
Multi-Resolution and Asymmetric
Implementation of Attention in

Transformers

by

Zaid Hassan Chaudhry

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Zaid Hassan Chaudhry 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Transformers are the state-of-the-art for machine translation and grammar error cor-
rection. One of the most important components of transformers are the attention layers,
but they require significant computational power. We suggest a new way of looking at the
“mixing” mechanisms of tokens by doing a multi-resolution implementation of attention,
which maintains inference results while also improving training and inference speed, thus
getting the best of both worlds. This approximation can be applied in symmtrical and
asymmetrical manner within and across attention layers. We also suggest an interesting
alternative for the softmax layer in attention. We also analyzed some other hyperparame-
ters in detail. For example, our experiments indicate that we can have asymmetry among
the attention layers w.r.t. number of heads, while still achieving similar results. In many
cases, reducing the number of heads improves inference results. We also explored the role
of weighting matrices for query, key, and value vectors; and show that in case of self-
attention, absence of these matrices results in the collapse of the attention layers to an
identity matrix.

iii

Acknowledgements

In the completion of this project, I drew on the time and patience of many people.
The depths incurred are more extensive and varied than can be detailed here, but certain
salient contributions must singled out. Firstly, I would like to thank my thesis advisor
Dr. Pascal Poupart for his valuable advice and guidance. It is all due to his unwavering
support that I have been able to complete my thesis. There were so many roller coaster
rides, but with his unconditional support, I was able to overcome them all.

I would like to thank my father whose support was instrumental in my achievements
during every phase of my degree. I would also take the opportunity to thank my dear
sisters Zainab and Maryam for the friendship and love. And, how can I forget Abdullah
and Qasim, my younger brothers, for the entertainment they always provide. I would also
like to thank my grandparents who have always been there for me. My grandfather has
always been a source of guidance throughout my life, and my grandmother inculcated me
with desire to be the best. Last, and not the least, I thank my dear mom, who will do
everything to see me happy.

Furthermore, I would like to thank Asadul-Islam for his insightful comments during
various stages of my research work in our frequent meetings with Scribendi, Inc. I would
like to thank my dear friend Haris-Bin-Zahid for guiding me through various stages of the
degree.

iv

Dedication

To my Mom and Dad.

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background information 4

2.1 Recurrent Neural Networks . 4

2.2 Transformers . 6

2.3 Attention . 10

2.3.1 Components of Attention Layers . 11

2.3.2 Computational Complexity of Attention 12

2.4 Computational Efficiency for Transformers - A Literature Survey 13

2.4.1 Generating Long Sequences with Sparse Transformers 14

2.4.2 Transformer-XL: Attentive Language Models Beyond a Fixed-Length
Context . 14

2.4.3 Reformer: The Efficient Transformer 14

2.4.4 Transformers are RNNs: Fast Autoregressive Transformers with Lin-
ear Attention . 15

2.4.5 Big Bird: Transformers for Longer Sequences 15

2.5 State of the Art for Grammar Error Correction 15

vi

2.5.1 Better Evaluation for Grammatical Error Correction 15

2.5.2 Neural Grammatical Error Correction Systems with Unsupervised
Pre-training on Synthetic Data . 16

2.5.3 An Empirical Study of Incorporating Pseudo Data into Grammatical
Error Correction . 16

2.5.4 Parallel Iterative Edit Models for Local Sequence Transduction . . . 17

2.5.5 GECToR – Grammatical Error Correction: Tag, Not Rewrite . . . 18

2.6 State of the Art for Machine Translation 18

2.6.1 BLEU: A Method for Automatic Evaluation of Machine Translation 18

2.6.2 Massive Exploration of Neural Machine Translation Architectures . 19

2.6.3 Scaling Neural Machine Translation 20

2.6.4 Lessons on Parameter Sharing Across Layers in Transformers 20

3 Contributions 22

3.1 Main Ideas . 22

3.2 Reduced Order Attention . 23

3.2.1 Basic Structure of an Attention Layer 24

3.2.2 The Trick . 24

3.2.3 Asymmetric Compression within an Attention Layer 26

3.2.4 Asymmetry within or across layers 27

3.2.5 Complexity of Components of Attention Layers for Reduced Dimension 27

3.2.6 Results . 29

3.2.7 Effect of Reducing Order of Attention 29

3.3 A Different Choice of Non-linearity . 30

3.3.1 Results of Approximations of Softmax Applied in Cross Attention . 31

3.4 Asymmetric Use of Heads in Different Attention Layers 32

3.4.1 Interesting Results w.r.t Heads . 32

3.5 Significance of Linear Layers in Self-Attention 32

vii

3.5.1 Mathematical Equation of Attention? 33

3.5.2 The Collapse of Softmax to an Identity Matrix 33

3.5.3 Selected Results . 36

3.6 Neural Architecture Search in Transformers 36

3.6.1 Neural Architecture Search . 36

3.6.2 Neural Architecture Search Methods 37

3.6.3 Random Search Diagram . 38

3.6.4 Choice of Parameters . 38

3.6.5 Results of Random Search . 39

3.6.6 Results of Sorted Test Scores . 40

3.6.7 Results of Validation and Test scores 40

3.6.8 Top 10 Results from Random Search 41

3.6.9 Top 10 Result Conclusions . 42

3.7 Results Obtained on IWSLT . 43

3.7.1 Plot of Results Obtained from Random Search 43

3.7.2 Top 10 Results from Random Search for IWSLT 2014 Dataset . . . 44

3.8 Results for Grammar Error Correction . 44

3.9 Motivation for Neural Architecture Search 45

3.10 Computational Complexity of Asymmetric Reduced Order Cross Attention 47

3.10.1 Number of Computations for Fastest Configuration for Grammar
Error Correction . 50

4 Conclusion and Future work 52

4.1 Conclusion . 52

4.2 Limitations . 53

4.3 Future work . 53

References 54

viii

List of Figures

2.1 Recurrent Neural Network . 4

2.2 Recurrent Neural Network with Attention 6

2.3 Transformer diagram . 7

2.4 Attention diagram . 11

3.1 Attention diagram . 24

3.2 Introduction of additional scaling matrices 25

3.3 Combining the scaling matrices with their counterparts 25

3.4 Combining matrices - Final configuration is similar to base structure 26

3.5 Reduced order attention . 27

3.6 Plots of approximations of softmax . 30

3.7 Value of encoder QKT . 34

3.8 Softmax applied to result of encoder QKT 35

3.9 QKT for each layer in the encoder. The layer number increases from left to
right and top to bottom. The result on the right shows the results of the
sixth layer after softmax . 36

3.10 Random search diagram . 38

3.11 Plot of random search . 39

3.12 Random search results sorted by BLEU score for Multi30K dataset 40

3.13 Plot of test and validation scores sorted by validation score for Multi30K
dataset . 41

ix

3.14 Plot of test and validation scores sorted by validation score on IWSLT . . . 43

3.15 Effectiveness-Efficiency Trade-off Plot . 45

3.16 Attention Dimensions . 48

3.17 Dimension of result of Linear Layers Wv and Wp 49

x

List of Tables

3.1 Results for symmetric reduced order attention. * The square brackets show
the embedding dimension. Enc stands for encoder attention, Dec stands for
decoder attention and Comp stands for compressed. 29

3.2 Results for approximations of softmax. nt is target length, ns is sequence
length and e is the number of digits in the exponential. 31

3.3 Results for asymmetric use of heads . 32

3.4 Results for removing linear layers . 37

3.5 Top 10 results from random search for Multi30K dataset. The short form is
nonlinearity-QKVP-heads- compQK and compVP. 42

3.6 Top 10 results from random search on IWSLT. In all the configurations
linear layers are required. 44

3.7 Top 10 results from random search on Grammar Error Correction. Time is
the time per epoch in hours and minutes (Hours:Minutes). 46

xi

Chapter 1

Introduction

Grammar error correction and machine translation are two of the most important problems
in the domain of natural language processing. Grammar error correction is a task where
we take a sentence with incorrect grammar and generate a grammatically correct sentence.
Whereas, in machine translation task, we are given a sentence in one language and we are
supposed to translate it to another language. We will be applying our proposed techniques
to these two tasks to see if our proposed ideas can carry over to different sequence generation
problems.

Transformers are the state-of-the-art architectures for both grammar error correction
and machine translation. Transformers are neural network architectures that use attention
and feed forward layers in addition to some other auxiliary layers like positional encoding.
The attention mechanism in transformer architectures is very good at modelling interac-
tions between different words in a sentence. The better modelling of short term as well
as long term interactions plays an important role in superior performance to previous
techniques.

Training time is one of the bottlenecks in developing neural network models; Inference
time is not a bottleneck in many applications. But, in some other applications inference
times are also very critical. For example, in self-driving cars all the video data is processed
in real-time and inference time is absolutely critical. We worked on grammar error correc-
tion applications as proposed by our industrial partner Scribendi, Inc., which is an editing
and proof reading service. They have an elite editorial team which provides proof reading
services. Scribendi is in the process of using the latest developments in deep learning to
improve their services. For this purpose, they proposed different problems, ranging from
improved automatic proof reading, to speeding up the inference process, since the clients

1

want to get the proof reading done in a matter of a few seconds. In this application, train-
ing times are much less critical, and inference time needs to be reduced to a minimum. In
our work we focus on improving the inference speeds of transformers by focusing on the
attention layer.

Scribendi Inc. funded the research work and provided its data for research also. The
nature of the data was quite different from publically available datasets. When pre-trained
models were fine tuned on this dataset, the results were worse than training the models
from scratch on their proprietary data. Therefore, we decided to limit ourselves to devel-
oping techniques which do not necessarily need a pre-trained model. In order to show the
generality of our techniques, we also added machine translation tasks, and our proposed
ideas seems to carry over to machine translation tasks also. The way we formalize the
problem, it is expected to carry over to other problems which involve training transformers
from scratch.

To optimize transformers, it is possible to play with the number of encoder and decoder
layers, optimize the attention layer, etc. For example, Kasai et al. [20] suggests the
use of a deeper encoder and a shallower decoder to obtain transformers with reduced
complexity. This approach favors inference due to a lighter decoder - which needs to
run sequentially during the inference phase. Computational complexity of attention layer
depends quadratically on sequence length and linearly on embedding dimension. Many
papers make an attempt to reduce complexity of attention in order to improve transformer
performance. For example, Katharopoulos et al. [21] swaps the order of softmax and
dot product such that computational complexity depends linearly on sequence length and
quadratically on embedding dimension. This reduces complexity for sentences which are
longer than the embedded dimension.

We also optimize computational complexity of transformers by reducing complexity of
attention layers. Our approach is orthogonal to previous approaches in improving atten-
tion and can be applied in conjunction with other techniques which optimize attention
layers. We introduce new hyperparameters which can be used to reduce the complexity of
attention. Two approaches to improving the complexity of attention layers are proposed.
The first approach is the use of multi-resolution attention, where reduced dimensional im-
plementation improves the speed while maintaining similar accuracy. Another approach
is to improve the complexity of attention layers by replacing the expensive operation of
softmax with other options. The multi-resolution idea introduced in this thesis, when used
in a “symmetric manner”, linearly reduces the number of computations of attention layer.

Results for the proposed hyperparameters are explored in this thesis. For a wide range
of configurations, the results show that the new hyperparameters lead to interesting choices.

2

Different nonlinearities for attention layer as an alternate to softmax, are also proposed.
RELU turns out to be a possible choice to replace softmax for certain applications. Finally,
a broad exploration of architectures is done using random search and the top architectures
proposed by the neural architecture search are reported. There are also other explorations
and suggestions made in this thesis. Namely, the asymmetric use of heads is explored. The
importance of linear layers in attention is also explored. Experimental results confirm the
importance of linear layers, especially in self-attention.

To give very good results for the above tasks one needs to train the transformers for
millions of sentences, which required days of training time. Any significant improvement
in performance can save hours and even days in training time. Our work improves the
speed of transformers for both inference and training by a factor of upto 17%.

3

Chapter 2

Background information

2.1 Recurrent Neural Networks

Recurrent neural networks (also known as RNNs) revolutionized neural architectures. This
architecture is designed to process sequential data. This architecture is able to create an
embedding of a sequence of tokens that has no restriction on length. In Figure 2.1, we can
see that a sentence “This is a car” is being input into an RNN. Each word is being fed at
different time steps. Once a word is input into the RNN block, the RNN block takes the
current input and the state from the previous time step to compute the current state. The
initial state of the RNN can be initialized to a zero vector.

Figure 2.1: Recurrent Neural Network

At each time step, the previous state of the RNN and the input for the time step are
transformed. The transformed input and transformed previous state are added and the

4

result is transformed to give the current state of the RNN. Transformations used here can
be linear or non-linear.

Once the sequence is passed through the RNN, we can add more RNN layers on top of
the first RNN layer. These layers will take as input the states from the previous layer. Then
they will process the input as described in the previous paragraph. An RNN component
processing a sentence as described up to this point is called an “RNN encoder” as labelled
in Figure 2.1.

In order to solve a sequence classification task (such as emotion classification), we can
apply a classifier to the current state from the last time step. To solve a sequence tagging
task (such as part-of-speech tagging), we can have a classifier repeated at each time step.
However, if we wish to solve a conditional sequence generation task (such as machine
translation), we need a decoder.

For a decoder, the method of operating is the same as the encoder. The difference is
that in this case the input for each time step is the output token from the previous time
step. Also the hidden state of the decoder is not initialized by a zero vector but rather by
the hidden state from the last time step of the encoder. During training, we can either take
the output from the previous time step generated by the model or use the token from the
ground truth output sequence. Using the previous token from the ground truth is called
teacher forcing.

One addition which can be made to the decoder is to include a third input into the RNN
block. This input is a weighted combination of the hidden states from each of the encoder
time steps. The weights for the weighted combination can be found by computing the
similarity of the decoder hidden state with the encoder time steps. Once the similarities
have been computed, they are used to weigh the encoder hidden states. In the case of
English-French translation this process allows the encoder to focus on the right input
words to produce the next output word. For example, when translating the sentence “This
is a car” to “C’est une voiture”, the RNN is able to focus on the word ‘car’ to produce
the translation ‘voiture’ instead of having to rely only on the final sentence representation
produced by the encoder.

5

Figure 2.2: Recurrent Neural Network with Attention

This process known as attention is represented by a green circle in Figure 2.2. The
green circle has arrows coming in from each of the encoder time steps and the first decoder
time step. These represent the flow of states from these blocks to the attention module.
The operation of attention is computed using these states and the output is fed into the
next decoder RNN block as the third input. This input is transformed by a linear layer
and added to the transformed input and transformed previous hidden state.

The attention mechanism eases the problems caused by sequential processing of data.
In sequential processing, information from tokens is transformed multiple times across
different time steps. By the time, information from initial words of the sentence reaches
the future time steps, the information has been mixed with multiple intermediary words.
As we will see in the next section, this problem can be completely alleviated by using an
attention mechanism in place of the RNN layer.

2.2 Transformers

In Figure 2.3, we can see the transformer encoder inside a gray box on the left. The
transformer decoder is shown in a gray box on the right. The transformer decoder and
transformer encoder are just like the encoder and decoder in RNNs in terms of their
functionality. Inside the transformer encoder, we can see self-attention in a blue box as the
first computational block. Self-attention mixes the embeddings along the sequence length
dimension. We will discuss self-attention in the next section. There is a skip connection
going besides the self-attention. The output from the self-attention, and the skip connection
over the self-attention, are combined using an addition represented by a green circle. This

6

is followed by a normalization layer as described in Ba et al. [3]. Layer normalization is
followed by a linear layer, which in turn is followed by a non-linear activation and finally
by yet another linear layer. The linear layers and activation are shown in red. The linear
layers mix the embedding along the dimension of the embedding.

Figure 2.3: Transformer diagram

7

In the transformer decoder, the first block applied to the input is again the self-attention
block. This block is however slightly different compared to the self-attention block in the
encoder because it is a causal self-attention block. In causal self-attention block each
hidden state is computed from a weighted combination of hidden states of the decoder in
the previous layer. However, there is one constraint. The weighted combination is taken
over only the positions from the past up to the current position. That is, values from the
future are not used to compute the hidden state for the current state.

Causal self-attention allows training to work just like inference. At inference time,
future tokens are not available, which is why the network should be trained using causal
self-attention. To train causal self-attention in a parallel fashion, a mask is generated.
This mask zeros the weights corresponding to the future hidden states computed by a dot
product between all embeddings. The weighted combination is then computed as usual.

Another technique for running the transformer in a parallel manner is to always do
teacher forcing. This means that we do not have to wait for the entire stack of layers to
run and produce an output token before running the entire stack of layers all over again
for the next time step. Instead with the masking combined with teacher forcing, we can
run the training for all the time steps simultaneously.

In the transformer decoder, there is an additional block of cross-attention. This is
shown (in Figure 2.3) as the blue block in the center of the decoder with two arrows
coming from the encoder. In this block, similarity between embeddings from the encoder
and the embeddings from the decoder are computed. The matrix of similarities is used to
compute a weighted sum of the encoder hidden states for each of the embedding position
in the decoder. This layer is followed by linear layers sandwiching an activation. These
linear layers transform the weighted combination of the encoder hidden states to a new
domain (more appropriate for the decoder).

Transformers have attention as the mixing mechanism along the sequence length dimen-
sion. This is different from RNNs [18] which use a recurrent connection to process words
along the sequence length dimension. Transformers not only have attention for paying
attention from the decoder to the encoder hidden states but also self-attention within the
encoder and the decoder. This is why transformers can be called self-attention networks.

Traditional Transformers use the dot product attention. The dot product attention
makes the mixing of the encoder states dependent on the data. This makes it more ex-
pressive compared to methods which mix the tokens based on constant matrices. There
has been work on mixing tokens using constant matrices [24]. It essentially adds the
embeddings based on preset weights. Meanwhile dot product attention takes a weighted
combination of the embeddings based on the similarity of the embeddings to one another.

8

Transformers have two major components: the encoder and the decoder (see Figure
2.3). Between these components there are three attention layers. The first attention layer
is the self-attention in the encoder, the second attention layer is the causal self-attention
in the decoder and the last attention layer is the cross-attention from the decoder to the
encoder hidden states. The decoder contains two attention layers and runs autoregressively
and hence is the main bottleneck in the speed of transformers. Therefore, our work (where
we tackle attention) impacts the performance of the decoder more than it impacts that of
the encoder.

Attention is the central component of transformers and is the focus of our work. As
already described, transformers rely on attention to have tokens impact one another. One
thing which sets apart transformers from RNNs is that all the tokens are neighbours in
transformers while they are separated by the intervening words in RNNs. This makes
understanding the meaning of the sentence easier for transformer since the impact of words
is not diminished due to passing through multiple time steps. For transformers, therefore,
it is easier to understand context than RNNs. For example, in the sentence, “He went
to the bank to pay his bills”, the affect of “pay” and “bills” will allow transformer to
understand that bank means a “money bank” as opposed to a “river bank” or “relying
upon someone”. Meanwhile for RNNs, understanding the context will be harder given
how words “decay” across time steps. In other words, transformers create contextualized
word embeddings that can be used to predict the output. Each token depends on all other
tokens as we go deeper through a transformer. This allows for better understanding of
each token in the context of the sentence.

Besides attention layers transformers use fully connected layers, positional embeddings
and word embeddings. A fully connected layer is a standard neural network layer consisting
of a weight matrix and an optional bias. Positional embedding is added to the word
embedding to enable sensitivity to position since there is no inherent mechanism in the
transformer which accounts for position.

The transformer has been designed to be relatively (compared to RNNs) more efficient
for training. It does not have to train autoregressively (even though for inference it runs
autoregressively). This is achieved by introducing a masking method in the decoder self-
attention. This masking method is an interesting innovation of the transformer. Words
in the future are only allowed to attend to past words in the decoder self-attention by
using this masking method. Furthermore teacher forcing is always applied to teach the
transformer to predict the next word. Once the transformer is trained it runs autoregres-
sively and is able to naturally see only past words. Since the transformer has been trained
appropriately this is not a problem.

9

2.3 Attention

This section details self-attention a key contribution of the transformer architecture. At-
tention is a mechanism whereby contextualized embeddings are created in transformers.
Initially, embedding vectors are simply a representation of each token independently. How-
ever, as we move through attention we create a weighted combination of all embedding
vectors in the sentence. This incorporates information from all the other tokens in the
sentence into the current token. To understand why this is important, take the sentences
“I have read the paper” and “I will read the paper”. In the first sentence and the second
sentence there are two different phrases (spelled the same coincidentally) “have read” and
“will read”. The difference between the two phrases can only be understood if information
from “will” and “have” tokens is incorporated into the token “read”. By incorporating
this information, a transformer trained for text-to-speech synthesis will pronounce the
word “read” differently in the two phrases.

Attention is a key component of Transformers. To understand how it works we take
the self-attention layer in the transformer as an example. It takes the embeddings for the
tokens as input. It then transforms the tokens into three different domains. The first
two domains are used to compute similarity between the embeddings. This is done by
taking a matrix product between embeddings from the first domain with embeddings from
the second domain. Once the similarity is computed, a weighted combination over the
embeddings in the third domain are taken using the weights previously computed. The
equation for attention is given below:

V ′ = WP

(
softmax

(
QWq(KWk)T√

dk

)
(VWv)

)
= WPAw(VWv) (2.1)

where V ′ is the output of the attention layer. Wq, Wk, Wv and WP are the weights
of linear layers applied to the queries matrix Q, keys matrix K, values matrix V and
attention output P . The choice of the query, key and value matrices depends on which
of the three attention layers is under question. Specifically for self-attention in encoder,
all three matrices contain the same embeddings that correspond to the source tokens or
the output from the previous encoder layer. For causal self-attention in the decoder, all
three matrices contain the same embeddings that correspond to the target tokens or the
output from the previous decoder layer. For cross-attention, the query matrix corresponds
to embeddings from previous decoder layer, while the key and value matrices both contain
the outputs from the encoder. dk is the embedding dimension for the query, key and value
matrices.

10

Moreover,

Aw = softmax

(
(QWq)(KWk)T√

dk

)
(2.2)

Note that in this equation, the embeddings in V , K and Q are all arranged in rows. This
means that the application of Wv is on each of the embeddings independently. Meanwhile,
application of Wa takes a weighted combination of the transformed embeddings in V .

2.3.1 Components of Attention Layers

The complete block diagram of the transformer is shown in Figure 2.3 with the three
attention layers shown in blue color. In Figure 2.4, we zoom into the attention block to
show the internal components of the attention layer. The attention layer can be broadly
divided into five stages: The pre-attention linear layers, the dot product, the softmax layer,
then a weighted sum, and finally a projection matrix.

Figure 2.4: Attention diagram

The pre-attention linear layers transform the inputs Q, K and V to another same
dimensional space. In the second stage, dot product between transformed Q and K is
computed. This dot product computes the correlations between the embeddings of the
various tokens. In the third stage we compute softmax of the dot product. In the fourth
stage, we compute the weighted combination of the value embeddings based on the corre-
lations found in the first dot product; this has been represented by the yellow box labelled

11

“Weighted Sum”. Finally, the the post-attention linear layer (shown in blue on the right)
is applied to the result of the weighted sum of values.

2.3.2 Computational Complexity of Attention

The computational complexity of attention layer is determined in this section. In order to
define the computational complexity, the following variables have been defined.

Source Length = ns

Target Length = nt

Embedding dimension = d

Computational complexity of a matrix multiplication operation is known to be O(mnp),
where the two matrices are of the order m× n and n× p, respectively. Precisely speaking,
there are m× n× p multiplication operations and m× (n− 1)× p addition operations, for
n large enough we can say there are roughly 2 ×m× n× p operations.

Computational complexity of attention is dominated by the linear layers in attention.
Each linear layer is equivalent to a matrix multiplication and a bias addition. All of these
matrices are d× d, and inputs are either nt × d (in case of Q and P) or ns × d (in case of
K and V). Hence, we get the following computational complexities:

O(QWq) = nt × d× d (2.3)

O(KWk) = ns × d× d (2.4)

O(VWv) = ns × d× d (2.5)

O(PWp) = nt × d× d (2.6)

where the variables Wq, Wk, Wv and WP are the weights of the linear layers applied to
Q, K , V and P . Q, K and V are the query, key and value matrices respectively. P is the
attention output before application of WP .

Similarly, for dot product in second stage of attention, the complexity is:

O(QKT) = nt × d× ns (2.7)

where, Q is equivalent to QWq and is simply the transformed query matrix. Similarly,
K is equivalent to KWk. When computing correlations, we will use K and Q to represent
the transformed matrices instead of the original matrices throughout the thesis.

12

The softmax operation is applied to QKT and for e digit accuracy the computational
complexity for this operation is [1]:

O(softmax(QKT)) = nt × ns × log2 e (2.8)

The order of the softmax matrix is nt × ns, and we multiply it with the projected V
matrix which has the order ns × d, so for the weighted sum operation, the complexity is:

O(AwV) = nt × ns × d (2.9)

where Aw is as defined in Equation 2.2.

The FLOPs for the baseline implementation of attention for typical values is given
below. Here we have assumed source and target lengths of 33 and 30, respectively. An
embedded dimension of 512 is assumed.

1. nt = 30, ns = 33, d = 512

2. FLOPS(WqQ) = FLOPS(WPP) = 30 × 2 × 512 × 512 = 15, 728, 640 = A

3. FLOPS(WkK) = FLOPS(WvV) = 33 × 2 × 512 × 512 = 17, 301, 504 = B

4. FLOPS(QKT) = 30 × (2 × 512) × 33 = 1, 013, 760 = C

5. FLOPS(AwV) = 30 × (33 × 2) × 512 = 1, 013, 760 = D

6. Total = 2A + 2B + C + D = 68, 087, 808

2.4 Computational Efficiency for Transformers - A

Literature Survey

For complex sequence generation tasks, the training data is usually enormous, say millions
of sentences. To train transformers for such large amounts of data, we need several layers of
encoders and decoders. The training times are very significant, of the order of days on very
powerful GPUs. Hence, there has been an interest in making them faster and therefore
easier to train and deploy. Attention uses a large number of operations in sequences with
longer length. Specifically, the number of operations scale quadratically with sequence
length.

13

2.4.1 Generating Long Sequences with Sparse Transformers

Child et al. [8] improves the efficiency of transformers for problems where sequence length
n is large. It does so by making attention sparse. Instead of computing similarity between
all pairs of embeddings, it computes similarity over a given subset of embeddings for each
position. The restriction is that there should be connectivity between all positions over
several steps of attention. Another restriction is to have a maximum length for the shortest
path connecting any pair of position. The subsets of embeddings are chosen such that this
paper improves complexity from O(n2) to O(n

√
n).

2.4.2 Transformer-XL: Attentive Language Models Beyond a Fixed-
Length Context

Recurrence is used in Dai et al. [12] to handle long sequences. Instead of applying at-
tention over all neighbouring segments simultaneously, this paper establishes a recurrence
relationship. It uses the hidden states from the previous segment and the hidden states
from the current segments to compute the hidden states for the next layer. This approach
can be extended to using hidden states from the previous T segments.

By applying the mechanism above, this paper increases long-range dependencies while
also solving the context fragmentation problem found in previous approaches where text is
split without regards to any sentence or semantic boundary. By establishing a recurrence
relationship, this paper allows information from the first part of a sentence to flow to the
next part of the sentence, hence solving the context fragmentation problem.

2.4.3 Reformer: The Efficient Transformer

Kitaev et al. [22] reduces the complexity of attention by computing a sparser version of
attention. Here, this sparsity is achieved by computing the value of QKT by using only the
closest 32 or 64 keys for each query. In other words, only a subset of the attention weights
with the largest values are calculated, since they contribute most to the final values.

The closest vectors are found using a locality-sensitive hashing scheme. This is a hashing
scheme where nearby vectors get the same hash with high probability and distant ones do
not. A random matrix is multiplied with each embedding and the position of the maximum
value inside the vector is taken as the hash. Once hash buckets are computed, attention is
computed within the buckets and not across them. By doing this, the paper reduces the
complexity from O(n2) to O(n log(n)).

14

2.4.4 Transformers are RNNs: Fast Autoregressive Transform-
ers with Linear Attention

Katharopoulos et al. [21] changes the complexity of attention from O(n2d) to O(nd2) where
n is sequence length and d is embedding dimension. This is achieved by changing the order
of the two dot products in attention. They also speed up inference by showing that doing
so leads to transformers being equivalent to RNNs.

2.4.5 Big Bird: Transformers for Longer Sequences

Zaheer et al. [36] uses “memory” and sparse attention to reduce complexity. For sparse
attention it has two ways of choosing the keys with whom similarity is computed for a given
query. The first is to take the neighbours of the current token from a window extending
in both directions. The second is to take r random keys from the input sequence.

For “memory”, additional tokens are added to the sequence. These tokens are able
to access the entire sequence. These “global tokens” can be thought of as the “memory”
which holds a compressed representation of the entire sequence by aggregating the input
embedding g number of times. This paper reduces the complexity from O(n2) to O(n).

2.5 State of the Art for Grammar Error Correction

2.5.1 Better Evaluation for Grammatical Error Correction

MaxMatch is an evaluation procedure which measures how well an algorithm did in produc-
ing a grammatically correct sentence from a grammatically incorrect sentence. It focuses
on finding edits in the sentence. Edits are the differences between the original sentence
and the correction. If “Our transformer process the tokens efficiently” is the original incor-
rect sentence and “Our transformer processes tokens efficiently” is the reference correction,
then the edit will be ((), process the −→ processes). Thus, an edit can be a replacement of
a word. It can also involve adding a new word in the sentence or removing a word from
the sentence. That is, a series of edits are transformations which result in the corrected
sentence.

The reference corrected sentence can be compared with the original sentence to identify
the ideal model edits. Then the system generated sentence can be compared with the

15

original sentence to identify the model edits. These are then compared with each other as
described in the next paragraph.

Precision, Recall and F1 score are then computed for how many edits are identified
correctly. Precision tells us how many of the model edits were present in the perfect model
edits and Recall tells us how many of the perfect model edits were discovered by the model.

2.5.2 Neural Grammatical Error Correction Systems with Un-
supervised Pre-training on Synthetic Data

Roman et al. [17] uses the transformer architecture described in Section 2.2. This paper
improves results by creating a large synthetic data set. Grammatically correct sentences
are taken and errors are added to them. These sentences containing errors are then used
as input, and the original grammatically correct sentences are used as the ground truth
during training. To train the system, 200 million pairs are generated.

We now describe the steps taken to generate the error-full sentences. The number of
errors in a sentence are sampled from a Gaussian distribution. Then for each error to be
introduced a word is chosen and an error is introduced in it. On the selected words, one of
three operations may be performed: replacement, insertion or deletion. The first operation
is replacing a word by another word. Replacements could have been chosen randomly from
a dictionary. However, this paper does a good job of replacing the current word with a
word which is commonly confused with the current selected word. Commonly confused
words are available in the confusion lists available inside spell checkers. This paper uses
these confusion lists to choose replacements. The other two operations involve adding a
random word after the currently selected word or deleting the current word.

2.5.3 An Empirical Study of Incorporating Pseudo Data into
Grammatical Error Correction

Kiyono et al. [23] is similar to Roman et al. [17]. It uses a full transformer just like
Roman et al. [17]. This paper also augments data by introducing errors in grammatically
correct sentences. They produce synthetic data using two methods. The first method puts
noise directly into the sentences and the second method for generating sentences involves
training a system to produce sentences with errors in them.

The first approach of directly putting noise into sentences involves choosing one of four
options for each word in the sentence: masking, deletion, insertion or keeping the original.

16

The mask operation is novel to this paper and is not seen in Roman et al. [17]. The second
approach is called back translation. In this approach a system is trained in the reverse
direction. That is, grammatically correct sentences are used as input and grammatically
incorrect sentences are used as output. Once the system is trained, any corpus with good
grammar can be input into the trained model and corresponding incorrect sentences can
be generated. According to the experiments conducted in the paper the first approach of
directly injecting noise into the correct sentences works better.

This paper also explores the choice of the corpus from which incorrect sentences are
generated and finds that a corpus with good grammar is a better choice than a corpus with
weaker grammar. It also explores the choices of either doing training on the synthetic and
human annotated data in the same stage, or, training on synthetic data in the first stage
and then fine-tuning on the human annotated data in the second stage. It finds that the
latter choice is better, probably since the teaching signal from the synthetic data becomes
dominant when the two corpora are used in the same stage. Moreover, the paper shows
that increasing the number of synthetic sentence pairs improves the results.

Compared to Roman et al., Kiyono et al. [23] used the algorithm described above which
is different from the one used to generate synthetic data in Roman. Moreover, Kiyono et
al. made a more thorough evaluation of training and dataset choices. His paper also
makes corrections in sentences only if they are classified by a specially trained classifier as
having a grammatical error which is not the case for Roman. Kiyono et al. also beats the
state-of-the-art result which had been established by Roman et al.

2.5.4 Parallel Iterative Edit Models for Local Sequence Trans-
duction

Awasthi et al. [2] predicts edits instead of tokens. Edits can include replace, append, copy
and custom transformations. Examples of custom transformations include changing words
from “-s” to “-ing” and from “-ed” to “-s”. Predicting edits makes the output vocabulary
smaller. This means that we do not need a large amount of data to train the system.

Edits are computed using a transformer encoder followed by a classifier. This makes
this model a sequence labelling model unlike the two models above which are sequence
generation models. By doing sequence labelling using a transformer encoder followed by
classifier, the system is allowed to run non-autoregressively. This makes it 5 to 15 times
faster compared to models based on the full transformer.

Running non-autoregressively does not allow dependency between output tokens to be
modelled. To improve the output of this model, the sentence is passed through the model

17

more than once. This allows the model to do things like making compound changes such
as inserting two words after a given word (one edit can insert only one word at a time).

To reduce the amount of specialized data for training a good system, a pre-trained
language model is used in place of transformer encoder. For this paper, the pre-trained
language model described in Devlin et al. [14] is used.

2.5.5 GECToR – Grammatical Error Correction: Tag, Not Rewrite

GECToR [28] is closely related to Awasthi et al. [2]. Just like Awasthi et al., GECToR
does not attempt to rewrite the correct answer, instead it does edits into the sentence
iteratively to generate a correct sentence.

The differences between GECToR and Awasthi et al. [2] are in the classifier and the
vocabulary of edits. The classifier for GECToR is a simple linear layer. Meanwhile for
Awasthi et al., the classifier has different equations for computing the probability for each
of the edits. Unlike Awasthi et al., the custom transformations do not attempt to do things
like changing “-ed” to “-s”. Instead, they change verb form. For example, “drinking” can
be converted to “drank”. These differences in vocabulary and classifier allowed GECToR
to beat the state-of-the-art models to become the leading model.

Recently, Roche et al. [32] beat the state-of-the-art set by GECToR. It used a large
synthetic data and a very large pretrained language model to achieve state-of-the-art per-
formance.

2.6 State of the Art for Machine Translation

2.6.1 BLEU: A Method for Automatic Evaluation of Machine
Translation

Papineni et al. [30] introduces the BLEU score. This score is used to evaluate machine
translation systems. For finding the value of the measure, the number of “sets of n con-
secutive words” (n-grams) found in both reference and system translations are divided by
the total number of n-grams in the candidate translations. This corresponds to precision
for a given value of n and is denoted by pn. This process is repeated for different values of
n (up to 4). A logarithm function is applied to the precision obtained for each value of n.

18

A weighted average of the pn’s is taken using the weights wn. The result is then exponen-
tiated and multiplied by a brevity penalty. BP (brevity penalty) is a term which increases
exponentially as the length of the sentence becomes smaller than the reference translation,
while it is clipped at 1 if it is longer than the reference translation. The equation is given
below:

BLEU = BP. exp
N∑

n=1

(wn log pn)

where, pn = Precision for n-grams of size n, wn = Weight corresponding to the value
of n and BP = Brevity penalty

The brevity penalty discourages sentences shorter than the candidate sentence by pe-
nalizing shorter sentences using an exponential relationship. BLEU has been analyzed to
show a high correlation with human judgement. Being an automated measure, it saves a
lot of time compared to human judgement which can take days and weeks.

Evaluation of Grammar Error Correction cannot be done using the measures commonly
using BLEU. We found that measures for machine translation like BLEU give very good
results on grammar error correction if the source sentence is used as the system output and
then compared with the reference output. However, MaxMatch introduced in Dahlmeier
et al. [11] does not face this problem.

2.6.2 Massive Exploration of Neural Machine Translation Archi-
tectures

Le at al. [6] made an exploration of RNN architectures for neural machine translation. In
doing so, the model achieved state-of-the-art performance. It uses GRUs [9] and LSTMs
[18] which are both variations of RNNs. This paper acknowledges the amount of time
it takes to train RNN variants. It attempts to reduce the amount of time spent by other
researchers on training these models by identifying intuitions for choosing hyperparameters.

This paper gives a series of findings for training RNN variants. It finds that LSTMs give
better results compared to GRUs. It also finds that using smaller embeddings also performs
surprisingly well. They also demonstrated that deeper models need residual connections to
train. Moreover, the results in the paper show that bidirectional encoders (which process
the sentences in both directions) perform better than unidirectional encoders.

19

2.6.3 Scaling Neural Machine Translation

Even with transformer architecture introduced in Vaswani et al. [34], neural machine
translation models can take days to train. The problem can be resolved by applying more
resources to the task. That is, by parallelizing the code across multiple GPUs and machines.
Parallel training can speed up training but it introduces a number of challenges. These
challenges include having to deal with different mini-batches taking different amounts of
time when run in parallel on different GPUs, having to use larger batch sizes which can
affect generalization performance and so on.

This paper [29] overcomes these challenges and succeeds in parallelizing the training
across 128 GPUs while achieving state of the art performance. This paper allows for
faster training which allows us to train for more epochs in lesser time. Training for more
epochs gives better results than [34]. Not only does this paper improve speed and hence
performance by training across multiple machines, it also speeds up the training on a single
GPU. It does so by implementing reduced floating point precision and increasing the batch
size on a single GPU.

2.6.4 Lessons on Parameter Sharing Across Layers in Transform-
ers

This paper [33] explores how efficient use of parameters can improve performance. Gen-
erally, models with larger number of parameters lead to better results. However, there is
a restriction on the number of parameters that can be used due to the size of the GPU
memory. Since there is often a limit on the GPU memory and hence the size of the model,
the question of how to use a given number of parameters efficiently arises. A vanilla model
can be outdone by models such as Universal Transformers (Dehghani et al. [13]) which use
all the parameters in a single layer which is then repeated for a given number of times.

This paper does not use all the parameters in the same layer since using all the param-
eters in the same layer increases the size of individual layers and hence the time taken to
train. Instead, it places unique parameters in M layers. These M layers are then repeated
in L times to give a total of M x L = N layers. This paper tries different ways of repeating
the M layers. In one method (CYCLE), the layers are repeated in the original order L
number of times. In another method (SEQUENTIAL), L consecutive layers share the same
parameters and the M sets of these L consecutive layers are repeated. The paper finds that
CYCLE and similar methods work better than SEQUENTIAL.

20

Using the techniques suggested in the paper [33], Kiyono et al. succeeded in achieving
state-of-the-art results. This paper currently has the best performance across all papers
on the WMT2014 English-German dataset.

21

Chapter 3

Contributions

3.1 Main Ideas

Attention is the key component of transformers. In this capacity, it warrants a special
exploration into its various facets. We have identified the main features, strengths and
function of the various components of the transformer. In this work, we report a detailed
discussion into a neural architecture search, which is the highlight of this thesis. This thesis
is interspersed with the introduction of a new architectural component of the attention layer
called reduced order dimension, a study into the need for linear layers within the attention
layer and various new choices in hyperparameters. The thesis finishes with the use of neural
architecture search to identify architectures with the best results.

One architectural choice is the use of different dimensions across different attention
layers, or within an attention layer. When similar configurations are not used in the
attention layers, we call such implementations “asymmetric”. The word asymmetry will
not only be used w.r.t. dimensions, but also will be used w.r.t different configurations, e.g.
difference in number of heads, etc. For asymmetric implementations we study asymmetry
among the different attention layers as well as within an attention layer.

Another interesting idea is the exploration of a different non-linearity instead of soft-
max. We have also explored the necessity of linear layers in the attention mechanism for
different attention layers. Most of the study has been done to reduce the computational
complexity of the attention layers.

Having introduced all the terminology, we can now discuss examples of asymmetry. For
example, we can run cross attention without linear layers and self attention with linear

22

layers, this is asymmetry with respect to the three attention layers. Another example of
asymmetry is running different attention layers with different number of heads, this is again
asymmetry with respect to the three attention layers). In asymmetry within an attention
layer, we run part of the linear layers at different resolutions.

To summarize, the three primary ideas/results which we will discuss in this chapter
are:

• Reduced Order Attention:

– The idea is to use existing linear layers processing Q, K, V to project them into
a lower dimensional space and another projection, finally projects them back
in the original order. Note that the layers are already there running at higher
dimensions (embedded dim) and project Q, K, and V to a space suitable for
doing the attention. We use them to achieve both functions simultaneously.

• A Different Choice of Non-linearity

– We explore simpler functions to replace the softmax function. These functions
will have lower complexity than softmax.

• Removal of Linear Layers

– For cross attention we can remove the linear layers which project Q, K, and V
to a different space.

– We will show that we cannot remove these linear layers in self-attention, other-
wise, a self-attention layer reduces to an identity transformation.

3.2 Reduced Order Attention

In the previous section, we alluded to a possibility of running attention at a different
“resolution” or dimension other than the embedded dimension. In this section we will
elaborate on this work. Before introducing the idea, we take a quick look at the basic
structure of attention layer. Also, we establish a baseline complexity for attention layer.
This baseline will then be compared with complexity of the corresponding layer running
at a reduced dimension.

23

3.2.1 Basic Structure of an Attention Layer

In Fig. 3.1, the diagram of attention is shown. The dot product of K and Q is taken
after projecting them to a different space via Wk and Wq respectively. Then, softmax is
taken over the result of the dot product. The output of softmax acts as a weight matrix
which acts on V and produces V ′ which is a linear combination of vectors of V . Finally, a
projection Wp is applied to the weighted sum found in the previous step.

Having explained the basic structure of attention layers, we will explain the main con-
tribution of our work and the trick we use to reduce the computational complexity.

Figure 3.1: Attention diagram

3.2.2 The Trick

In this section, we introduce additional linear layers in series with the projection matrices
Wq, Wk, Wv, and Wp (see Fig. 3.2). Since, our focus is reduction in complexity, this step
sounds quite counter intuitive. Later we will see, how we can get rid of these matrices.

The matrix which comes immediately after Wq is Wq different input and output di-
mension. Similarly, there are matrices right after Wk and Wv. These matrices are used to
change the dimension of K and V respectively. Nothing prevents us now from choosing a
lower dimension for the output of these matrices as compared to the input. However, the
reduction factor for Wq and Wk needs to be the same.

The reduced dimension of the above two matrices lead to a reduced dimension for dot-
product between projections of K and Q, and low dimensional weighted summation of

24

projections of V . The result of the weighted summation is then scaled back up via another
scaling matrix Wp. This matrix acts as a bridge to come back to the original dimension of
the transformer.

Figure 3.2: Introduction of additional scaling matrices

In Fig. 3.3, we have boxed together the counter part linear layers of Wq, Wk, Wv, and
Wp. It is quite straightforward to see that the matrices within a box can be combined
together into a single matrix. Obviously, the computational complexity will be reduced if
we use this equivalent matrix directly.

Figure 3.3: Combining the scaling matrices with their counterparts

In Figure 3.4, we can see that once we combine the linear layers for downscaling with the
linear layers WK , WQ and WV , we get the same diagram as the original. This gives lower

25

computational complexity than before. In Section 3.10, we will compare the computational
complexities of traditional attention layer and the one with proposed modifications.

Figure 3.4: Combining matrices - Final configuration is similar to base structure

3.2.3 Asymmetric Compression within an Attention Layer

The two operations in the attention layers which place a constraint on the reduction in
dimensions are dot product and weighted sum. The dot product operation takes the output
of W ′

k and W ′
q, thus they need to have the same output dimension.

In Figure 3.5, what I call the upper leg is shown in green and what I call the lower leg
is shown in blue. This terminology will be used throughout the rest of this work. Since the
dot product requires Q and K to have the same dimension, the upper leg has to operate
on the same dimension. It is, however, independent of the lower leg.

Since WP operates on the result of the weighted sum of values, the input dimension of
WP is depends on the output dimension of WV . There are, therefore, two separate legs in
attention. These two legs can have different dimensions. When different dimensions are
used for the two legs we call it asymmetric compression within an attention layer. Results
for this asymmetric compression are given in Section 3.6.

26

Figure 3.5: Reduced order attention

3.2.4 Asymmetry within or across layers

The results where I show compression by 2 (in Section 3.2.6), are for symmetric compression
within an attention layer. For asymmetric compression within an attention layer, we
can expect results to be somewhere between symmetric reduced order attention and no
dimension reduction.

It is also evident that we can run some attention layers with compression or without
compression. This is what I call asymmetry across attention layers. The results are in
Section 3.6, apply asymmetry across linear layers.

3.2.5 Complexity of Components of Attention Layers for Re-
duced Dimension

The equation for attention is given in the Equation 3.7. The computational complexity is
defined in terms the following variables.

Target Length = nt

Source Length = ns

Embedding dimension = d
Reduced embedding dimension = d′

27

Now we discuss the computational complexity for the three pre-attention linear layers
shown in Figure 3.5. Each embedding has a dimension of d and the application of the
linear layer requires d′ set of weights. The number of embeddings in Q, K, V and P are
the same as before:

O(QWq) = nt × d× d′ (3.1)

O(KWk) = ns × d× d′ (3.2)

O(VWv) = ns × d× d′ (3.3)

The output linear layer has the opposite input and output dimensions but complexity
remains the same for each embedding:

O(PWp) = nt × d× d′ (3.4)

To compute the first dot product we should note that Q contains nt vectors and K
contains ns vectors. We compute dot products for each pair of vectors, constructed with
one vector each from Q and K. The dot products take 2d′ operations since d′ multiplications
and d′ additions are required. We get the following computational complexity:

O(QKT) = nt × ns × d′ (3.5)

This equation requires nt computations of dot products of vectors of size ns for each
dimension of V i.e. d. The computational complexity is hence:

O(AwV) = nt × ns × d′ (3.6)

The FLOPs for this baseline implementation of attention for typical values is given
below:

1. nt = 30, ns = 33, d = 512

2. FLOPS(WqQ) = FLOPS(WPP) = 30 × 2 × 256 × 512 = 7, 864, 320 = A

3. FLOPS(WkK) = FLOPS(WvV) = 33 × 2 × 512 × 256 = 8, 650, 752 = B

4. FLOPS(QKT) = 30 × (2 × 256) × 33 = 506, 880 = C

5. FLOPS(AwV) = 30 × (33 × 2) × 256 = 506, 880 = D

6. Total = 2A + 2B + C + D = 34,043,904 (2x faster)

28

Reduced Attention RF
enc

RF
dec

RF
crs

Validation
BLEU

Test
BLEU

Baseline [512] 1 1 1 37.48 36.81
Baseline [256] - - - 36.29 36.45
Baseline [128] - - - 33.31 31.48
Enc Comp [512] 2 1 1 36.81 35.98
Enc Comp [256] 2 1 1 36.31 36.40
Dec Comp [512] 1 2 1 37.31 37.69
Dec Comp [256] 1 2 1 36.22 36.22
Cross Comp [512] 1 1 2 37.38 36.45
Cross Comp [256] 1 1 2 36.43 34.89
All Comp [512] 2 2 2 36.15 36.77
All Comp [256] 2 2 2 36.39 36.18

Table 3.1: Results for symmetric reduced order attention. * The square brackets show the
embedding dimension. Enc stands for encoder attention, Dec stands for decoder attention
and Comp stands for compressed.

3.2.6 Results

The results for symmetric reduced order attention are computed by training and testing
on the English-German Multi30K dataset [16] and given in Table 3.1. The sentences are
tokenized before being used for training. German is used as source while English is used
as target. The cross entropy loss is used to judge performance of the architecture during
training. The Adam optimizer is used to minimize the loss. For validation and testing, the
model is evaluated using the BLEU score.

3.2.7 Effect of Reducing Order of Attention

The results of transformers generally improve by increasing the embedded dimension as
well as increasing the layers. Usually, increasing the layers is more useful than increasing
the embedded dimension [4]. Higher embedding order improves accuracy of transformers
with a computational complexity trade-off. Reducing order of attention linearly reduces
computational complexity of attention layers. In inference, decoder runs sequentially, and
has two attention layers. Thus improvement is magnified in the decoder during inference.
Our trick enables running the transformer at higher embedded dimension (attention runs

29

in reduced order) with less computational requirements.

3.3 A Different Choice of Non-linearity

Now, we successively approximate softmax by activation functions that are similar to the
exponential activation function. Figure 3.6 shows a plot of the activation functions that
we will try.

Figure 3.6: Plots of approximations of softmax

Note that softmax has not been plotted since it is a complex multi-dimensional function
which is not amenable to a 2-D plot. Meanwhile, Exponential is a simpler function than
softmax and its value depends only on a single variable. Hence, it has been shown in the
plot given above.

30

Approximation Validation
BLEU

Test
BLEU

Time com-
plexity

Softmax 37.48 37.72 O(ntns log2 e)
Exponential 36.58 36.31 O(ntns log2 e)
ReLU(1+x)2 36.11 35.46 O(ntns)
ReLU(1+x) 36.40 33.27 O(ntns)
RELU(x) 36.46 36.39 O(ntns)

Table 3.2: Results for approximations of softmax. nt is target length, ns is sequence length
and e is the number of digits in the exponential.

3.3.1 Results of Approximations of Softmax Applied in Cross
Attention

The results in this section are computed by applying the transformer for machine transla-
tion on the Multi30K dataset. Adam optimizer is used to optimize the model with respect
to cross entropy loss. Each batch consists of 800 tokens. The learning rate is 0.00015. A
dropout of 0.1 is used. Table 3.2 shows the results for approximations of softmax.

The second entry ReLU(1+x)2 is the closest to softmax and, it is tried first. Its results
are reasonably good. Next, we remove the power in the expression of the second activation
function. This leaves us with a shifted ReLU function. Unfortunately, results for this
activation function are not good. Now we try a simple ReLU without any shift. We can
see that a simple ReLU performs reasonably well. This is interesting since ReLU is less
computationally expensive being O(ntns) compared to softmax which is O(ntns log2 e),
where e is the number of digits in the computational complexity.

In the complexity of softmax, the log2 e expression corresponds to computing the ex-
ponential. The complexity of the exponential is described in Ahrendt et al. [1].

In practice, the time gain is not very significant due to the relatively low number of
operations that involve the computation of the softmax. The average time was roughly 15
seconds per epoch for all the activation functions.

31

Encoder Heads Decoder
heads

Cross
Heads

Validation
BLEU

Test
BLEU

Time (sec)

8 8 8 37.70 37.42 11
4 8 8 37.75 36.86 12
2 8 8 37.83 37.49 11
1 8 8 37.60 37.42 11
8 4 8 37.77 37.84 11
8 2 8 37.72 37.17 11
8 1 8 37.79 37.49 11
8 8 4 37.60 36.98 12
8 8 2 37.28 37.42 11
8 8 1 37.59 37.51 11

Table 3.3: Results for asymmetric use of heads

3.4 Asymmetric Use of Heads in Different Attention

Layers

In this work, we suggest the use of a different number of heads for each of the attention
layers. This is named the asymmetric use of heads in different attention layers. This is
different from previous work where the number of heads were kept the same for each of
the attention layers.

3.4.1 Interesting Results w.r.t Heads

In Table 3.3, the results for asymmetric use of heads are given. We can see a variety of
results in the table. We can see that some of the combinations give better performance
than the baseline, which has 8 heads in each of the attention layers. This baseline can be
seen in the first row of the table. The best result achieved with the asymmetric use of
heads is shown in bold text.

3.5 Significance of Linear Layers in Self-Attention

We also studied the significance of linear layers in the attention layers. In this section,
we show that the cross attention can function reasonably well without the internal linear

32

layers. However, if we remove linear layers in self attention of encoder or decoder, the
attention layer collapses down to a simple identity matrix. Thus, for self-attention to work
properly, it needs to have a projection mechanism in place for the inputs.

In particular, for the self-attention to work, at least one of Q or K needs to be projected
to a different space via linear transformation.

3.5.1 Mathematical Equation of Attention?

V ′ = WP

(
softmax

(
(QW T

q)(KW T
k)

√
dk

)
(VW T

v)

)
= WPAw(VW T

v) (3.7)

The equation above is the equation of attention. The matrices Wq, Wk, Wv and Wp

show the application of linear layers to Q, K, V and the output of softmax. In the next
section we analyze the above equation for the case of self attention.

3.5.2 The Collapse of Softmax to an Identity Matrix

As we can see in the diagram of transformers (Figure 2.3), in self-attention, query and key
are both the same. This means that:

Q = K (3.8)

This is different from cross attention where the query comes from the decoder while
key comes from the encoder hidden states.

The correlation between the same vectors is expected to be higher than the correlation
between vectors that are not the same. This leads us to ask whether the result of the dot
product QKT is a diagonally dominant matrix when Q = K. If the square symmetric
matrix QKT is diagonally dominant, we are left with an interesting proposition. The
application of softmax to this matrix would result in the diagonal dominance of the matrix
being exaggerated. That is to say that the application of softmax will bring the matrix
close to being an identity matrix.

softmax

(
QKT

√
dk

)
≈ I (3.9)

33

The dot product of equal magnitude vectors will always be smaller if the vectors are not
aligned. This means that under the assumption that the vectors have the same magnitude,
the dot product of a vector with itself will be greater than its dot product with a distinct
vector.

For K = Q, each value on the diagonal of QKT corresponds to the dot product of a
vector with itself. The values on the diagonal will thus be higher than the values off the
diagonal which correspond to the dot product of a vector with a different vector. This
means that we will have a diagonally dominant matrix. The application of softmax will
make the diagonally dominant matrix approach to being an identity matrix.

What Do the Numerical Results of QKT/
√
dk Say?

The transformer is trained on the Multi30K dataset for the English to German task. Once
the transformer is trained, the matrix QKT is computed (where Q is the queries matrix and
K is the values matrix). The numerical values are plotted in Figure 3.7. The result shows
that the matrix is indeed a diagonally dominant matrix, with the vector dot-products on
the diagonal being much greater than the values off the diagonal.

Figure 3.7: Value of encoder QKT

The next question that arises upon verifying the diagonal dominance of QKT , is whether
the values of the diagonal will increase relative to the values of the diagonal after softmax
is applied to the matrix QKT . This is discussed below.

Result of Normalization Performed by softmax(QKT/
√
dk)

The softmax operation scales the values of each row of the matrix QKT by an exponential.
The values are then normalized to sum up to 1. In doing so, larger values which give

34

much higher values upon exponentiation grow much more than smaller values. After
normalization, we expect the values on the diagonal to be close to 1.

Indeed our expectation is correct at least for this application, and we can see that we
get a matrix that is so close to the identity that the differences are not visible with a few
significant digits as shown in Figure 3.8. Therefore, we can replace softmax(QKT) by an
identity matrix. This leads us to the realization that removing the linear layers applied
to Q and K, would make the computation of QKT a fruitless activity. In order for the
operation to compute something of value, we cannot do without the linear layers.

Figure 3.8: Softmax applied to result of encoder QKT

This confirms that in order for self-attention to be a practically useful operation the
linear layers are definitely required since when they are applied Q and K no longer have
the same vectors. When K and Q are different, QKT is not diagonally dominant matrix.
This makes self-attention a useful operation.

For the experimental results shown below, we use six layers of encoder and decoder.
Figure 3.9 shows the value of QKT for the first layer to the sixth layer in the encoder. When
we go deeper into the layers, the correlation matrices change with each layer. However,
the correlation matrix after softmax still stays close to and identity matrix. We get very
similar results in decoder layers also.

35

Figure 3.9: QKT for each layer in the encoder. The layer number increases from left to
right and top to bottom. The result on the right shows the results of the sixth layer after
softmax

3.5.3 Selected Results

In Table 3.4, we can see that when we remove the linear layers from the encoder attention,
we see a drop in performance. Similarly, when we remove linear layers from the decoder
attention, we see a drop in performance. Meanwhile, in the first result in the table, we
can see that when we remove linear layers from cross attention, the performance does not
drop. To explain this we do an analysis in the following section.

In Table 3.4, the True and False choices for linear layers show whether linear layers
were used in each of the three attention layers.

3.6 Neural Architecture Search in Transformers

3.6.1 Neural Architecture Search

There are many hyperparameters in Transformers. Hyperparameters in transformers in-
clude number of layers, embedded dimension, number of heads and feedforward dimension.
In this work, I am proposing a few more hyperparameters. The two hyperparameters are
lower dimensionality ratio of attention layer and type of non-linearity in attention.

36

Encoder Atten-
tion Linear Lay-
ers

Decoder Atten-
tion Linear Lay-
ers

Cross Attention
Linear Layers

Validation BLEU Test
BLEU

False True True 36.07 35.99
True False True 36.14 35.38
True True False 37.70 37.42
True False False 34.83 35.10
False True False 35.43 34.93
False False True 34.71 31.32
False False False 33.24 33.10

Table 3.4: Results for removing linear layers

The next challenge is to find the “optimal” hyperparameters. The problem of searching
for the best hyperparameters is not new. In NAS (Neural Architecture Search), we search
for the best network configuration which achieves best results.

3.6.2 Neural Architecture Search Methods

There are different methods for finding out architectures. Some methods are given below:

• Reinforcement Learning

– This is a very compute intensive method which requires a large number of data
points in order for it to be effective. Each data point is generated after fully
training the network. A controller is used to pick the next choice of the archi-
tecture. Zoph et al. used this method in NLP [37].

• Random Search

– This method has been explored in Yoshua et al. [5]. There has also been more
recent work.

• Train a Large Network and Prune the model to get a smaller model

– The process involves training a large network, from which smaller networks can
be derived.

37

3.6.3 Random Search Diagram

Figure 3.10 gives an idea of how random search works. We search randomly on the multi-
dimensional grid of hyperparameters. Once we find the best configuration, we can option-
ally do a random search around the best option. And to refine things further, we can then
do a grid search around the best option.

Figure 3.10: Random search diagram

3.6.4 Choice of Parameters

We decided to iterate over 15 parameters. There are 5 parameters in each of the attentions
and there are 3 attention layers.

The five parameters of attention layers are:

• Number of heads

• Upper Leg Compression (K, Q)

• Lower Leg Compression (V, P)

• Upper Leg Linear Layers

• Lower Leg Linear Layers

38

Another optional choice of parameters is removing the linear layers in attention. How-
ever, there is a constraint while removing linear layers. To implement compression in a
leg, we need to pass them through linear layers. For example, to implement compression
in upper leg, we need to have linear layers which scale down K and Q. Similarly for com-
pression in lower layer we need to have V and output pass through linear layers. For V we
will need compression, and for final projection we will need scale up.

3.6.5 Results of Random Search

In Figure 3.11, the results of the random search have been plotted. The results are again
computed for the English-German Multi30K dataset with the settings described in the
previous sections. Since it is a random search, the configurations are random. To make
the results of the search clearer we will sort the results by BLEU score in the next section.

Figure 3.11: Plot of random search

39

3.6.6 Results of Sorted Test Scores

The results from the previous section are plotted after being sorted based on the BLEU
score. The plot is shown in Figure 3.12.1

It can be seen that most configurations lead to fairly good results. The results are
mostly higher than 34 BLEU score and there are around four which are higher than 37
BLEU score.

Figure 3.12: Random search results sorted by BLEU score for Multi30K dataset

3.6.7 Results of Validation and Test scores

To avoid ”training” on the test set we sort by the validation score. A plot of validation
and test scores sorted by increasing validation score, is shown in Figure 3.13.

1The best options are given in Section 3.6.8.

40

Figure 3.13: Plot of test and validation scores sorted by validation score for Multi30K
dataset

3.6.8 Top 10 Results from Random Search

The top 10 options obtained by applying random search on Multi30K dataset are shown
in Table 3.5. The values in the table are sorted by validation score. The non-linearity
as mentioned in the table description can either be softmax (denoted by M) or RELU
(denoted by R). QKV P each denote the four linear layers in attention applied to query,
key, value and output respectively. If the value is Y, it means that the linear layer is
present. If it is N, it means that the linear layer is not present. The values of QKV P can
either be Y or N. “Heads” are the number of heads used in each of the attention layers.
CompQK and CompKV denote the reduction in dimension for the upper leg and lower leg
respectively. The variables described here have been expressed in short form in the table.

The state-of-the-art method for this dataset is [27]. Their method gives 39.7 BLEU

41

Rank Encoder Attention Decoder Attention Cross Attention Valid BLEU Test BLEU
1 R-YYYY-2-11 R-YYNN-4-11 S-NNYY-2-14 37.91 37.19
2 R-YYYY-2-41 R-YYNN-2-11 S-YYYY-1-12 37.85 36.90
3 S-YYYY-8-12 S-YYYY-4-14 S-YYYY-1-11 37.48 37.27
4 S-YYYY-4-42 R-YYYY-2-11 S-YYNN-1-11 37.47 37.19
5 S-YYYY-2-41 S-YYYY-1-11 R-NNYY-1-12 37.42 35.85
6 S-YYYY-8-22 R-NNYY-2-14 S-YYYY-2-14 37.34 35.27
7 S-YYYY-2-21 R-YYYY-2-24 R-YYNN-2-11 37.29 37.33
8 R-YYYY-1-21 R-YYNN-8-11 S-YYNN-2-11 37.21 36.51
9 R-YYYY-4-14 R-YYYY-8-21 S-NNYY-4-14 37.13 36.06
10 R-YYYY-2-41 S-YYNN-4-21 S-YYYY-4-21 36.89 36.93

Table 3.5: Top 10 results from random search for Multi30K dataset. The short form is
nonlinearity-QKVP-heads- compQK and compVP.

score which is slightly higher than the results achieved by our transformer implementation.
The reason is that they use images in addition to the source text, giving their method
an unfair advantage over our method which uses only the source text. We could have
probably used the complete training/test harness of images and text, but our focus was
to show that our new method of reduced order attention and other approximations, gives
results comparable with the baseline we start off with. To simplify our training process,
we decided to use only text processing, and our baseline for the Multi30K dataset with
text processing only was 37.80 validation BLEU score. We achieved similar scores with
reduced order attention and other proposed ideas.

3.6.9 Top 10 Result Conclusions

We analyzed the top 10 winners for features. The first point is that we can get a good idea
of what configuration should work well. Interestingly, the winner with random search has
two RELUs in Attention Layer. Based on the different results in Table 3.5, 2 heads is a
good option and 8 heads does not seem to be a good option. Finally, randomization can
pick options, one would never try intuitively.

42

3.7 Results Obtained on IWSLT

3.7.1 Plot of Results Obtained from Random Search

IWSLT, International Workshop on Spoken Language Translation, provided an English
to German dataset in its 2014 edition. This dataset is 5 times larger than the Multi30K
dataset. It includes complex sentences and is a more challenging problem. The results
obtained by random search on IWSLT dataset are plotted in Figure 3.14.

The results show a close correlation between test and validation scores. The results are
pretty good with a number of configurations scoring over 30 BLEU points. Note that the
reason for running the experiment on IWSLT is that it is much larger than the Multi30K
dataset previous experiments were run on.

Figure 3.14: Plot of test and validation scores sorted by validation score on IWSLT

43

Rank Encoder Attention Decoder Attention Cross Attention Valid BLEU Test BLEU
1 S-4-11 S-2-11 S-8-11 32.99 32.60
2 S-4-14 S-8-11 S-8-11 32.83 32.38
3 S-4-11 S-2-11 S-2-42 32.48 31.99
4 S-8-22 S-2-22 S-2-11 32.45 32.03
5 S-4-21 S-8-21 S-1-11 32.41 31.94
6 S-1-41 S-2-11 S-8-11 32.40 31.79
7 S-4-21 S-1-14 S-8-21 32.35 31.90
8 S-4-12 S-8-11 R-8-12 32.07 31.76
9 S-1-41 S-2-24 S-2-11 31.94 31.52
10 S-4-11 R-8-11 S-1-42 31.84 31.65

Table 3.6: Top 10 results from random search on IWSLT. In all the configurations linear
layers are required.

3.7.2 Top 10 Results from Random Search for IWSLT 2014 Dataset

The top 10 results obtained by applying random search on IWSLT 2014 dataset are shown
in Table 3.6. Again there are configurations where RELU has been used and good results
have been obtained. Similarly, the dimension has been reduced up to a factor of 4 with
good effect. The short form used in this table is the same as discussed in Section 3.6.8.
Note that in the short form shown in the table, none of the configurations contains an “N”
denoting absence of a linear layer. This is consistent with the theory which shows that
linear layers are required in self-attention for self-attention to have an affect.

The best performing method [35] for this dataset gives 38.61 BLEU score. To prove
the efficacy of our technique, we need a baseline. Which means that we need a model, a
dataset, and the corresponding hyperparameters needed to produce the results. Then we
use our approximations to indicate the applicability of our method. The best results we
could reproduce were using the Fairseq reference code and we achieved validation BLEU
score of 33.23, and set it as our baseline. Our proposed work again achieved results very
similar to the baseline.

3.8 Results for Grammar Error Correction

For GEC we used the dataset by Roman et al. [17] for training purposes and tested on
CoNLL 2014 dataset. The baseline, without our approximation gives an M2 score of 59.62.

44

Our results are summarized in Table 3.7. We get a speed gain of upto 17% with negligible
loss in accurary. All the top 10 configurations run with softmax since the results with
RELU are not as good for this dataset. It appears that with larger models RELU does
not have the same performance as Softmax. Linear layers are used in all configurations to
enable compression in attention.

The curve for the speed and accuracy trade-off is given in Figure 3.8. Note that,
the cross represents the configuration running without any reduced order attention. This
configuration clearly performs the worst among all the configurations in speed-accuracy
trade-off plot.

Figure 3.15: Effectiveness-Efficiency Trade-off Plot

3.9 Motivation for Neural Architecture Search

The same set of architectural configurations and hyperparameters cannot be expected to
work across all datasets and tasks; that’s the reason why we have to do the neural archi-
tecture search. Neural architecture search should be used to identify the best configuration

45

N
o.

E
n

co
d

er
A

tt
en

ti
on

D
ec

o
d

er
A

tt
en

ti
on

C
ro

ss
A

tt
en

ti
on

V
al

id
M

2
T

es
t

M
2

T
im

e
R

ed
u

ct
io

n
(%

)
1

S
-4

-1
1

S
-2

-1
1

S
-8

-1
1

41
.8

6
58

.0
7

4:
05

—
2

S
-4

-1
4

S
-8

-1
1

S
-8

-1
1

43
.4

7
60

.7
8

3:
42

9.
4

3
S

-4
-1

1
S

-8
-4

1
S

-2
-1

1
44

.2
5

60
.5

9
3:

48
6.

9
4

S
-8

-2
2

S
-2

-2
2

S
-2

-1
1

42
.2

0
58

.2
4

3:
30

14
.2

5
S

-4
-2

1
S

-8
-2

1
S

-1
-1

1
43

.1
2

60
.1

0
3:

40
10

.2
6

S
-1

-4
1

S
-2

-1
1

S
-8

-1
1

42
.0

5
59

.9
4

3:
46

7.
8

7
S

-4
-2

1
S

-1
-1

4
S

-8
-2

1
41

.9
5

57
.8

3
3:

36
11

.8
8

S
-4

-1
2

S
-8

-1
1

S
-2

-1
1

43
.3

3
59

.3
7

3:
45

8.
2

9
S

-1
-4

1
S

-2
-2

4
S

-2
-1

1
42

.1
2

58
.5

4
3:

23
17

.2
10

S
-4

-1
1

S
-8

-1
1

S
-1

-4
1

42
.1

7
60

.2
5

3:
48

6.
9

T
ab

le
3.

7:
T

op
10

re
su

lt
s

fr
om

ra
n

d
om

se
ar

ch
on

G
ra

m
m

ar
E

rr
or

C
or

re
ct

io
n

.
T

im
e

is
th

e
ti

m
e

p
er

ep
o
ch

in
h

ou
rs

an
d

m
in

u
te

s
(H

ou
rs

:M
in

u
te

s)
.

46

for a given task and dataset. Following this hypothesis, random search has been repeated
on the various datasets and tasks instead of performing it on one dataset only and then
simply reporting the results for the best configuration on the other tasks.

In performing the random search separately on each dataset and task, the hypothesis
that the same architectural configuration does not perform the best on all datasets has
been confirmed. For the first entry in Table 3.6, the configuration is the same as the entry
in Table 3.7. However, the configuration is not the best performing configuration in the
Table 3.7. It is in fact the third entry in Table 3.7 which has the highest validation score
on grammar error correction. This shows that repeating independent neural architecture
search for different datasets is required.

Due to the limitation of computational resources, exhaustive neural architectural search
is not feasible today. However, subset of search space in each ”dimension” can be identified
to significantly reduce the overall search space. Thanks to the Vector Institute resources,
computational resources helped us to utilize hundreds of hours of GPU compute power to
verify our findings.

3.10 Computational Complexity of Asymmetric Re-

duced Order Cross Attention

This section shows the computational complexity for the asymmetric reduced order at-
tention and compares it against original attention. Expressions written after the colon
represent the computational complexity for the equation. The target and sequence length
are denoted as follows:

Target Length = nt, Source Length = ns

The dimensions of the input embeddings are as follows:

embedding dimension = d

The variables used here are as described in the Sections 2.3 and 2.3.2. Q, K and V are
embedding matrices, while Wq, Wk, Wv and Wp are linear layers. It can be seen that the
linear layers Wq and Wk have the same input dimensions. As we can see in Figure 3.16,
the output dimension for both the linear layers is d′.

47

Figure 3.16: Attention Dimensions

The output dimension is the same because we need to compute the dot product of
the vectors in Q with the vectors in K. These two linear layers operating at the same
dimension constitute the upper leg of the attention layer. The complexity of the linear
layers is then as follows:

O(WqQ) = nt × d× d′

O(WkK) = ns × d× d′

Taking the dot product of the matrix Q and the matrix KT , gives us the following
complexity:

O(QKT) = nt × ns × d′

where Q = QWq and K = KWk.

In the equation above, the output of the dot product is denoted by D. The operation
applied to D is the softmax operation and the computational complexity for this operation
is [1]:

O(softmax(QKT)) = nt × ns × log2(e)

48

where e is the number of digits in the exponential of each element.

The weighted combination of V is computed using a second dot product in the attention
layer after passing it through Wv. As described previously in Section 3.2.3, Wv does not
have to be the same output dimension as Wk. We denote the output dimension of Wv as
d′′. The complexity of applying Wv is given below:

O(WvV) = ns × d× d′′

The weighted sum block is the second yellow block in Figure 3.17 going left to right.
The complexity is the following:

O(softmax(QKT) × V) = nt × ns × d′′

Figure 3.17: Dimension of result of Linear Layers Wv and Wp

The output of the weighted combination is passed through Wp and has the following
complexity:

O(Wp × (softmax(QKT) × V)) = nt × d′′ × d

where V = VWv.

The total number of operations in the attention layer is given below:

Total operations = ntdd
′ + nsdd

′ + ntdd
′′ + nsdd

′′ + ntnsd
′ + ntnsd

′′ + ntnsd
′ + ntns log2(e)

If ns = nt and d′′ = d′,

Total operations = 4ntdd
′ + 2n2

td
′ + n2

t log2(e)

49

3.10.1 Number of Computations for Fastest Configuration for
Grammar Error Correction

Now, we compute the number of operations used in the fastest configuration in the Table
3.7.:

ns = 33
nt = 30
d = 512
e = 10

The number of FLOPs has been computed using the computational complexity de-
scribed in the previous section.

The FLOPs for the Encoder Attention

1. nt = 30, ns = 33, d = 512, d′ = 256, d′′ = 256

2. FLOPS(WqQ) = 30 × 2 × 512 × 256 = 7, 864, 320 = A

3. FLOPS(WkK) = 33 × 2 × 512 × 256 = 8, 650, 752 = B

4. FLOPS(WvV) = 33 × 2 × 512 × 256 = 7, 864, 320 = C

5. FLOPS(WPP) = 33 × 2 × 256 × 512 = 8, 650, 752 = D

6. FLOPS(QKT) = 30 × (2 × 256) × 33 = 506, 880 = E

7. FLOPS(AwV) = 30 × (33 × 2) × 256 = 506, 880 = F

8. Total = A + B + C + D + E + F = 34, 043, 904

The FLOPs for the Decoder Attention

1. nt = 30, ns = 33, d = 512, d′ = 256, d′′ = 128

2. FLOPS(WqQ) = 30 × 2 × 512 × 256 = 7, 864, 320 = A

3. FLOPS(WkK) = 33 × 2 × 512 × 256 = 8, 650, 752 = B

50

4. FLOPS(WvV) = 33 × 2 × 512 × 128 = 4, 325, 376 = C

5. FLOPS(WPP) = 30 × 2 × 128 × 512 = 3, 932, 160 = D

6. FLOPS(QKT) = 30 × (2 × 256) × 33 = 506, 880 = E

7. FLOPS(AwV) = 30 × (33 × 2) × 128 = 253, 440 = F

8. Total = A + B + C + D + E + F = 25, 532, 928

The FLOPs for the Cross Attention

1. nt = 30, ns = 33, E = 512, d′ = 512, d′′ = 512

2. FLOPS(WqQ) = 30 × 2 × 512 × 512 = 15, 728, 640 = A

3. FLOPS(WkK) = 33 × 2 × 512 × 512 = 17, 301, 504 = B

4. FLOPS(WvV) = 33 × 2 × 512 × 512 = 17, 301, 504 = C

5. FLOPS(WPP) = 30 × 2 × 128 × 512 = 15, 728, 640 = D

6. FLOPS(QKT) = 30 × (2 × 512) × 33 = 1, 013, 760 = E

7. FLOPS(AwV) = 30 × (33 × 2) × 512 = 1, 013, 760 = F

8. Total = A + B + C + D + E + F = 68, 087, 808

The total number of operations across the three attentions is 127, 664, 640. Without
asymmetric compression, the total number of operations is 204, 263, 424. The number of
operations show a gain of 37.5%. This is higher than the 17% gain shown in Table 3.7.
The reason for the time gain being lesser than shown numerically, is that the number of
operations does not correspond directly to time improvement. Also the components besides
attention contribute to the time taken, hence, the time gain is not directly proportional to
the time improvement given by the computation shown in this section.

51

Chapter 4

Conclusion and Future work

4.1 Conclusion

Transformer architectures are the state of the art algorithms for sequence generation tasks.
They are a significant improvement over their RNN predecessors in the sense that all the
token of the target are predicted in parallel during the training phase. However, there is
still a need to improve the training as well as inference speeds. Attention, being one of the
core components of the transformers, has received lots of ”attention” in recent literature
in this regard.

Our work focuses on reducing the complexity of attention and takes a very different
approach. The primary responsibility of attention layer is to ”mix” the inputs by using
a input dependent weighting matrix. We worked on computing an approximation of this
weighting matrix by working in a reduced dimensional space. This was achieved by reducing
the dimension of query, key, and value vectors. It is worth noting that even in the reduced
dimensional space, the order of weighting matrix is still the same as in the conventional
implementation. Traditionally, all the attention layers run in the embedded dimension
space. In fact, all of the transformer runs in this space. By using our approximation,
different attention layers can run at different resolutions. Going a step further, we can
have a different resolutions for weighting matrix and a different resolution for the dot
product, making multi-resolution implementation of attention layer possible.

This technique can be applied to any of the encoder, decoder, or cross attention layers.
This technique can be applied in symmetrical or asymmetrical manner. Asymmetrical
number of heads in different attention layers was explored. We also approximated softmax

52

with a faster alternative, e.g., ReLU. Since, we deep dived into the attention mechanism,
we did an analysis of projection matrices of Q, K, and V for self attention and showed
that without these projection matrices, self-attention layers collapse to an identity matrix.

4.2 Limitations

We discussed architectural modifications in transformers to achieve reduction in compu-
tational complexity with negligible compromise in accuracy. Since most of the proposed
modifications are architectural modifications, these are not directly applicable for fine-
tuning of pre-trained transformers. One will need to retrain the backbones in order to use
our techniques.

Another limitation of our proposed technique is increase in number of computations
during training. The extensive neural architecture search leads to significant increase in
computations during training. However, as indicated in Chapter 1, our primary focus was
to reduce the inference speed, and increase in number of computations during training is
not as serious a bottleneck for many applications.

4.3 Future work

We expect our proposed architecture for computing the weighting matrix at a reduced di-
mension in the attention module to be widely applicable. We have tried our approximation
in the context of NLP - more specifically for GEC and NMT. It will also be worth exploring
how our work can be extended to language models which involve attention mechanism. It
can not only be extended to other NLP tasks, but can also be extended to other domains
like vision, since vision transformers (Dehghani et al. 2021 [15]) also use a similar attention
mechanism.

We can also piggyback our approximation over other novel approaches for complexity
reduction of attention layer, e.g., Katharopoulos et al. [21]. In works like these, our method
will have an even greater impact on the complexity of attention. It would be interesting to
explore how our work can combine with others which introduce new hyperparameters such
as Jungo et al. [20], where they propose a deeper encoder and a shallow decoder, which
gives better inference performance. Our work can even improve this further.

53

References

[1] Timm Ahrendt. Fast computations of the exponential function. Lecture Notes in
Computer Science, Volume 1563, 2002.

[2] Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal, Sabyasachi Ghosh, and Vihari Pi-
ratla. Parallel iterative edit models for local sequence transduction. Empirical Methods
in Natural Language Processing, 2019.

[3] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. Neural
Information Processing Systems, 2016.

[4] Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. Training deeper
neural machine translation models with transparent attention. Association for Com-
putational Linguistics, 2018.

[5] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 2012.

[6] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive exploration of
neural machine translation architectures. Association for Computational Linguistics,
2017.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, and et al. Language models are few-
shot learners. arXiv:2005.14165, 2020.

[8] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences
with sparse transformers. arXiv:1904.10509, 2019.

[9] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. On the properties of neural machine translation: Encoder-decoder approaches.
arXiv:1409.1259, 2014.

54

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate
deep network learning by exponential linear units (elus). International Conference on
Learning Representations, 2016.

[11] Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error correc-
tion. NAACL, 2012.

[12] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. Association for Computational Linguistics, 2019.

[13] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. Universal transformers. International Conference on Learning Representa-
tions, 2019.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. Empirical
Methods in Natural Language Processing, 2018.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. International Conference on Learning
Representations, 2021.

[16] Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30k: Multi-
lingual english-german image descriptions. arXiv:1605.0045, 2016.

[17] Roman Grundkiewicz, Marcin Junczys-Dowmunt, and Kenneth Heafield. Neural
grammatical error correction systems with unsupervised pre-training on synthetic
data. Association for Computational Linguistics, 2019.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 1997.

[19] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models. International Conference on Learned Representations, 2022.

[20] Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah Smith. Deep en-
coder, shallow decoder: Reevaluating non-autoregressive machine translation. Inter-
national Conference on Learning Representations, 2021.

55

[21] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Trans-
formers are rnns: Fast autoregressive transformers with linear attention. International
Conference on Machine Learning, 2020.

[22] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-
former. International Conference on Learning Representations, 2019.

[23] Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizumoto, and Kentaro Inui. An
empirical study of incorporating pseudo data into grammatical error correction. Em-
pirical Methods in Natural Language Processing, 2019.

[24] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing
tokens with fourier transforms. arXiv:2105.03824, 2021.

[25] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-
to-sequence pre-training for natural language generation, translation, and comprehen-
sion. Association for Computational Linguistics, 2020.

[26] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural archi-
tecture search. arXiv preprint, 2019.

[27] Huan Lin, Fandong Meng, Jinsong Su, Yongjing Yin, Zhengyuan Yang, Yubin Ge,
Jie Zhou, and Jiebo Luo. Dynamic context-guided capsule network for multimodal
machine translation. arXiv:2009.02016, 2020.

[28] Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem Chernodub, and Oleksandr
Skurzhanskyi. Gector – grammatical error correction: Tag, not rewrite. 15th Work-
shop on Innovative Use of NLP for Building Educational Applications, 2019.

[29] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine
translation. WMT, 2018.

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. Association for Computational Linguis-
tics, 2002.

[31] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 2019.

56

[32] Sascha Rothe, Jonathan Mallinson, Sebastian Krause Eric Malmi, and Aliaksei Sev-
eryn. A simple recipe for multilingual grammatical error correction. arXiv:2106.03830,
2021.

[33] Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in trans-
formers. arXiv:2104.06022, 2021.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Infor-
mation Processing Systems, 2017.

[35] Haoran Xu, Benjamin Van Durme, and Kenton Murray. Bert, mbert, or bibert? a
study on contextualized embeddings for neural machine translation. Empirical Meth-
ods in Natural Language Processing, 2021.

[36] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr
Ahmed. Big bird: Transformers for longer sequences. Neural Information Processing
Systems, 2020.

[37] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning trans-
ferable architectures for scalable image recognition. Conference on Computer Vision
and Pattern Recognition, 2018.

57

	List of Figures
	List of Tables
	Introduction
	Background information
	Recurrent Neural Networks
	Transformers
	Attention
	Components of Attention Layers
	Computational Complexity of Attention

	Computational Efficiency for Transformers - A Literature Survey
	Generating Long Sequences with Sparse Transformers
	Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
	Reformer: The Efficient Transformer
	Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
	Big Bird: Transformers for Longer Sequences

	State of the Art for Grammar Error Correction
	Better Evaluation for Grammatical Error Correction
	Neural Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic Data
	An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
	Parallel Iterative Edit Models for Local Sequence Transduction
	GECToR – Grammatical Error Correction: Tag, Not Rewrite

	State of the Art for Machine Translation
	BLEU: A Method for Automatic Evaluation of Machine Translation
	Massive Exploration of Neural Machine Translation Architectures
	Scaling Neural Machine Translation
	Lessons on Parameter Sharing Across Layers in Transformers

	Contributions
	Main Ideas
	Reduced Order Attention
	Basic Structure of an Attention Layer
	The Trick
	Asymmetric Compression within an Attention Layer
	Asymmetry within or across layers
	Complexity of Components of Attention Layers for Reduced Dimension
	Results
	Effect of Reducing Order of Attention

	A Different Choice of Non-linearity
	Results of Approximations of Softmax Applied in Cross Attention

	Asymmetric Use of Heads in Different Attention Layers
	Interesting Results w.r.t Heads

	Significance of Linear Layers in Self-Attention
	Mathematical Equation of Attention?
	The Collapse of Softmax to an Identity Matrix
	Selected Results

	Neural Architecture Search in Transformers
	Neural Architecture Search
	Neural Architecture Search Methods
	Random Search Diagram
	Choice of Parameters
	Results of Random Search
	Results of Sorted Test Scores
	Results of Validation and Test scores
	Top 10 Results from Random Search
	Top 10 Result Conclusions

	Results Obtained on IWSLT
	Plot of Results Obtained from Random Search
	Top 10 Results from Random Search for IWSLT 2014 Dataset

	Results for Grammar Error Correction
	Motivation for Neural Architecture Search
	Computational Complexity of Asymmetric Reduced Order Cross Attention
	Number of Computations for Fastest Configuration for Grammar Error Correction

	Conclusion and Future work
	Conclusion
	Limitations
	Future work

	References

