently generates high-
quality asymmetric clustering but also significantly enhances performance in continual
learning settings. This adaptability makes it highly suitable for real-world applications
where data distributions are not static but evolve over time.

iii

Acknowledgments

I would like to thank my supervisor Pascal Poupart for his constant support, insightful
advice, and patient guidance throughout my entire Masters degree. His expertise and
mentorship have been pivotal to my academic and personal growth.

I would also like to thank my colleagues at Huawei Noah’s Ark Lab: Guojun Zhang, Xi
Chen, Kaiyang Guo, Mohsin Hasan, Ahmad Rashid and Haolin Yu. Their innovative ideas
and valuable feedback have significantly enriched my research experience and contributed
to the development of this work.

I would like to thank my committee members Hong Zhang, Olga Veksler for expert
advice and constructive feedback regarding my work.

I would like to thank my family – my parents, siblings, and the great-aunt and her
family – for their unconditional love and support during my studies abroad.

Lastly, I would like to thank my girlfriend for her companionship and encouragement
during this challenging yet rewarding journey.

iv

Dedication

This is dedicated to my beloved mom.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgments iv

Dedication v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Outline . 4

2 Background 5

2.1 Related Work . 5

2.1.1 Clustered Federated Learning . 5

2.1.2 Federated Continual Learning . 6

2.2 Notation . 7

vi

3 Federated Adaptive Asymmetric Clustered Learning 9

3.1 Problem Statement . 9

3.2 Algorithm Details . 10

3.2.1 Clustering Initialization . 10

3.2.2 Cluster Merge . 11

3.2.3 Cluster Training . 14

3.2.4 Proposed Federated Clustering Method 15

3.3 Experiments . 18

3.3.1 Benchmarks . 19

3.3.2 Experiment Settings - Symmetric 20

3.3.3 Experiment Settings - Asymmetric 21

3.3.4 Empirical Results . 22

4 Continual Federated Adaptive Asymmetric Clustered Learning 27

4.1 Problem Statement . 27

4.2 Algorithm Details . 28

4.2.1 Cold Start Phase (t = 0) . 28

4.2.2 Local Concept Search . 28

4.2.3 Global Concept Search . 29

4.2.4 Establish New concept . 30

4.2.5 Proposed Continual Extension . 31

4.3 Experiments . 32

4.3.1 Experiment Setting - Sequential Task Learning 33

4.3.2 Experiment Setting - Multi-Task Learning 34

4.3.3 Empirical Results . 35

5 Conclusion 37

5.1 Limitation . 38

5.2 Future Work . 38

vii

References 39

APPENDICES 42

A Algorithm Analysis 43

B Experiment Environment 45

B.1 Code . 45

B.2 Experimental Setup (Software, Hardware, Randomization) 45

B.3 Model Architecture . 45

B.4 Hyperparameters . 46

viii

List of Figures

1.1 Symmetric Clustering . 2

1.2 Asymmetric Clustering . 2

3.1 Clustering Initialization . 11

3.2 Cluster Support . 11

3.3 Cluster Merge . 14

3.4 Cluster Training . 14

3.5 H-FAACL: Partition Merge . 17

ix

List of Tables

3.1 Test accuracies ± stderr with [number of clusters] in S0. 22

3.2 Test accuracies ± stderr with [number of clusters] in A0. 23

3.3 Test accuracies ± stderr for S1 with [number of clusters]. 24

3.4 Test accuracies ± stderr for S2 with [number of clusters]. 24

3.5 Test accuracies ± stderr for A1 with [number of clusters]. 25

3.6 Test accuracies ± stderr for A2 with [number of clusters]. 25

3.7 Communication Overhead (combined size of all messages between the server
and the devices in one communication round) in MNIST Experiments . . . 26

4.1 Test accuracies for symmetric concepts S1, S2 in Sequential Task Learning. 33

4.2 Test accuracies for asymmetric concepts A1, A2 in Sequential Task Learning. 34

4.3 Test accuracies for symmetric concepts S1, S2 in Multi-Task Learning. . . . 35

4.4 Test accuracies for asymmetric concepts A1, A2 in Multi-Task Learning. . . 35

B.1 Hyperparameter Summary Table for Scenario S0, S1, S2, A1, A2 46

B.2 Hyperparameter Summary Table for Scenario A0 47

B.3 Noise Parameters Summary Table . 47

B.4 Hyperparameter Summary Table for Scenario S1, S2, A1, A2 48

x

Chapter 1

Introduction

Federated learning [12] is a machine learning technique designed to train algorithms across
decentralized devices while keeping data localized, thus addressing privacy, security, and
data access challenges. Unlike traditional centralized machine learning methods where all
data is uploaded to one server, federated learning allows for the model to be brought to
the data source where training occurs. This approach is particularly valuable in scenarios
where data privacy is important, such as in healthcare, finance, and mobile computing.
For example, smartphones that utilize predictive text input features can improve their
models using federated learning by learning from user interactions without ever needing to
upload individual typing data to a central server. However, federated learning introduces
complexities such as handling non-IID (independently and identically distributed) data
across various devices, dealing with devices that have varying computational and storage
capacities, and managing communication costs and efficiencies.

In practice, it is common for devices to encounter data from diverse distributions. Since
heterogeneous data may induce different optimal predictors at different devices, this has led
to the development of personalized federated learning techniques [6]. A popular approach
consists of training a global predictor that is adapted or fine-tuned for each device. However,
this assumes that the optimal predictors at each device are similar enough that fine-tuning
/ adapting a global predictor will be sufficient. In cases where some optimal predictors are
very different and fine-tuning is insufficient, then clustered federated learning [15] becomes
attractive. For instance, in mobile keyboard prediction, where users from different regions
have distinct linguistic preferences and slang, fine-tuning a single global model may not be
effective; clustered federated learning, on the other hand, allows for creating separate models
for different linguistic groups to ensure that predictions remain relevant and accurate. In
clustered FL, devices are partitioned in clusters such that devices share models only with

1

the other devices in their cluster. When clusters combine devices with similar data while
making sure that devices with very different data are in different clusters, then learning will
be more effective. Existing techniques for clustered FL [15] can learn clusters dynamically.
However, most existing techniques assume a fixed number of clusters that is known a priori
and all existing techniques assume that each device contributes to a single cluster. We
describe a technique that relaxes those two assumptions.

In traditional clustering, determining the correct number of clusters beforehand can
be challenging. This is particularly true in federated learning environments where data
is distributed across numerous devices with potentially diverse data distributions. Static
clustering methods that assume a fixed number of clusters can lead to inefficiencies and
inaccuracies, as they might not accommodate the dynamic nature of real-world data, which
can vary in terms of volume, variety across different devices.

Adaptive clustering addresses this limitation by employing algorithms that dynamically
adjust the number of clusters based on the evolving characteristics of the data. Instead of
pre-defining a cluster count, adaptive clustering methods continuously analyze the incoming
data and modify the cluster count in real-time. This flexibility allows the learning process
to maintain high levels of efficiency and adaptability.

Figure 1.1: Symmetric Clustering Figure 1.2: Asymmetric Clustering

In federated learning, asymmetric scenarios often arise where the benefits of model
sharing are not reciprocal between devices. For instance, consider a situation involving
two devices, device A and device B. Device A has a large dataset characterized by the
underlying conditional distribution pA(y | x), whereas Device B has a smaller dataset with
a similar conditional distribution pB(y | x) that matches pA(y | x) for 90% of the input x.

For device A, incorporating device B’s data could potentially introduce a bias that

2

might degrade the accuracy of its own model because of the 10% divergence in their data
distributions. Thus device A would not wish to train on data from device B. On the other
hand, for device B, clustering with device A could significantly reduce variance owing to the
greater volume of data it would have access to, thereby enhancing its overall performance.
Despite the risk of introducing some bias, device B’s primary concern is to mitigate variance
due to its limited data.

In addition to addressing static clustering challenges, our clustering approach can also
handle the continual learning setting. Continual learning in the context of federated
learning involves updating the model as new data arrives from various devices, which
may exhibit changing data characteristics due to evolving user behaviors. Our approach
effectively manages this by dynamically adjusting the clusters based on the incoming
data stream, ensuring that the model remains relevant and accurate over time. This
capability is crucial in real-world applications where data evolves due to changes in user
behavior, seasonal effects, or emerging trends. The ability to handle both spatial and
temporal heterogeneity makes our approach particularly effective in environments where
data distributions are not only uneven across devices but also change over time.

1.1 Contributions

The main contributions of this work are outlined as follows:

• Introduction of Asymmetric Clustering: We introduce a novel concept called
asymmetric clustering, which allows for more flexible and dynamic cluster formations.
This approach better accommodates the varying quality and distribution of data
among devices, enhancing the applicability and efficacy of federated learning models.

• Development of Dynamic Clustering: Our research advances the implementation
of adaptive clustering within the existing frameworks of clustered federated learning.
Our method allows clusters to be initially formed based on real-time data observations
and dynamically adjusted as data characteristics evolve.

• Handling Spatial and Temporal Data Heterogeneity: Our method, termed
C-FAACL (Clustered Federated Asymmetric Adaptive Clustering Learning), adeptly
manages both spatial and temporal heterogeneity in federated environments. This ca-
pability is crucial in scenarios where data distributions vary not only across devices but
also over time—due to factors like seasonal changes or shifts in user behavior—making
C-FAACL well-suited for real-world applications.

3

• Empirical Validation: We conduct extensive experiments to validate the perfor-
mance of both FAACL and C-FAACL, demonstrating their competitive advantage
over traditional federated learning baselines. Our results confirm the effectiveness
and scalability of our methods in a variety of federated settings, establishing their
practical viability.

1.2 Thesis Outline

This thesis is organized into five chapters, below is a summary of each chapter:

• Chapter 2 Background: This chapter provides a foundational overview of the
terms and notations that will be used throughout the thesis. It also reviews existing
literature on clustered federated learning and federated continual learning, establishing
the context for the subsequent chapters and highlighting the gaps that this research
aims to fill.

• Chapter 3 The FAACL Method: The Federated Asymmetric Adaptive Clustering
Learning (FAACL) method is introduced and explored in depth in this chapter. It
details the algorithmic framework and discusses various experiments conducted to
assess the method’s efficacy and robustness. This chapter serves as a comprehensive
guide to understanding how FAACL operates within standard federated learning
settings.

• Chapter 4 The C-FAACL Method: Chapter 4 expands upon the concepts
introduced in Chapter 3 by adapting the FAACL method to a continual learning
context, referred to as C-FAACL. This adaptation addresses the challenges of applying
federated learning over continuous data streams. The chapter details the algorithm
modifications necessary for this adaptation and presents experimental results that
validate the effectiveness of C-FAACL in dynamic environments.

• Chapter 5 Conclusion and Future Work: The final chapter concludes the thesis
by summarizing the key findings and contributions of the research. It discusses the
limitations of the current methods and proposes potential direction for future research.

4

Chapter 2

Background

This chapter establishes the foundational framework essential for understanding the later
chapters of the thesis. In the Related Work section, we provide a brief overview of the
existing research in Clustered Federated Learning (CFL) and Federated Continual Learning
(FCL). We discuss significant contributions, methodologies, and the notable limitations of
current approaches. The Notation section introduces and clarifies the notation that will be
consistently used throughout the thesis.

2.1 Related Work

2.1.1 Clustered Federated Learning

Clustered Federated Learning (CFL) represents a significant advancement in managing
distributed data across various devices. This subsection reviews key methodologies and
their respective contributions to the field.

• Iterative Federated Clustering Algorithm (IFCA) [7] starts with a predefined
number of cluster models at the server. Devices determine their cluster identity based
on which models minimize their local loss.

• Federated Stochastic Expectation Maximization (FeSEM) [19] begins with
fixed number of clusters and iteratively assigns devices to the nearest cluster based on
the L2 distance of the model parameters. Each cluster updates its model by averaging
the models of the assigned devices.

5

• FedGroup [5] clusters devices according to the cosine similarity of their gradients
and facilitates both inter-cluster and intra-cluster training alongside device migration.

• FedSoft [14] operates similarly to IFCA but introduces flexibility by allowing devices
to belong to multiple clusters. Each cluster’s importance is determined based on the
local loss for each data point.

• FedDrift [8] is designed for continual learning settings. It starts with an assumption
of homogeneous data distribution but can adapt to changes by initiating new clusters
when significant shifts in data distribution are detected through loss comparison.

Despite these advancements, two primary limitations persist in the current CFL:

• Fixed Number of Clusters: Except for FedDrift, most of the previous approaches
use a fixed number of clusters for device grouping. This fixed cluster count presents a
challenge, as it requires certain prior knowledge and needs to be accurate. If the initial
guess for the number of clusters is too low, devices with varying data distributions may
be incorrectly grouped together, leading to suboptimal predictors for those devices.
Conversely, an excessive number of clusters can scatter devices with similar data
distributions across different clusters, resulting in suboptimal predictors due to a
reduced amount of data for cluster model training.

• Symmetric Clustering Limitations: There is no natural extension from symmetric
clustering to asymmetric clustering. Devices either support each other or they do not.
Traditional CFL approaches typically restrict each device to a single cluster (e.g.,
IFCA, FeSEM), or, as seen in soft clustering methods like FedSoft, allow devices to
influence multiple clusters without adequately considering the overall impact on cluster
integrity. In environments where data quality varies considerably, such strategies may
compromise the robustness of clusters initially dominated by high-quality data, thus
failing to balance individual benefits with collective goals effectively.

2.1.2 Federated Continual Learning

Federated Continual Learning (FCL) [20] tackles the challenges of learning continuously over
distributed and heterogeneous datasets while preserving the privacy and autonomy of each
participating device. Various strategies have been explored, categorized into regularization
methods, parameter isolation, and clustering methods.

6

• Regularization Methods: Regularization approaches such as Elastic Weight Con-
solidation (EWC) [9] are designed to mitigate catastrophic forgetting by penalizing
significant changes to parameters critical for previously learned tasks. Although
effective in environments with gradual task transitions, these methods often face
challenges in federated settings where device data distributions are markedly diverse.

• Parameter Isolation: Parameter isolation techniques, such as Adaptive Parameter
Decomposition (APD) [22] manage task-specific model parameters to prevent the
overwriting of previously acquired knowledge by new tasks. Integrating attention
mechanisms with parameter isolation strategies can dynamically adjust the influ-
ence of these isolated parameters, enhancing model personalization across devices.
However, deriving attention scores from model parameters rather than direct data
features—often a necessity due to privacy concerns—can complicate the accurate
representation of each device’s unique data distribution.

• Clustering Methods: Clustering approaches like FedDrift [8] dynamically group
similar devices into clusters and reassess device assignments as new data emerges.
However, these methods typically restrict devices to contribute to only a single
cluster model, limiting their effectiveness in scenarios where device data profiles are
asymmetric or evolve uniquely, thereby necessitating more flexible or multiple cluster
memberships to accurately reflect changes in device data distributions.

2.2 Notation

In this section, we establish the notation that will be consistently used throughout this
thesis.

Device and Data: Consider a set of n devices denoted as D = {d1, ..., dn}. For each
device d in this set, its associated dataset is denoted by Zd. Each data point within this
dataset, represented as z = (x, y), is assumed to be sampled from an underlying distribution,
which we denote as Pd(z), where z ∈ Zd. Additionally, we partition Zd into three subsets:
the training set Ztrain

d , the validation set Zval
d , and the test set Ztest

d .

Cluster Structure and Clustering: We define Cj as the jth cluster, which consists
of three primary components:

• Device Set Cj.D: This set includes the devices that directly contribute to the cluster.

7

• Supportive Clusters Cj.sup: These are clusters that establish inter-cluster rela-
tionships. For instance, if cluster CA requires support from another cluster, CB, CB

is considered a supportive cluster to CA, indicated by CB ∈ CA.sup.

• Cluster Model Parameters Cj.θ: The model parameters associated with each
cluster.

While both Cj.D and supportive clusters in Cj.sup contribute to training the model
Cj.θ, only the devices in Cj.D utilize model Cj.θ for prediction. This differentiation allows
for enhanced data utilization and model accuracy through collaborative but non-intrusive
inter-cluster support.

A clustering is defined as a collection of clusters, denoted by C, where a potential
clustering of size k for a set of devices D might be represented as C = {C1, C2, . . . , Ck}.
Each individual device set Ci.D collectively covers D without overlap.

Continual Learning and Memory structure: In the continual learning setting, we
define T as the total number of time steps. At each time step t, every device di receives

a new dataset denoted by Z
(t)
d (also divided into Z

train(t)

d , Z
test(t)
d , Z

val(t)
d). The clustering

outcome at each time step t is represented by C(t), where C
(t)
j refers to the jth cluster at

that specific time.

To effectively manage temporal data, we introduce a memory structure, denoted as
M. Unlike a traditional replay buffer which is used to sample data for model updates,M
serves as a passive repository. It stores historical data crucial for maintaining data diversity
and providing a historical context, essential for detecting and handling concept drifts. For
each device di at time t, the memory di.M(t) stores a tuple {S,C}, where S is a sample
of local data, and C is the device’s cluster assignment at that time step. Similarly, for
each cluster Cj at time t, the memory Cj.M(t) contains records of the set of devices Dj

assigned to the cluster Cj. This structured approach to memory utilization ensures that
each device and cluster has access to its relevant historical data, supporting more informed
and context-aware decisions in the clustering and learning processes.

8

Chapter 3

Federated Adaptive Asymmetric
Clustered Learning

This chapter introduces the Federated Asymmetric Adaptive Learning (FAACL) method.
We begin with a problem statement in Section 3.1, a detailed algorithm in Section 3.2, and
the experiments in Section 3.3.

3.1 Problem Statement

Consider the loss function ℓ(θ, z) of the model parameterized by θ on data point z = (x, y).
Our primary objective is to construct a clustering C that minimizes the population loss
L(C) represented as follows.

L(C) =
∑
C∈C

∑
d∈C.D

Ez∼Pd(z)[ℓ(C.θ, z)] (3.1)

This equation encapsulates the total loss across all clusters within the clustering C, where
each cluster’s contribution to the loss is determined by its assigned model parameters and
the data from devices within that cluster.

Unlike previous works, our approach does not rely on prior knowledge about the number
of clusters. Consequently, we cannot start with a predetermined number of clusters and
simply minimize their losses to obtain optimal parameters C∗ = argminC L(C). To address
this challenge, we have developed a comprehensive methodology containing several key
components:

9

1. Cluster Initialization: We describe a technique for the initial formation of clusters.
The details of this process will be elaborated in Section 3.2.1.

2. Cluster Merge: We introduce criteria for the aggregation of clusters, enhancing the
adaptability and efficiency of our model. This will be explained in Section 3.2.2.

3. Cluster Training: This aspect involves strategies for effectively training within each
cluster, which will be discussed in Section 3.2.3.

4. Proposed Federated Clustering Framework: Our research culminates in a feder-
ated clustering framework designed to facilitate adaptive and asymmetric clustering.
This comprehensive framework will be detailed in Section 3.2.4.

5. Complexity Analysis: An in-depth analysis of the complexity of our proposed
framework is provided, along with the necessary proofs in Section A.

3.2 Algorithm Details

3.2.1 Clustering Initialization

The initialization phase of our FAACL algorithm sets up an initial clustering for the
cold-start system. The clustering initialization begins with the server distributing a set of
random parameters, θ, to all devices in the device set D. Each device di forms a singleton
cluster that includes only itself, i.e., Ci.D = {di}. Each device trains the model with initial
parameters θ locally with its training data, aiming to minimize the loss function l(θ, z) over
its data points. The constructed clusters are sent back to the server. The server collects all
individual clusters to form the initial clustering C, which consists of n singleton clusters.
The process is systematically described in the Algorithm 1 and is illustrated in Figure 3.1.

10

Algorithm 1 Clustering Initialization

Input: Device set of size n, D = {d1, . . . , dn}
Output: Initial clustering C

Server: Initialize C = {} and random parameters θ
Server: Distribute θ to all devices in D
for each device di ∈ D do
Device: Form a new cluster Ci with Ci.D = {di}, Ci.sup = {}
Device: Initialize parameters Ci.θ = θ and Ci.θ = argminθ

∑
z∈Ztrain

di

ℓ(θ, z)

Device: Send the cluster Ci to server
Server: C←{Ci}ni=1

Return Initial clustering C

Figure 3.1: Clustering Initialization Figure 3.2: Cluster Support

3.2.2 Cluster Merge

Following the initialization phase that results in n singleton clusters, the next stage of our
methodology involves an iterative process to merge similar clusters. This is achieved by
first updating each cluster’s supportive connections by exchanging cluster models among
devices from different clusters as shown in Algorithm 2. Then we aggregate pairs of clusters
that are supportive clusters of each other, as described in Algorithm 3.

Model Comparison and Support Determination: To decide whether cluster C2 is
a supportive cluster for cluster C1 depends on the performance of their respective model

11

parameters C2.θ and C1.θ across all devices in C1.D (illustrated in Figure 3.2). If the model
parameters of C2 are found to be no worse than those of C1 for all devices in C1, C2 is
added to the supportive clusters of C1.

To compare the performances of C1.θ and C2.θ for a given device d, losses are computed
for each data point in the validation set Zval

d . This allows for a direct comparison of the two
models on the same dataset. To objectively evaluate their performance, statistical tests, such
as the Wilcoxon signed-rank test [13], are applied. The Wilcoxon signed-rank test is a non-
parametric method used to compare paired-samples and assess whether their distributions
differ. It serves as an alternative to the paired Student’s t-test [23] and does not require
the assumption that the distribution is normally distributed. Specifically, let ℓ(θC1 , z

val
d)

and ℓ(θC2 , z
val
d) denote the losses of θC1 and θC2 respectively on a data point z ∈ Zval

d . The
Wilcoxon(L, ϵ) test with the null hypothesis formulated as H0 : ℓ(C1.θ, z) + ϵ < ℓ(C2.θ, z),
with ϵ representing the threshold, L denoting the set of losses by θC1 and θC2 on a dataset
and α denoting the preset significance level.

If the statistical test yields a p-value smaller than α, it indicates strong evidence against
the null hypothesis, suggesting that the model parameters C1.θ are not more effective than
C2.θ. Consequently, it can be concluded that device d might benefit from the model of
cluster C2, thus the support flag remains True until some p-value exceeds α. Following
the assessment by other devices in C1, if all devices agree that they can benefit from the
model of cluster C2, C2 is then added to the supportive clusters of C1.

Merging Clusters: Upon establishing that clusters are mutually supportive, they are
merged into a new cluster as part of the process detailed in Algorithm 3. In this newly
formed cluster, the device sets are combined, creating a union of the devices from the
previous clusters. Importantly, rather than averaging the model parameters, the model for
the new cluster is selected randomly from one of the pre-existing models. This decision is a
deliberate deviation from approaches like the Federated Averaging (FedAvg) algorithm,
where model parameters are frequently averaged to maintain synchronization across all
participating clients. In FedAvg, the global model is typically broadcasted to clients at
each communication round, which may occur after only one or a few gradient updates,
ensuring consistent model performance across devices. In contrast, our clusters may have
been trained independently for many iterations before the decision to merge is made. This
prolonged independent training can lead to significant divergences in the model parameters,
even when models are trained on data from similar distributions. Such divergences can arise
due to inherent symmetries in the training process, where different but equivalent parameter
sets are found as solutions by different clusters. Simply averaging these parameters upon
merging could potentially dilute the distinct advantages each model has developed, leading
to a loss in performance.

12

The detailed steps of this merging procedure are outlined in the pseudo-code provided
in Algorithm 3 (see Figure 3.3).

Algorithm 2 Cluster Support

Input: Clustering C, significance level α, threshold ϵ
Output: Updated Clustering C

for each cluster C1 ∈ C do
for each distinct cluster C2 ∈ C do
Server: Initialize support flag←True
for each device d ∈ C1.D do
Server: Send parameters C1.θ, C2.θ to device d
Device: L←{(ℓ(C1.θ, z), ℓ(C2.θ, z))|z∈Zval

d }
Device: Computes p←Wilcoxon(L, ϵ)
if p > α then
Server: support flag←False and break

if support flag is True then
Server: C1.sup.add(C2)

Return Updated clustering C

Algorithm 3 Cluster Merge

Input: Clustering C
Output: Refined Clustering C

Server: Let Cnew and Cold be empty
for each cluster C1 ∈ C not in Cold do
for each distinct cluster C2 ∈ C not in Cold do
if C1 ∈ C2.sup and C2 ∈ C1.sup then
Server: Form new cluster C ′

C ′.D=C1.D∪C2.D, C ′.sup=C1.sup∩C2.sup, C
′.θ=random(C1.θ, C2.θ)

Server: Cnew.add(C ′), Cold.add(C1, C2)
Server: C←C − Cold + Cnew
Return Refined clustering C

13

Figure 3.3: Cluster Merge
Figure 3.4: Cluster Training

One limitation of the cluster merging process is its sensitivity to the order of merging. For
example, if clusters from differing distributions are merged accidentally before they are
merged with the clusters from the same distribution, it could lead to degraded performance
in the resulting cluster. However, this risk can be effectively managed by fine-tuning
the significance level (α) of the statistical tests. A large α tends to be more permissive,
potentially merging clusters that are not sufficiently similar, and a smaller α imposes a
stricter criterion, potentially resulting in an excessive number of clusters. By fine-tuning α,
we can minimize the likelihood of inappropriate merges.

3.2.3 Cluster Training

During the training phase, each cluster Cj engages in a series of training iterations to
refine and optimize its model parameters. This optimization process is aimed at min-
imizing the collective loss calculated from all the data available from devices that are
part of the cluster Cj.D as well as data from devices belonging to supportive clusters
Cj.sup. The steps are illustrated in Figure 3.4 and details are provided in Algorithm 4.

14

Algorithm 4 Cluster Train

Input: Clustering C
Output: Updated Clustering C

for each cluster C ∈ C do
for each device d ∈ C.D do
Server: Send cluster model parameters C.θ to d
Device: Cd.θ ← C.θ − λ∇(

∑
z∈Ztrain

d
loss(C.θ, z)) (gradient descent)

Device: Send Cd.θ and |Ztrain
d | to server

for each supportive cluster C ′ ∈ C.sup do
for each device d′ ∈ C ′.D do
Server: Send cluster model parameters C.θ to d′

Device: Cd′ .θ ← C.θ − λ∇(
∑

z∈Ztrain
d′

loss(C.θ, z)) (gradient descent)

Device: Send Cd′ .θ and |Ztrain
d′ | to server

Server: C.θ ←
∑

d∈C.D(|Ztrain
d |×Cd.θ)+

∑
C′∈C.sup

∑
d′∈C′.D(|Ztrain

d′ |×Cd′ .θ)∑
d |Ztrain

d |+
∑

C′∈C.sup

∑
d′∈C′.D |Ztrain

d′ | (weighted average)

Return Updated clustering C

3.2.4 Proposed Federated Clustering Method

In this section, we introduce two advanced approaches for federated clustering under the
FAACL framework: Flat FAACL and Hierarchical FAACL. These strategies are designed
to handle the clustering of devices effectively while balancing computational efficiency and
clustering performance. The runtime complexity is analyzed in Appendix A.

Flat FAACL Method: Flat FAACL integrates the previous algorithms into a cohesive
approach. The term “flat” in this context indicates that the clustering approach treats all
devices on the same level. This flat clustering processes all devices simultaneously, directly
compares and merges clusters. It starts with cluster initialization, and repeatedly train each
cluster, identify support relationship and attempts to merge mutual supportive clusters.
When the clustering stabilizes, further training continues with the fixed cluster allocation,
shown in Algorithm 5. This approach involves extensive pairwise interactions between
clusters, leading to a computational complexity of O(n2) per iteration, where n denotes the
number of devices.

Hierarchical FAACL Method: To optimize the computational demands posed by
Flat FAACL, we propose the Hierarchical FAACL method. This approach introduces a

15

tiered clustering strategy, where devices are initially grouped into smaller clusters that
are progressively merged to form larger clusters. This hierarchical structure significantly
reduces the computational overhead by limiting the number of direct comparisons and
merges required at each stage of the process. Each level of the hierarchy forms an in-
termediate clustering that refines the grouping of devices, enhancing the efficiency and
potentially improving the adaptability of the model to changes in device data distributions.

Algorithm 5 Flat FAACL

Input: Device set D, significance level α, threshold ϵ, initial clustering Cinit, number of
epochs epochs
Output: Optimized Clustering C

Initialize C={}
if Cinit are given then
C∗=Cinit

else
C∗=Cluster Initialization(D)

while C ̸= C∗ do
Update C←C∗
Train clusters C∗←Cluster Train(C∗)
Update cluster support C∗←Cluster Support(C∗, α, ϵ)
Merge clusters C∗←Cluster Merge(C∗)

while epochs > 0 do
Train clusters C←Cluster Train(C)
epochs←epochs− 1

Return Final clustering C

16

Figure 3.5: H-FAACL: Partition Merge

Partitioned Strategy for Enhanced Efficiency: To further enhance the efficiency
of clustering process, we employ a strategic partitioning approach, where each partition P
consists of a subset of devices and their associated clusterings.

• Set of devices (P.D): This subset may include devices like {d1, d2, d3}, indicating
the devices included in the partition.

• Clustering formed by its device set (P.C): Each partition also has its own
clustering, such as {C1, C2}, where C1.D = {d1} and C2.D = {d2, d3}.

The partition merging process is systematically detailed in Algorithm 6, starting with n
initial partitions, each containing a single device. During each iteration, two partitions, Pi

and Pj are selected and merged to form a new partition P ′. This new partition combines
the device sets and clustering from Pi and Pj. The combined clustering P ′.C is then used
as initial parameters Cinit for the subsequent application of Flat FAACL. This iterative
merging continues until only one comprehensive partition remains, effectively simplifying
the clustering process while aiming to retain the efficacy of the ultimate clustering outcome.
The process of merging partitions and forming new clusters can be visualized in Figure 3.5.

17

Algorithm 6 Hierarchical FAACL

Input: Device set D, significance level α, threshold ϵ, number of epochs epochs
Output: Clustering C

Initialize partition set P={}
for each device di ∈ D do
Initialize partition P with P.D={di} and P.C=None
P .add(P)

while |P| > 1 do
for each partition P ∈ P do
P.C←Flat FAACL(P.D, α, ϵ, P.C, 0)

Initialize a new set of partitions P∗={}
for Pi, Pj sampled non-repeatedly from P do
Create new partition P ′ with P ′.D=Pi.D ∪ Pj.D and P ′.C=P1.C ∪ P2.C
P∗.add(P ′)
P←P∗

Let P be the only remaining partition in P , C←P.C
while epochs > 0 do
Train clusters C←Cluster Train(C)
epochs←epochs− 1

Return Final clustering C

3.3 Experiments

This section presents the empirical results obtained from testing our proposed FAACL
methods under two different experimental scenarios—symmetric and asymmetric. These
scenarios are designed to assess the adaptability and effectiveness of our clustering approach
under varied data distribution conditions among devices.

• Symmetric Scenario: Devices either share identical data distributions or possess
completely contrasting distributions. The formation of clusters is such that devices
within the same cluster either mutually benefit or detrimentally affect each other’s
model training outcomes. Optimal performance is achieved when devices with simi-
lar distributions are clustered together, and those with divergent distributions are
separated.

18

• Asymmetric Scenario: This scenario addresses the complexity arising from the
diversity in device data distributions. It explores situations where devices are not
reciprocal.

This section is structured as follows: We start by describing the baselines and datasets in
Section 3.3.1, explore symmetric and asymmetric settings in Section 3.3.2, 3.3.3. Finally,
we synthesize our findings and discuss their implications in Section 3.3.4.

3.3.1 Benchmarks

In our empirical evaluation, we compare our algorithms against well-established methods in
Federated Learning:

• Centralized Learning: A baseline where all data is aggregated and processed in a
central location.

• FedAvg [12]: A cornerstone algorithm in federated learning that averages locally
updated models on the server.

• FedGroup [5]: Clusters devices based on the similarity of their updates and then
performs federated learning within each cluster.

• IFCA [7]: Introduces cluster-based federated learning where each cluster receives a
model tailored to its specific characteristics.

• FeSEM [19]: Utilizes a federated version of the stochastic expectation maximization
algorithm to better handle non-IID data across clients.

• FedDrift [8]: Adapts to changes in data distribution over time, addressing the
challenge of data drift in federated settings.

• FedSoft [14]: Operates similarly to IFCA but allows devices to participate in multiple
clusters by determining a cluster importance score based on local data losses. This
method is particularly relevant for comparison due to its flexible clustering mechanism.

We use the following datasets for our experiments:

• MNIST [4] A benchmark dataset comprising 28 × 28 pixel gray-scale images of
handwritten digits, categorized into 10 classes.

19

• Extended MNIST (EMNIST) [3] An extension of MNIST to handwritten charac-
ters, offering a 62-class image classification challenge. For our experiments, we focus
on the first ten characters from ’a’ to ’j’.

• Fashion MNIST (FASHION) [18] Similar in structure to MNIST, this dataset
features 28× 28 pixel gray-scale images of fashion items, divided into 10 categories.

• Federated Extended MNIST (FEMNIST) [1] A federated learning-specific
version of EMNIST, where each device’s data originates from a unique writer, featuring
a total of 3550 users. We utilize a subset comprising 5% of the data from 197 users.

• CIFAR10 [10]: A popular benchmark dataset consisting of 32 × 32 pixel color
images, divided into 10 classes, each representing different objects such as animals
and vehicles.

• Sentiment140 (SENT140) [1]: A federated version of Text Dataset of Tweets. It
contains 1,600,000 tweets extracted using Twitter.

3.3.2 Experiment Settings - Symmetric

In the symmetric setting, our objective is to evaluate the adaptability and effectiveness
of our proposed federated learning technique under conditions of either homogeneous or
extremely heterogeneous data distributions among devices. We conduct these evaluations
using both natural and synthetic data partitions to simulate various distribution scenarios.

• Natural Data Partition (S0): This setup simulates a scenario where each device’s
data is independently and identically distributed. This setup tests the algorithm’s
ability to recognize and maintain uniformity across devices in a federated environment.

• Synthetic Label Partition (S1): In this setup, the dataset is allocated among
devices based on distinct label ranges. For example, one set of devices might exclusively
receive data corresponding to labels 0-4, while another set of devices receives data
with labels 5-9. In this scenario, since devices with different label distributions are
less likely to benefit each other, forming separate clusters for each label distribution
is considered optimal.

• Synthetic Predictor Partition (S2): In this partition, datasets of devices from
different distributions have different underlying predictors. For instance, in the MNIST
dataset, one group of devices (set 1) may map images directly to their corresponding

20

labels, while another group (set 2) maps images to shifted labels (e.g., mapping the
image of digit 0 to label 1). This setup challenges the algorithm’s ability to handle
scenarios with significant variations in data mappings across devices. In such cases,
combining data from different distributions can be harmful, indicating the need for
distinct clusters to maintain the integrity of each device’s predictive model.

3.3.3 Experiment Settings - Asymmetric

In the asymmetric setting, we explore a more complex scenario where devices’ data distribu-
tions are not entirely contradictory, and some devices may benefit from collaborating with
others from different distributions. This setting is designed to showcase the adaptability
and performance advantages of our proposed federated learning technique in creating
asymmetric clusters. We design experiments with both natural and synthetic partitions
with respect to data quality and quantity.

• Natural Data Partition (A0): Utilizing the FEMNIST subset of the LEAF dataset,
we simulate a realistic asymmetric scenario. For instance, in the FEMNIST dataset,
each device corresponds to a unique writer, allowing us to simulate a realistic asym-
metric scenario. Given that different writers produce images of varying quality for
classification, asymmetric clustering becomes beneficial. In such a setup, devices
associated with high-quality writers can lend support to those linked to lower-quality
writers, demonstrating the utility of asymmetric clusters in enhancing overall perfor-
mance.

• Synthetic Image Partition (A1): In this setup, one group of devices receives data
with pristine quality (no noise), while another group handles data contaminated with
Gaussian [16] and salt & pepper noise [2]. This partition serves to illustrate the need
for asymmetric clustering, where devices with noisy data can benefit from the cleaner
inputs of other devices. It tests the algorithm’s ability to optimize learning outcomes
in the presence of varying data quality.

• Synthetic Data Amount Partition (A2): We construct a scenario where one set
of devices has access to abundant data, while another set is limited in data quantity
and exhibits slightly different predictors. Asymmetric clustering plays a crucial role
in such environments. Devices with enough data, although reluctant to merge due to
predictor discrepancies, can still offer valuable insights to devices with sparse data.
Conversely, devices with limited data can leverage the more extensive datasets of
others to reduce variance, even at the risk of introducing some bias.

21

3.3.4 Empirical Results

The outcomes of our experiments are presented across Tables 3.1 to 3.6. In both symmetric
and asymmetric settings, we conducted experiments under both natural and synthetic
data distribution scenarios. For the baseline setups, we begin with an initial allocation
of five clusters, which is chosen based on the anticipated diversity within each dataset’s
data distributions. We set this figure as an upper boundary for the potential number
of clusters, ensuring that the model has the capacity to accurately represent all possible
clusters. This setup mirrors conditions in real-world federated learning scenarios, where the
exact number of natural data clusters is unknown. By initializing more clusters than may
be necessary, the baseline algorithms retain the flexibility to achieve accurate clustering
by potentially leaving some clusters empty. The table below presents the communication
costs observed during the MNIST experiment, which incorporated 20 devices per iteration.
This table compares the communication overhead associated with our approach relative to
conventional federated learning methods. Although our method initially results in increased
communication demands in the first log n iterations due to forming clusters, the overhead
in subsequent iterations reduces to levels comparable to other baselines.

Table 3.1: Test accuracies ± stderr with [number of clusters] in S0.

Dataset MNIST EMNIST FASHION CIFAR10

Centralize 97.64±0.02 [1] 98.08±0.05 [1] 89.21±0.07 [1] 76.42±0.06 [1]

FedAvg 96.24±0.10 [1] 97.71±0.08 [1] 88.63±0.21 [1] 73.28±0.13 [1]
IFCA 95.05±0.23 [3] 94.54±0.83 [1] 85.67±0.38 [4] 71.46±0.37 [5]
FeSEM 94.29±0.44 [3] 94.20±1.13 [1] 86.33±0.18 [1] 68.43±0.16 [3]
FedGroup 95.78±0.23 [5] 96.09±0.20 [5] 86.19±0.08 [5] 72.27±0.14 [5]
FedDrift 95.66±0.82 [2] 97.07±0.26 [3] 86.98±0.67 [3] 71.47±0.50 [2]
FedSoft 96.03±0.21 [5] 93.21±0.19 [5] 83.58±0.22 [5] 72.74±0.18 [5]

FAACL(ours) 96.12±0.99 [1] 97.09±0.28 [1] 88.24±0.44 [1] 72.53±0.23 [1]

• Symmetric Natural Distribution (S0): In scenarios with natural data distribu-
tions, our method, FAACL, demonstrates performance that is comparable to FedAvg.
FAACL is not expected to outperform FedAvg in this setting, as these conditions are
precisely those for which FedAvg is optimized. It is important to note that other clus-
tered federated learning methods, including IFCA, FeSEM, FedSoft, and FedGroup,

22

Table 3.2: Test accuracies ± stderr with [number of clusters] in A0.

Dataset FEMNIST Sent140

Centralize 74.26±0.14 [1] 79.26±0.17 [1]

FedAvg 61.98±0.39 [1] 70.49±0.08 [1]
IFCA 51.21±0.38 [5] 72.86±0.24 [5]
FeSEM 47.52±3.92 [1] 63.69±1.83 [2]
FedGroup 65.47±1.02 [5] 72.38±0.43 [5]
FedDrift 62.28±0.39 [8] 73.86±0.68 [14]
FedSoft 67.87±0.91 [5] 72.26±1.12 [5]

FAACL(ours) 69.33±0.05 [13] 75.17±0.71 [11]

initiate with a fixed number of clusters. This can lead to under-trained models due
to data dilution across too many clusters, especially when the fixed number does
not align with the optimal cluster count for the given data distribution. Although
FedDrift is capable of dynamically determining the number of clusters during training,
it still tends to output more clusters than required.

• Symmetric Synthetic Distribution (S1,S2): In the synthetic distribution (i.e.,
synthetic labels and synthetic predictors), our method still outperforms other baselines
in most datasets due to its adaptive number of clusters. FedAvg struggles in the
synthetic scenarios because it always groups all devices into one cluster. Specifically,
in the synthetic predictor setting where devices have conflicting predictors, FedAvg
struggles significantly because it groups all devices into one cluster, leading to about
50% accuracy, which highlights the limitation of keeping all devices in one cluster.
Our findings indicate that while FAACL specializes in generating effective asymmetric
clusters, it does so without sacrificing performance when compared to methods that
typically learn symmetric clusters, thereby showcasing its robust adaptability and
efficiency in diverse settings.

• Asymmetric Natural Distribution (A0): In the natural distribution, the FEM-
NIST and Sent140 dataset from the LEAF benchmark are used to construct each
device to represent a writer / user. In this natural distribution, the true number of
clusters is unknown, we train the centralized method with all devices in one cluster. In
this experiment with real data, our methods demonstrated high accuracies compared

23

Table 3.3: Test accuracies ± stderr for S1 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10

Centralize 94.85±0.16[2] 97.11±0.09[2] 90.82±0.12[2] 74.68±0.11[2]

FedAvg 81.86±0.79[1] 90.21±0.49[1] 82.89±0.28[1] 51.85±0.37[1]
IFCA 91.16±0.38[5] 94.28±0.46[4] 86.88±0.24[4] 69.36±0.31[5]
FeSEM 50.24±3.80[3] 42.44±3.88[1] 50.57±1.55[1] 54.20±0.71[1]
FedGroup 93.73±0.13[5] 96.18±0.14[5] 88.50±0.44[5] 71.62±0.29[5]
FedDrift 91.76±0.11[8] 96.35±0.20[3] 85.52±0.24[7] 70.53±0.79[3]
FedSoft 90.49±0.25 [5] 94.39±0.71 [5] 84.29±0.36 [5] 72.49±0.33[5]

FAACL(ours) 93.44±0.05[2] 96.86±0.11[2] 90.22±0.18[2] 71.40±0.36[2]

Table 3.4: Test accuracies ± stderr for S2 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10

Centralize 97.06±0.04[2] 96.93±0.13[2] 88.95±0.68[2] 73.57±0.11[2]

FedAvg 51.36±0.99[1] 47.30±0.87[1] 44.42±1.14[1] 67.96±0.52[1]
IFCA 94.36±0.52[4] 95.17±0.05[2] 85.42±0.48[5] 71.11±0.23[4]
FeSEM 49.35±4.17[3] 43.94±3.05[1] 43.65±1.65[1] 64.76±1.32[3]
FedGroup 95.55±0.22[5] 95.79±0.22[5] 85.98±0.09[5] 70.81±0.41[5]
FedDrift 93.37±0.35[6] 96.12±0.17[3] 85.77±0.28[4] 71.30±0.55[3]
FedSoft 93.92±0.41 [5] 94.78±0.63 [5] 85.11±0.26 [5] 71.58±0.57[5]

FAACL(ours) 95.73±0.02[2] 96.48±0.02[2] 87.24±0.08[2] 71.46±0.37[2]

to other clustered baselines, including FedDrift which can form adaptive clusters by
at least 5%. This improvement in the real-world dataset underscores the advantage
of asymmetric clustering.

• Asymmetric Synthetic Distribution (A1,A2): In the synthetic experiments, we
note that performance between FedAvg and other clustered methods varies across
settings (i.e., FedAvg may outperform other clustered based methods in some dataset,
while in others, clustered based methods achieve higher accuracy.). This variability is
influenced by the trade-off between the increased accuracy gained by one device and

24

Table 3.5: Test accuracies ± stderr for A1 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10

Centralize 78.39±0.05[2] 62.39±0.32[2] 73.43±0.13[2] 58.51±0.04[2]

Fedavg 70.33±0.29[1] 51.00±0.20[1] 72.99±0.31[1] 52.91±0.41[1]
IFCA 69.90±0.41[5] 50.50±0.84[5] 69.09±0.61[4] 53.29±0.51[5]
FeSEM 65.79±0.82[4] 46.31±2.24[1] 64.56±1.32[1] 48.72±0.92[1]
FedGroup 74.65±0.16[5] 51.88±0.24[5] 70.93±0.52[5] 54.26±0.58[5]
FedDrift 70.34±0.43[7] 51.63±0.11[4] 72.96±0.17[3] 54.58±0.46[1]
FedSoft 71.28±0.31 [5] 52.38±0.56[5] 71.01±0.47 [5] 53.38±0.75[5]

FAACL(ours) 75.12±0.23[4] 53.08±0.33[9] 73.19±0.06[3] 55.72±0.57[6]

Table 3.6: Test accuracies ± stderr for A2 with [number of clusters].

Dataset MNIST EMNIST FASHION CIFAR10

Centralize 97.32±0.03[2] 97.67±0.29[2] 86.90±0.24[2] 64.16±0.09[2]

Fedavg 89.77±0.31[1] 89.30±0.17[1] 83.00±0.01[1] 58.48±0.23[1]
IFCA 95.35±0.28[3] 95.98±0.18[2] 85.70±0.32[4] 59.17±0.62[5]
FeSEM 74.65±0.20[1] 88.02±1.27[1] 81.27±0.30[1] 52.84±1.28[5]
FedGroup 95.44±0.26[5] 95.42±0.18[5] 86.31±0.28[5] 60.27±0.61[5]
FedDrift 95.34±0.16[3] 91.70±0.45[4] 84.15±0.35[2] 60.28±1.14[8]
FedSoft 95.73±0.09 [5] 95.73±0.09 [5] 84.29±0.58 [5] 60.25±0.79[5]

FAACL(ours) 96.01±0.52[5] 96.95±0.18[4] 86.52±0.01[2] 62.39±0.61[8]

the potential decrease in accuracy for the other devices in different distributions. In
contrast, our approach to constructing asymmetric clustering consistently maintains
a cluster for each device for prediction purposes. Then each device can contribute to
the training of other clusters without worrying about hurting its performance.

The Table 3.7 below presents the communication costs observed during the MNIST
experiment, which incorporated 20 devices per iteration. This table compares the commu-
nication overhead associated with our approach relative to conventional federated learning
methods. Although our method initially results in increased communication demands in the

25

first log n iterations due to forming clusters, the overhead in subsequent iterations reduces
to levels comparable to other baselines.

Table 3.7: Communication Overhead (combined size of all messages between the server and
the devices in one communication round) in MNIST Experiments

S0 S1 S2 A1 A2

FedAvg 16.3 MB 16.3 MB 16.3 MB 16.3 MB 16.3 MB
IFCA 48.9 MB 48.9 MB 48.9 MB 48.9 MB 48.9 MB
FeSEM 48.9 MB 48.9 MB 48.9 MB 48.9 MB 48.9 MB
FedGroup 16.3 MB 16.3 MB 16.3 MB 16.3 MB 16.3 MB
FedDrift 24.5 MB 73.4 MB 57.1 MB 65.2 MB 32.6 MB
FedSoft 81.5 MB 81.5 MB 81.5 MB 81.5 MB 81.5 MB
FAACL(first log 20 ≈ 5 rounds) 70.1 MB 70.1 MB 70.1 MB 101.1 MB 101.1 MB
FAACL(after log 20 ≈ 5 rounds) 16.3 MB 16.3 MB 16.3 MB 20.4 MB 20.4 MB

A challenge in the asymmetric setting is determining the threshold between different
distributions. Given the divergence in data distributions and the varying impact of clustering
on different devices, finding the ideal number of clusters can be non-trivial. However, the
experiments show that our method’s capability to perform asymmetric clustering, while not
necessarily finding the number of correct clusters, consistently delivers the best accuracies
in various settings.

26

Chapter 4

Continual Federated Adaptive
Asymmetric Clustered Learning

In the continual learning extension of our federated clustering framework, we enhance the
framework to address both spatial and temporal heterogeneity across different time-steps.

4.1 Problem Statement

Building on the loss function defined in Equation 3.1, our objective in the continual
learning setting is to optimize the cumulative performance of the model across all time-steps.
Specifically, we aim to minimize the total loss across the series of time-steps, expressed
mathematically as:

T∑
i=1

L(C(t))

Here, L(C(t)) is the loss associated with the clustering C(t) at each time-step t. The clustering
C(t) is dynamically updated at each time step to incorporate the latest data.

The ultimate goal of the continual learning extension is not just to adapt to new data
but to optimize the overall system’s performance over time. This involves balancing the
need for adaptation against the need to maintain stability and prevent drastic shifts in the
model that could lead to increased errors or loss of valuable insights.

27

4.2 Algorithm Details

4.2.1 Cold Start Phase (t = 0)

In the continual learning extension, the initial clustering cold start phase utilizes the original
FAACL framework. This phase begins with each device as a separate cluster and gradually
refines these clusters to establish a base clustering for subsequent time steps, as detailed in
Algorithm 7.

Algorithm 7 Cold Start

Input: Device set D, significance level α, threshold ϵ, number of epochs epochs
Output: Clustering C

C = FAACL(D, α, ϵ, epochs)
for each device d in D do
Update device memory structure for the initial time step d.M(0) with:

- Cluster membership
- Local samples

for each cluster C in C do
Update cluster memory structure for initial time step C.M(0) with all assigned devices

Return C

4.2.2 Local Concept Search

The Local Concept Search is designed to handle concept drift by utilizing historical clustering
information stored in a replay buffer. This process helps each device autonomously determine
if the new observed data matches a previously encountered concept. The algorithm 8
demonstrate the steps with explanation as below:

1. Data Reception and Model Training: Each device d receives new data Z
(t)
d . A

new local model, d.θ(t) is then trained to fit the new dataset.

2. Concept Recurrence Detection: The device evaluates potential concept drift by
comparing the new model d.θ(t) against previous models {d.θ(t′) : t′ < t} stored in the

replay buffer. Both d.θ(t) and d.θ(t
′) are tested on the current validation set Z

val(t)
d

and previous data samples to generate validation losses.

28

3. Cluster Assignment: Statistical tests (e.g. Wilcoxon signed-rank test) are applied
to the validation losses to evaluate the performance between both models. If the test
results indicate similar model performance on both datasets, this suggests that the
concept reoccurs. Consequently, the device is assigned to the same cluster it was
assigned to at time t′.

By employing the local concept search approach, each device autonomously determines
whether its current concept has been previously encountered. If so, the device can be
directly assigned to the appropriate cluster managed similar concepts.

Algorithm 8 Local Concept Search

Input: Device d, Clustering Ct−1, significance level α
Output: Boolean value indicating whether concept has been found.

Train new model d.θ on the new data Ztrain
d .

for data sample, cluster {S ′, C ′} in {d.M(t′) | t′ < t} do
l1 = loss(C ′.θ, Zval

d), l2 = loss(d.θ, Zval
d) l3 = loss(C ′.θ, S ′), l4 = loss(d.θ, S ′)

p1 = Wilcoxon(l1, l2), p2 = Wilcoxon(l3, l4)
if p1 < α and p2 < α then
Assign d to C ′

Return True.
Return False.

4.2.3 Global Concept Search

In case where the Local Concept Search does not yield a match between new data and
previously identified concepts in a device’s replay buffer, the Global Concept Search extends
the search scope to include clusters from the previous clustering Ct−1. The steps are shown
in Algorithm 9 with details below:

1. Cluster Model Comparison: Each device d compares its new model d.θ(t) against

all cluster models in Ct−1 on the local data Z
val(t)
d , and on the data from previous

devices within the cluster from the last time step.

2. Concept Recurrence Detection: A statistical test (Wilcoxon signed-rank test) is
conducted to compare the validation losses. If the test results show that both models
perform similarly, the local device is then assigned to this cluster.

29

The Global Concept Search aims to efficiently integrate new device data into the existing
clustered framework by reusing and adapting existing clusters whenever possible. This
approach minimizes the need to create new clusters unnecessarily, promoting stability and
reducing computational overhead within the federated learning system.

Algorithm 9 Global Concept Search

Input: Device d, Device set D, significance level α, Clustering Ct−1, current timestep t
Output: Boolean value indicating whether concept has been found

for all cluster C in Ct−1 do
Query from {C.M(t′) | t′ < t} to select d′ at t′ with d′.M(t′) = {S ′, C}
l1 = loss(C.θ, Zval

d), l2 = loss(d.θ, Zval
d) l3 = loss(C.θ, S ′), l4 = loss(d.θ, S ′)

p1 = Wilcoxon(l1, l2), p2 = Wilcoxon(l3, l4)
if p1 < α and p2 < α then
Assign cluster C to device d
Update d.M(t) = {Sval, C} where Sval sampled from Zval

d

Return True
Return False

4.2.4 Establish New concept

In instances where both Local and Global Concept Searches fail to identify any matching
clusters for the newly observed data, this suggests that the device has encountered a new
concept previously unrepresented in the system. To accommodate this new concept, a fresh
cluster is initiated and integrated into the existing clustering framework. The steps are
shown in Algorithm 10 with details below:

1. Initialization of a new cluster A new cluster is created using the local model as
the cluster model. Initially, this cluster contains only the local device.

2. Interaction with other clusters: The newly formed cluster then engages in model
exchanges with existing clusters to explore potential supportive relationships. These
relationships are determined based on the validation losses incurred when other
clusters evaluate the new model on their respective datasets.

3. Integration to the system: Once supportive relationships are established, the new
cluster is formally added to the clustering configuration Ct.

30

Algorithm 10 New Concept

Input: Device d, Clustering Ct−1

Output: Clustering C

Train new model d.θ on the new data Ztrain
d .

Establish a new cluster C with C.D = {d} and model C.θ = d.θ
C.add(C)
Update the d.M(t) = {Sval, C}
Return clustering C

4.2.5 Proposed Continual Extension

The approach outlined in this section integrates the various components discussed earlier
into an overall method specifically designed to address the challenges of continual learning
within a federated learning framework. The process initiates with a ’cold start’ phase,
employing the standard FAACL procedures. Subsequently, in the next time step, the system
tries to assign devices to clusters by identifying concepts within both local and global
ranges. If no existing concept matches the new data, the system proceeds to establish a
new concept. This process is detailed in Algorithm 11.

31

Algorithm 11 C-FAACL

Input: Device set D, significance level α, threshold ϵ, number of epochs epochs, total
time step T
Output: Clustering Ct

Clustering C = ColdStart(D, α, ϵ, epochs)
for time t from 1 to T do
for device d in D do
if Local Concept Search(d, α, Ct−1) then
Continue

else if Global Concept Search(d, α, Ct−1, t) then
Continue

else
C = New Concept(d, Ct−1)

Cluster Train(C)
Cluster Merge(C)

Return Clustering C.

4.3 Experiments

In this section, we present results for the continual learning extension, which involves non-iid
concepts in both symmetric and asymmetric cases. The experiments are designed under two
distinct settings: Sequential Task Learning and Multi-Task Local Learning. These settings
are intended to assess the model’s adaptability to different types of data heterogeneity and
its ability to manage learning challenges over time.

• Sequential Task Learning: This setup is focused on temporal heterogeneity, where
data concepts are introduced sequentially over time. The main objective is to evaluate
how effectively the model adapts to new tasks while retaining proficiency in previously
learned tasks, thus addressing the challenge of catastrophic forgetting.

• Multi-Task Learning: : This scenario contrasts with the sequential approach by
incorporating both temporal and spatial heterogeneity. Here, multiple tasks are
introduced simultaneously, challenging the model’s capacity to handle complex data
distributions and to maintain performance across concurrent learning challenges.

32

The experiments involve two non-iid concepts extended over 10 timesteps, with each
timestep consisting of 100 epochs. We compare the proposed techniques with Federated
Continual learning baselines, including FedProx-EWC, FedProx-APD, FedProx-SSGD [11],
FedDrift [8], and FedWeIT [21].

This section is structured as follows: We explore Sequential Learning and Multi-task
Learning in Section 4.3.1 and Section 4.3.2. Finally we discuss the results and their
implications in Section 4.3.3.

4.3.1 Experiment Setting - Sequential Task Learning

The primary goal of this experiment is to examine how the system adaptively manages
new data over time without sacrificing the retention of previously learned information.
This setup is designed to evaluate the framework’s resilience to catastrophic forgetting,
particularly in scenarios where new tasks are introduced sequentially over a series of time
steps.

This configuration represents the simplest scenario in federated continual learning by
assuming homogeneity among devices. Such homogeneity allows the server to aggregate
updates from all devices without worrying about the conflict between updates. The focus
here is primarily on addressing challenges associated with temporal heterogeneity. In this
setup, all devices simultaneously receive the same tasks, ensuring that they share identical
learning objectives throughout each phase of the experiment.

Table 4.1: Test accuracies for symmetric concepts S1, S2 in Sequential Task Learning.

Dataset MNIST FASHION CIFAR10

S1 S2 S1 S2 S1 S2

FedProx-EWC 93.51± 0.09 90.26± 0.43 63.07± 0.39 72.00± 0.71 79.78± 0.48 87.59± 0.25
FedProx-APD 97.23± 0.06 86.59± 0.07 68.44± 0.21 73.65± 0.49 78.17± 0.57 85.02± 0.48
FedProx-SSGD 96.42± 0.26 89.20± 0.35 61.68± 0.24 72.75± 0.15 81.59± 0.30 85.84± 0.54
FedDrift 96.55± 0.40 97.83± 0.22 75.80± 0.28 74.95± 0.64 93.06± 0.49 87.62± 0.28
FedWeIT 97.81± 0.33 87.98± 0.07 66.49± 0.58 73.86± 0.22 82.57± 0.44 89.51± 0.45
FAACL (ours) 97.00± 0.16 97.67± 0.25 75.54± 0.47 74.21± 0.10 92.28± 0.41 89.43± 0.31

For this experiment, the dataset is partitioned into four distinct types of concept settings
to rigorously evaluate our method under diverse conditions. In the symmetric settings,
characterized by S1 where concepts differ in their label ranges and S2 where they differ

33

Table 4.2: Test accuracies for asymmetric concepts A1, A2 in Sequential Task Learning.

Dataset MNIST FASHION CIFAR10

A1 A2 A1 A2 A1 A2

FedProx-EWC 83.29± 0.22 81.14± 0.43 66.52± 0.41 65.54± 0.33 78.65± 0.23 82.31± 0.60
FedProx-APD 85.83± 0.49 83.65± 0.53 66.34± 0.19 66.19± 0.25 79.36± 0.62 83.06± 0.33
FedProx-SSGD 86.18± 0.46 85.61± 0.30 66.74± 0.39 67.05± 0.55 80.23± 0.38 82.99± 0.41
FedDrift 89.83± 0.28 89.26± 0.63 68.27± 0.59 69.95± 0.46 81.66± 0.43 84.53± 0.22
FedWeIT 88.62± 0.41 87.84± 0.51 70.74± 0.40 67.10± 0.66 80.96± 0.35 85.61± 0.43
FAACL (ours) 91.97± 0.08 90.96± 0.14 71.38± 0.08 71.16± 0.48 82.19± 0.31 86.37± 0.23

in their predictors, our objective was not to necessarily surpass existing techniques but
to ensure that C-FAACL has competitive performance. The results from these settings
demonstrate that C-FAACL is capable of achieving this goal, confirming its efficacy in
environments where data distributions are uniform across devices.

In the asymmetric settings, which are more challenging due to variations in data quality
as seen in A1 (differences in image quality/noise) and variations in both data quantity
and predictors as seen in A2, C-FAACL particularly excels. These settings highlight the
unique capability of C-FAACL to dynamically generate asymmetric clusters, a feature that
traditional federated continual learning techniques often lack. In these scenarios, C-FAACL
consistently outperforms other methods, effectively leveraging its novel clustering approach
to produce asymmetric clustering. This underscores the adaptability of C-FAACL with
its superior performance in handling complex, real-world data distributions compared to
traditional Federated Continual Learning method. The outcomes of these experiments are
shown in Tables 4.1, 4.2, and will be discussed in Section 4.3.3.

4.3.2 Experiment Setting - Multi-Task Learning

In this experiment, we explore the complexities of Multi-Task Learning where each device
is engaged in potentially different tasks at the same time. This setup introduces a layer
of complexity that evaluates the model’s ability to manage task diversity effectively. The
central aim is to assess the system’s capability to learn shared representations that are
beneficial across varying tasks.

Compared to Sequential Task Learning, Multi-Task Learning presents greater complexity
as it encompasses both spatial and temporal heterogeneity. In this dynamic setting, not
only do concepts evolve over time, but devices may also engage with different concepts

34

Table 4.3: Test accuracies for symmetric concepts S1, S2 in Multi-Task Learning.

Dataset MNIST FASHION CIFAR10

S1 S2 S1 S2 S1 S2

FedProx-EWC 90.21± 0.26 49.15± 0.69 50.94± 0.30 68.28± 0.44 77.81± 0.23 84.18± 0.54
FedProx-APD 93.47± 0.52 80.48± 0.94 51.42± 0.44 70.19± 0.61 75.17± 0.16 84.33± 0.45
FedProx-SSGD 94.82± 0.35 49.98± 0.52 51.00± 0.42 67.71± 0.38 78.45± 0.65 82.89± 0.34
FedDrift 95.94± 0.11 95.25± 0.69 74.27± 0.57 71.39± 0.51 90.64± 0.23 87.02± 0.70
FedWeIT 94.39± 0.05 84.34± 0.79 50.20± 0.36 69.91± 0.61 81.47± 0.78 84.33± 0.29
FAACL (ours) 94.73± 0.41 96.41± 0.46 73.16± 0.55 73.01± 0.63 89.84± 0.64 87.90± 0.48

Table 4.4: Test accuracies for asymmetric concepts A1, A2 in Multi-Task Learning.

Dataset MNIST FASHION CIFAR10

A1 A2 A1 A2 A1 A2

FedProx-EWC 81.11± 0.66 79.42± 0.22 63.30± 0.84 61.96± 0.37 75.15± 0.68 79.62± 0.75
FedProx-APD 81.69± 0.76 81.81± 0.62 60.99± 0.25 62.43± 0.14 76.02± 0.42 78.33± 0.77
FedProx-SSGD 82.80± 0.21 83.16± 0.22 63.15± 0.78 63.81± 0.43 75.86± 0.30 78.09± 0.73
FedDrift 84.49± 0.46 85.58± 0.74 64.51± 0.18 64.16± 0.39 79.32± 0.28 81.05± 0.37
FedWeIT 85.16± 0.75 83.64± 0.82 64.94± 0.48 64.28± 0.37 77.74± 0.39 80.23± 0.25
FAACL (ours) 88.15± 0.30 87.06± 0.73 68.62± 0.89 69.06± 0.48 80.86± 0.59 83.01± 0.71

at any given time step. This scenario thoroughly tests the model’s adaptability and its
capacity to handle concurrent learning challenges effectively.

To facilitate a direct comparison with the Sequential Task Learning experiment, we
employ the same four distinct types of concept settings: (S1, S2, A1, A2) same as the
Sequential Task Learning experiment. This consistency ensures that the differences in
model performance can be attributed to the learning paradigm rather than variations in
the data concepts. The result of this setup is provided in Tables 4.3, 4.4.

4.3.3 Empirical Results

The results of our experiments are detailed from Table 4.1 to Table 4.4.

• Asymmetric Settings Performance: Amongst the asymmetric experiments, C-
FAACL consistently outperforms the baseline methods. This superior performance

35

highlights the effectiveness of C-FAACL’s one-way communication design in managing
asymmetric data distributions, thereby enhancing overall clustering performance.

• Multi-task vs. Sequential Task Performance: A notable disparity in performance
between ensemble methods (such as C-FAACL and FedDrift) and non-ensemble
methods is observed when comparing Multi-Task Learning with Sequential Task
Learning. This contrast is particularly stark in challenging scenarios such as S2,
where devices are presented with conflicting predictors. C-FAACL and FedDrift
excel in these extreme conditions by dynamically assigning devices to appropriate
clusters based on differing concepts, whereas non-ensemble methods, which attempt
to use a single model to predict on contradictory data, tend to perform poorly. This
underlines the importance of ensemble techniques in environments characterized by
high heterogeneity.

Overall, the C-FAACL framework demonstrates high performance across a variety of
experimental settings, effectively managing both temporal and spatial data heterogeneity.
Its adaptability to different learning scenarios underscores its potential as a robust tool for
federated learning.

36

Chapter 5

Conclusion

In this study, we introduced the innovative concept of asymmetric clustering to tackle
specific challenges in federated learning, where the benefits of clustering are unevenly
distributed among devices. Some devices significantly benefit from joining a new cluster,
while others may experience detrimental effects due to diverse data characteristics. To
address these challenges, we developed two key methodologies:

• Federated Adaptive Asymmetric Clustering Learning (FAACL): Designed to
facilitate the formation of asymmetric clusters, optimizing the collaborative potential
among devices with varying data distributions.

• Continual Federated Adaptive Asymmetric Clustering Learning (C-FAACL):
An extension of FAACL that integrates continual learning capabilities, allowing for
dynamic adaptation over time in response to evolving data distributions.

Our empirical evaluations demonstrated FAACL’s superior performance compared to
traditional symmetric clustering approaches, particularly when applied to real-world datasets.
We adopted a partition-based strategy that effectively reduced the computational complexity
to O(n2) for the entire process within O(log n) iterations. The continual learning extension,
C-FAACL, showcased robustness in environments characterized by both temporal and
spatial data heterogeneity. Through sequential task learning and multi-task learning
experiments, C-FAACL efficiently managed new data over time, maintaining the integrity
of previously learned information.

37

5.1 Limitation

Despite the promising results, our study has several limitations that should be addressed in
future research:

• Generalizability: The current frameworks require all devices to use the same
model architecture for training, which may not be feasible in heterogeneous network
environments where devices have varying computational capabilities.

• Complexity: Compared to methods with a fixed number of clusters, our approach
requires more communication and increased run-time complexity, which could hinder
scalability.

• Sensitive hyperparameter choice: The selection of hyperparameters in FAACL sig-
nificantly affects training convergence time and the resulting clustering configuration,
necessitating careful tuning and potential automation.

5.2 Future Work

To build on the findings of this study, future research could explore:

• Stable adaptive clustering: The current FAACL model demonstrates a sensitivity
to hyperparameter settings, necessitating careful tuning to achieve optimal perfor-
mance. Future efforts could focus on developing adaptive mechanisms within the
algorithm itself. These mechanisms would automatically adjust hyperparameters in
response to dynamic changes in data characteristics, thereby reducing the model’s
sensitivity to initial settings and enhancing its robustness.

• Broader Generalizability: Expanding the applicability of the framework to accom-
modate devices with varying model architectures is another promising direction. This
enhancement could involve integrating model-agnostic federated learning techniques,
which would enable a more inclusive and flexible training environment, catering to a
diverse array of devices and data types.

38

References

[1] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for
federated settings. arXiv preprint arXiv:1812.01097, 2018.

[2] Kenneth R Castleman. Digital image processing. Prentice Hall Press, 1996.

[3] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:
Extending mnist to handwritten letters. In 2017 international joint conference on
neural networks (IJCNN), pages 2921–2926. IEEE, 2017.

[4] Li Deng. The mnist database of handwritten digit images for machine learning research
[best of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[5] Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang Liang, Xianzhang Chen,
and Yujuan Tan. Fedgroup: Efficient federated learning via decomposed similarity-
based clustering. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pages 228–
237. IEEE, 2021.

[6] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning:
A meta-learning approach. arXiv preprint arXiv:2002.07948, 2020.

[7] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient
framework for clustered federated learning. Advances in Neural Information Processing
Systems, 33:19586–19597, 2020.

[8] Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B Gib-
bons. Federated learning under distributed concept drift. In International Conference
on Artificial Intelligence and Statistics, pages 5834–5853. PMLR, 2023.

39

[9] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–3526, 2017.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[11] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of
Machine learning and systems, 2:429–450, 2020.

[12] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[13] Bernard Rosner, Robert J Glynn, and Mei-Ling T Lee. The wilcoxon signed rank test
for paired comparisons of clustered data. Biometrics, 62(1):185–192, 2006.

[14] Yichen Ruan and Carlee Joe-Wong. Fedsoft: Soft clustered federated learning with prox-
imal local updating. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 8124–8131, 2022.

[15] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning:
Model-agnostic distributed multitask optimization under privacy constraints. IEEE
transactions on neural networks and learning systems, 32(8):3710–3722, 2020.

[16] Claude Elwood Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[17] Robert F Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials,
pages 1–3, 2007.

[18] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[19] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing Jiang, and
Chengqi Zhang. Multi-center federated learning. arXiv preprint arXiv:2108.08647,
2021.

40

[20] Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Federated
continual learning via knowledge fusion: A survey. IEEE Transactions on Knowledge
and Data Engineering, 2024.

[21] Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang.
Federated continual learning with weighted inter-client transfer. In International
Conference on Machine Learning, pages 12073–12086. PMLR, 2021.

[22] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-
robust continual learning with additive parameter decomposition. arXiv preprint
arXiv:1902.09432, 2019.

[23] Jerrold H Zar. Biostatistical analysis. Pearson Education India, 1999.

41

APPENDICES

42

Appendix A

Algorithm Analysis

The complexity of each clustering algorithm within our framework is analyzed to understand
the computational demands of the process.

Proposition 1. The Cluster Initialization algorithm operates with a complexity of O(n).

Proof. Creating one cluster per device for n devices directly results in a complexity of O(n),
as detailed in Algorithm 1.

Proposition 2. The Cluster Support algorithm operates with a complexity of O(n2).

Proof. With m=O(n) clusters, each cluster’s potential supportive clusters are assessed
among all others, resulting in a complexity bounded by the product of the number of
clusters m=O(n) and the maximum number of devices per cluster O(n), yielding O(n2).

Proposition 3. The Cluster Merge algorithm operates with a complexity of O(n2).

Proof. With m=O(n) clusters, ths algorithm goes through each pair of cluster, resulting in
a complexity O(m2)=O(n2).

Proposition 4. The Cluster Training algorithm operates with a complexity of O(n2).

Proof. Givenm=O(n) clusters, the training process for a cluster model involves all devices in
the cluster, along with all devices from its supportive clusters. For a cluster C, the number of
devices participating its training process is at most |C.D|+

∑
C′∈C.sup |C ′.D|, thus the overall

complexity is
∑m

i=1(|Ci.D|+
∑

C′∈Ci.sup
|C ′.D|)=

∑m
i=1 |Ci.D|+

∑m
i=1

∑
C′∈Ci.sup

|C ′.D|=n+

mn=O(n2).

43

Proposition 5. The Flat FAACL algorithm operates with a per-iteration complexity
of O(n2). When provided with an initial clustering of size O(1), the total computational
complexity remains O(n2). When not provided with initial clustering, the total computational
complexity is O(n3).

Proof. Starting with an initialization phase of O(n) complexity, Flat FAACL involves
training and merging phases within each iteration, both of which contribute to a per-
iteration complexity of O(n2) from the Proposition 1, 2, 3, 4. Given that the algorithm’s
convergence criteria are met within a finite number of iterations, and assuming the initial
clustering involves a minimal number of clusters (O(1)), Flat FAACL effectively operates
with an overall complexity of O(n2). This is due to the fact that the number of iterations
required for convergence does not significantly alter the computational load, which is
dominated by the costs of training and merging operations within each iteration. When
the initial clustering is not provided, as the initial clustering has size of O(n), the total
iteration is O(n), therefore the total complexity is O(n3).

Theorem 6. Hierarchical FAACL reduces the overall complexity to O(n2), in log n iterations
of O(n2/ log n) complexity each.

Proof. Starting from n initial partitions, the algorithm progressively merges these partitions,
halving their number each iteration, requiring a total of log n iterations. At the iteration i,
there are n

2i
partitions, each potentially containing up to 2i devices. A merged partition P ′

would have set of devices of size 2i+1, and initial clustering of size O(1). By Proposition
5, the overall complexity of applying Flat FAACL to a new partition is O(2i)2. As there
are total of n

2i
partitions, the per-iteration complexity is O(2i)2 × n

2i
=O(2i · n). Then the

overall complexity until convergence is
∑logn

i=1 O(2i · n)=O(n2).

In summary, the complexity analysis underscores Hierarchical FAACL’s efficiency at
managing computational resources and adapting to the scale of federated learning envi-
ronments. In contrast to Flat FAACL, which faces a potential complexity of up to O(n3)
due to its O(n) iterations, Hierarchical FAACL reduces this complexity to O(n2), ensuring
completion within just log n iterations. By reducing the complexity and leveraging a
logarithmic number of iterations, Hierarchical FAACL offers a scalable and efficient solution
to clustering in large, distributed networks.

44

Appendix B

Experiment Environment

B.1 Code

The code for FAACL is available for review in an anonymized github repository: https://github.com/FAACL/FAACL

B.2 Experimental Setup (Software, Hardware, Ran-

domization)

The implementation was coded in Python. Randomization was done by using three seeds
in Numpy. The seeds were set to 10, 55 and 2077 for all the algorithms and datasets.
Experiments were run on a single Nvidia GPU (either T4 or A40).

B.3 Model Architecture

The neural architecture used for dataset MNIST, EMNIST, FASHION, and FEMNIST is the
Multi-layer Perceptron, a feedforward neural network with two hidden layers for FEMNIST
and one hidden layer for the other datasets. We also performed L2 regularization and
utilized a ReLU activation function and a softmax output layer with a Sparse Categorical
Cross-Entropy loss, that is trained using Stochastic Gradient Descent. For the dataset of
Sent140, we use the sequential model, starting with an input layer that expects sequences

45

https://github.com/FAACL/FAACL

of length 25 with 300 features each. The model uses two bidirectional LSTM (Long Short-
Term Memory) layers, which are a type of recurrent neural network (RNN) layer suited for
learning from sequences. The first LSTM layer has 64 units and returns sequences, feeding
into another bidirectional LSTM layer with 32 units that does not return sequences. This
is followed by a dense layer with 64 neurons and ReLU activation, a dropout layer with
a rate of 0.5 to prevent overfitting, and finally, a dense output layer with 2 neurons and
softmax activation for binary classification.

B.4 Hyperparameters

Table B.1: Hyperparameter Summary Table for Scenario S0, S1, S2, A1, A2

Parameter Dataset S0 S1 S2 A1 A2

Epochs
MNIST 300 300 300 300 300
EMNIST 300 300 300 300 300
FASHION 300 300 300 300 300
Cifar10 300 300 300 300 300

Learning rate
MNIST 0.01 0.01 0.01 0.01 0.01
EMNIST 0.003 0.003 0.003 0.003 0.003
FASHION 0.005 0.005 0.005 0.005 0.005
Cifar10 0.002 0.002 0.002 0.002 0.002

δ
MNIST 3 3 3 3 3
EMNIST 2 2 3 3 3
FASHION 2 3 3 3 3
Cifar10 2 3 3 3 3

ϵ
MNIST 0.7 0.7 0.7 0.5 0.4
EMNIST 0.7 0.7 0.7 0.4 0.1
FASHION 0.7 0.7 0.7 0.5 0.1
Cifar10 0.6 0.6 0.6 0.4 0.2

In our methodology for identifying potential merges between clusters C1 and C2, we
employ a statistical approach where the significance threshold α is compared against the p-
value from a statistical test. This test evaluates the null hypothesis ℓ(C1.θ, z)+ϵ < ℓ(C2.θ, z),
aiming to determine the likelihood of a merge based on the model parameters θ and data
point z.

46

For the implementation of FedDrift, we introduce a distance metric Dij representing
the proximity between cluster i and cluster j. A merge is considered when Dij falls below a
predefined threshold δ, indicating a significant overlap in the data representation of both
clusters.

Table B.2: Hyperparameter Summary Table for Scenario A0

Parameter FEMNIST Sent140

Epochs 300 300
Learning rate 0.005 0.005
δ 4 4
ϵ 0.5 0.7

The number of Epochs, learning rate, δ, and ϵ are summarized in Table B.1 and B.2 for
different experimental scenarios.

Our experiments incorporate both Gaussian and Salt & Pepper noise to construct the
experiments with devices having different data quality. Gaussian noise, characterized by
its variance and mean, introduces a continuous perturbation, while salt & pepper noise,
specified by a density parameter, simulates random pixel corruptions. The configurations
for these noise parameters are outlined in Table B.3.

Table B.3: Noise Parameters Summary Table

Parameter MNIST EMNIST FASHION CIFAR10

Gaussian Noise variance 0.4 1.0 0.9 0.6
Gaussian Noise mean 0.0 0.0 0.0 0.0
Salt &Pepper Noise density 0.7 0.6 0.7 0.4

In the continual learning extension, we specify hyperparameters for different scenarios
and datasets as outlined in Table B.4 below. This table summarizes the settings for all
scenarios S1, S2, A1, A2.

47

Table B.4: Hyperparameter Summary Table for Scenario S1, S2, A1, A2

Parameter Dataset S1 S2 A1 A2

Epochs
MNIST 100 100 100 100
FASHION 100 100 100 100
CIFAR10 100 100 100 100

Learning rate
MNIST 0.01 0.01 0.01 0.01
FASHION 0.005 0.005 0.005 0.005
CIFAR10 0.002 0.002 0.002 0.002

Time steps
MNIST 10 10 10 10
FASHION 10 10 10 10
CIFAR10 10 10 10 10

δ
MNIST 3 3 3 3
FASHION 3 3 3 3
CIFAR10 3 3 3 3

ϵ
MNIST 0.5 0.5 0.3 0.2
FASHION 0.5 0.5 0.3 0.1
CIFAR10 0.4 0.4 0.3 0.1

48

	Author's Declaration
	Abstract
	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Outline

	Background
	Related Work
	Clustered Federated Learning
	Federated Continual Learning

	Notation

	Federated Adaptive Asymmetric Clustered Learning
	Problem Statement
	Algorithm Details
	Clustering Initialization
	Cluster Merge
	Cluster Training
	Proposed Federated Clustering Method

	Experiments
	Benchmarks
	Experiment Settings - Symmetric
	Experiment Settings - Asymmetric
	Empirical Results

	Continual Federated Adaptive Asymmetric Clustered Learning
	Problem Statement
	Algorithm Details
	Cold Start Phase (t = 0)
	Local Concept Search
	Global Concept Search
	Establish New concept
	Proposed Continual Extension

	Experiments
	Experiment Setting - Sequential Task Learning
	Experiment Setting - Multi-Task Learning
	Empirical Results

	Conclusion
	Limitation
	Future Work

	References
	APPENDICES
	Algorithm Analysis
	Experiment Environment
	Code
	Experimental Setup (Software, Hardware, Randomization)
	Model Architecture
	Hyperparameters

