
Incorporating Linear Dependencies into
Graph Gaussian Processes

by

Yueheng Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Yueheng Zhang 2023



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

Chapter 1, Chapter 2.2, Chapter 3, and Chapter 4 are based on a conference submission
with coauthors Alexander Terenin, Haolin Yu, and Prof. Pascal Poupart, where I was
the lead author. Alexander Terenin simplified the presentation of our construction in
Chapter 3.1.1, provided expertise on existing graph kernels, and gave valuable suggestions
for texts and figures. Haolin Yu provided helpful suggestions for technical details in the
reinforcement learning experiment. This entire work was conducted in collaboration with
Prof. Pascal Poupart, who provided general guidance.

iii



Abstract

Graph Gaussian processes are an important technique for learning unknown functions
on graphs while quantifying uncertainty. These processes encode prior information by using
kernels that reflect the structure of the graph, allowing function values at nearby nodes to
be correlated. However, there are limited choices for kernels on graphs, and most existing
graph kernels can be shown to rely on the graph Laplacian and behave in a manner that
resembles Euclidean radial basis functions.

In many applications, additional prior information which goes beyond the graph struc-
ture encoded in Laplacian is available: in this work, we study the case where the depen-
dencies between nodes in the target function are known as linear, possibly up to some
noise. We propose a type of kernel for graph Gaussian processes that incorporate linear
dependencies between nodes, based on an inter-domain-type construction. We show that
this construction results in kernels that can encode directed information, and are robust
under misspecified linear dependencies. We also show that the graph Matérn kernel, one
of the commonly used Laplacian-based kernels, can be obtained as a special case of this
construction.

We illustrate the properties of these kernels on a set of synthetic examples. We then
evaluate these kernels in a real-world traffic speed prediction task, and show that they easily
out-perform the baseline kernels. We also use these kernels to learn offline reinforcement
learning policies in maze environments. We show that they are significantly more stable
and data-efficient than strong baselines, and they can incorporate prior information to
generalize to unseen tasks.
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Chapter 1

Introduction

Graphs are a ubiquitous data structure that represents relations between discrete entities,
such as how people interact in social networks [27], how places are connected in road
networks [21], how molecules interact in biology networks [17], etc.

Functions on graphs give additional information for the relations they represent [1]. For
example, in a social network, a binary function on the people can designate which people
are in a certain club; in a road network, a function mapping edges to the reals can store
distances between places; in a time series of gene regulation graphs, a function mapping
graphs to integers can tell us which time point a gene-interaction graph corresponds to.
Machine learning on graphs aims to approximate such functions to predict function values
at given inputs.

As in the above examples, the input space to the functions can be a set of nodes, a
set of edges, or entire graphs, and the function output can come from discrete classes as
in classification tasks, or from a continuous range as in regression problems. In this work,
we tackle the specific problem of regression on functions defined on the node set of a given
graph.

1.1 Problem statement

More precisely, our setup is as follows. Given a graph G = (V,E) with node set V , edge set
E ∈ V × V and edge weight function w : E → R, we assume that there exists an unknown
real-valued target function f : V → R on the node set. Given data D = {(vi, f(vi))}i
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consisting of input-output pairs for f , where vi ∈ V , we would like to predict f(v) for any
v ∈ V .

One of the major challenges of machine learning on graphs is the irregular input spaces,
which prevents direct applications of machine learning methods successful in Euclidean
spaces [4]. Graph neural networks (GNNs), a category of deep neural networks specifically
designed for graph-structured data, have been applied to a wide range of machine learning
problems on graphs [46]. However, certain properties of GNNs might not be desirable
in all applications. For example, explaining the decision process of GNNs is challenging,
and methods for this purpose are usually either heuristic themselves, or complicated and
computationally expensive [56]. Options to quantify the uncertainty during the decision
process of GNNs are also limited [54]. Our work therefore explores using Gaussian processes
for learning on graphs as an alternative to GNNs.

Gaussian processes are a versatile technique for approximating and quantifying uncer-
tainty about unknown functions [38], making them especially suitable for safety-critical
tasks. A Gaussian process can be seen as a random function from the input space to the
reals, where uncertainty for values at observed inputs are low and those at unobserved
inputs are high. The key ingredient in designing a Gaussian process regression model is
the covariance function, also known as the kernel, which specifies how correlated the values
at two input points are.

While there is a large literature on how to design kernels on Rd [38], techniques for
graphs are comparatively less-developed. Radial basis functions are a popular class of
kernels in Euclidean space, where the covariance between two points is only dependent on
the distance between them. However, simply replacing the Euclidean distance by graph
distance do not always result in well-defined kernels [3, 13], again because of the different
geometry. Most exisiting graph kernels can be shown to rely on the graph Laplacian
[22, 39], and behave in a manner that resembles Euclidean radial basis functions.

In many applications on graphs, more information is available than the structural in-
formation encoded in the Laplacian matrix. For example, we might not only know that
the function value at one node is closely related to the values of its neighbors, but also how
its value relates to those of its neighbors [6][41][7][5]. In such cases, it is natural to seek to
incorporate this additional prior information into the construction of the kernel, in order
to achieve better prediction accuracy and data-efficiency.
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1.2 Functions with linear dependencies on graphs

We focus on the special case where the ground-truth unknown function f : V → R has
the property that the value at one node is a linear combination of the value of its neigh-
bors, potentially up to some noise. To ease exposition, we begin with the noiseless case.
Specifically, we say that the unknown function f satisfies linear constraints if for all i ∈ V

f(i) =
∑

j∈V,(i,j)∈E

mijf(j) (1.1)

for some set of problem-dependent coefficients mij that define the constraints. If we rein-
terpret the function f : V → R as a vector f ∈ R|V |, this means that f = Mf , where
M is the matrix defined by the coefficients: hence, f must lie in the span of the unit-
eigenvalue eigenvectors of M. Exact linear constraints are therefore a fairly rigid notion:
we will generally be interested in cases where (1.1) holds approximately, possibly due to
incomplete observations of f , modeling simplifications, or the presence of noise: we develop
this further in Section 3.1. We note that this notion allows for directed constraints, even
if the underlying graph is undirected—we will make use of this flexibility in later sections.
Figure 1.1 visualizes two examples of linear dependencies on graphs.

To better motivate the setup of (1.1), note that if M is a stochastic matrix, then its
entries correspond exactly to the transition probabilities of a discrete-time Markov chain
over a finite state space. In this case, (1.1) are the equations which define the chain’s
stationary distribution. Such Markov chains are used to model many real-world dynamics
where the values of M are based on modeling assumptions. In these cases, one might be
interested in inferring f based on a combination of these assumptions and its observed
values based on data.

Our problem specification encompasses a wide range of applications. Graphs with
linear dependencies arise in linear Gaussian structural equation models—a common type
of model for inferring causal effects [6]. Our formulation also applies to Bellman equations
from control and reinforcement learning, which we will illustrate further in Section 4.2. In
addition, certain mesh editing operations based on discretized Laplacian commonly used
in computer graphics have the same linear form when viewed appropriately [41].

For problems where we know the value at one node is a function of the value of its
neighbors, but the exact relations are unknown or too complex, incorporating a simplified
set of linear constraints, possibly based on Taylor approximations, together with noise, can
be a simple and effective choice. Examples of this include modeling of complex dynamics
on graphs such as those arising in energy optimization, where locally linear assumptions

3



Figure 1.1: Left: illustration of linear constraints on a randomly-drawn synthetic graph. A
red edge corresponds to a constraint with positive coefficient, and a blue edge corresponds
to a constraint with negative coefficient. A more-solid line corresponds to a greater coeffi-
cient in absolute value. Right: illustration of linear constraints according to directions of
traffic flow on a road network, where nodes are traffic sensors – more details can be found
in Section 4.1. In both figures, the node at the head of the directed edge depends linearly
on the node at the tail.
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are used to approximate building thermodynamics [7]. Another example is traffic speed
estimation on road networks: although a comprehensive modeling framework might involve
many non-linear terms, we illustrate in Section 4.1 that simple linear constraints derived
from first principles can improve performance when incorporated into a speed prediction
task.

In all of the examples mentioned above, we have a target function f : V → R on graphs
that we assume to have linear dependencies between a node and its neighbors, possibly up
to some noise. Our task is to predict unknown values of f from the graph, using a model
of the structure of the linear dependencies, and noisy observations of the value of f for
certain nodes.

1.3 Contribution

In this work, we propose a type of graph kernels which incorporates linear dependencies on a
graph. This is done through a simple and easy-to-interpret interdomain-type construction.
This kernel can be used both in cases where dependencies are known exactly, and in cases
where they are known approximately up to some noise. Our theoretical and empirical
contributions are as follows.

• We examine the prior information these kernels include, analyze their robustness
under misspecification, and show their connection to Laplacian based kernels. We
illustrate their properties on a set of synthetic examples.

• We evaluate these kernels in a real-world traffic speed prediction task, and show that
they easily out-perform the baseline kernels.

• We use these kernels to learn offline reinforcement learning (RL) policies in maze
environments. We show that they are significantly more stable and data-efficient
than strong baselines, and they can incorporate prior information to generalize to
unseen tasks.
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Chapter 2

Background

In this chapter, we introduce necessary technical background, as well as related research
areas and prior works. Specifically, we derive the basics of Gaussian processes, and then
give an overview for related works on graph kernels and constrained Gaussian processes.
Since reinforcement learning is a major application of this work, we also introduce the
problem setup for reinforcement learning. Section 2.1 references [38], and Section 2.4
references [44].

2.1 Kernels and Gaussian processes

We begin by reviewing properties of multivariate Gaussian distribution. We then introduce
Bayesian linear regression and Gaussian proceses, and show their connections to each other.

Throughout this section, we use lower case letters for scalars, bold lower case letters
for vectors, and bold upper case letters for matrices.

2.1.1 Properties of multivariate Gaussians

A multivariate Gaussian random vector x ∈ Rn with mean µ ∈ Rn and n × n covariance
matrix Σ, written as

x ∼ N (µ,Σ)

has joint probability density function
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p(x | µ,Σ) = (2π)−n/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.1)

Let y := Ax+ b be an affine transformation of x with A ∈ Rm×n and b ∈ Rm. Then,
y is an m-dimensional multivariate Gaussian as follows:

y | x,A, b ∼ N (Aµ+ b, AΣAT ). (2.2)

Let x1, x2 be jointly Gaussian:[
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ1 Σ12

ΣT
12 Σ2

])
.

Then, the marginal distribution of x1 is

x ∼ N (µ1,Σ2). (2.3)

The conditional distribution of x1 given x2 is

x1 | x2 ∼ N (µ1 + Σ12Σ
−1
2 (x2 − µ2), Σ1 −Σ12Σ

−1
2 ΣT

12). (2.4)

Rigorous definitions of multivariate Gaussian and proofs of the above properties can be
found in [15].

2.1.2 Bayesian linear regression

Let f : Rn → R be a target function, and D = {(xi, yi)}Ni be input-output pairs observed
from f where xi ∈ Rn and yi are scalars. We want to learn a regression function f∗ from
D such that f∗ approximates f .

Let φ : Rn → Rd be a feature map that takes inputs x ∈ Rn to a feature space in
Rd. For example, when φ is the identity, input space and feature space coincide. Another
example is when x is a scalar, and φ(x) = (1, x, x2, . . . , xk)T . This enables polynomial
regression with respect to the input x by linear regression in the feature space.

Linear regression models assume that the target function f is linear with respect to the
features φ(x), and we observe f up to noises. More precisely, for a given datapoint (x, y),
we assume that

7



f(x) = φ(x)Tw, y = f(x) + ε(x). (2.5)

Here ε(x) is the noise term, which is often modeled as i.i.d. Gaussian random vari-
ables with zero mean and variance σε. The model fitting process consists of learning the
paramters w and arriving at the regression function f∗(·) := φ(·)Tw. We then use f∗ to
predict the value of f on new inputs x∗1, . . . ,x∗M .

For compact notation, we write the N datapoints in D together in vector notation. We
write y for (y1, . . . , yN). We write X for the n×N matrix where columns are x1, . . . ,xn,
write Φ for the d × N matrix where columns are φ(x1), . . . ,φ(xn), and likewise for X∗
and Φ∗.

Then, applying our model in Equation (2.5) to all datapoints in D, we have that

y = ΦTw + ε, where ε ∼ N (0, σ2
ε I). (2.6)

To learn the parameters w from D in a Bayesian way, we view w as a multivariate
Gaussian random vector with zero mean and covariance function Σ:

w ∼ N (0,Σ).

Bayes’ rule states that

posterior =
likelihood · prior

marginal likelihood
.

In our case, the posterior distribution for the parameters can be expressed as

p(w | y,Φ) =
p(y | w,Φ)p(w)

p(y | Φ)
=

p(y | w,Φ)p(w)∫
p(y | w,Φ)p(w)d(w)

. (2.7)

To obtain the left-hand side, we need to find an expression for p(y | w,Φ). In Equa-
tion (2.6), when Φ and w are given, y is a multivariate Gaussian ε shifted by a constant
vector and thus a multivariate Gaussian itself by (2.2), with distribution

p(y | w,Φ) = N (ΦTw, σ2
ε I).

8



Then, expanding the density function (2.1) and completing the squares, the variables
in the numerator in Equation (2.7) becomes

p(y | w,Φ)p(w) ∝ exp

(
− 1

2σ2
ε

(y −ΦTw)T (y −ΦTw)

)
exp

(
−1

2
wTΣ−1w

)
∝ exp

(
−1

2
(w −AΦy/σ2

ε )
TA−1(w −AΦy/σ2

ε )

)
where

A =

(
1

σ2
ε

ΦΦT + Σ−1

)−1

.

We recognize the above expression to be the variable part of a multivariate Gaussian.1
Since the denominator is simply a normalizing factor, we conclude that the overall posterior
distribution is Gaussian as follows:

w | y,Φ ∼ N (
1

σ2
ε

Σw|DΦy, Σw|D) where Σw|D :=

(
1

σ2
ε

ΦΦT + Σ−1

)−1

(2.8)

Finally, we obtain the predictive distribution f ∗(Φ∗) := ΦT
∗w for new inputs X∗ using

the posterior dsitribution of w (2.8). We notice that f ∗(Φ∗) is a linear transformation of
the multivariate Gaussian w, and thus is a multivariate Gaussian as specified in (2.2):

f ∗(Φ∗) ∼ N (
1

σ2
ε

ΦT
∗Σw|DΦy, ΦT

∗Σw|DΦ∗) (2.9)

2.1.3 Kernel trick

Calculating the expressions in (2.9) requires inverting d×d matrices where d is the dimen-
sion of the feature space. When the feature space is very large, this can become infeasible.
However, if we do not work with the covariance matrix Σ explicitly, it is possibble to invert
an N ×N matrix instead where N is the number of datapoints.

Towards that end, we first unpack the expression in (2.9) by writing Σw|D in a different
form.

Using the Woodbury matrix identity [55] (A.1), we obtain

Σw|D =

(
1

σ2
ε

ΦΦT + Σ−1

)−1

= Σ−ΣΦ(σ2
ε I + ΦTΣΦ)−1ΦTΣ. (2.10)

1Notice that Σ−1 is positive definite if Σ is, and ΦΦT is positive semidefinite. Therefore A is positive
definite.
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Substituting (2.10) into (2.9), we see that Σ only appears in the predictive mean and
covariance in the forms of ΦΣΦ, ΦΣΦ∗, Φ∗ΣΦ, and Φ∗ΣΦ∗. Let us define a function
k : Rn × Rn → R such that

k(x1,x2) = φ(x1)TΣφ(x2). (2.11)

we can derive that k has an inner product form explicitly from the feature map φ and the
square root (see Appendix A) of prior covariance Σ:

k(x1,x2) = ψ(x1)Tψ(x2), where ψ(x) := Σ1/2φ(x). (2.12)

We also introduce the shorthand

KX,X′ :=

k(x1,x
′
1) · · · K(x1,x

′
N ′)

... . . . ...
k(xN ,x

′
1) · · · K(xN ,x

′
N ′)


where

X = (x1, . . . ,xN), X′ = (x′1, . . . ,x
′
N ′).

Then, we can rewrite the predictive mean and covariance (2.9) as follows:

1

σ2
ε

Σw|DΦy =
1

σ2
ε

[
KX∗,X −KX∗,X(σ2

ε I + KX,X)−1KX,X

]
y

=
1

σ2
ε

KX∗,X[I− (σ2
ε I + KX,X)−1KX,X]y

since I = (σ2
ε I + KX,X)−1(σ2

ε I + KX,X)

= (σ2
ε I + KX,X)−1KX,X + σ2

ε (σ
2
ε I + KX,X)−1

= KX∗,X(σ2
ε I + KX,X)−1y, (2.13)

ΦT
∗Σw|DΦ∗ = KX∗,X∗ −KX∗,X(σ2

ε I + KX,X)−1KX,X∗ . (2.14)

Instead of calculating k as in (2.12), we can specify such a function k, called a kernel,
directly without explicitly defining the feature map φ and the prior covariance matrix Σ.
A function k is a valid kernel, meaning that there can be implicit feature map and prior
covariance matrix associated with it, if and only if for any choice of N and D = (X,y),
the N ×N matrix KX,X is positive semidefinite [38].

When the kernel k is a known function that can be evaluated with negligible computa-
tional cost, computing the predictive mean and covariance for a Bayesian linear regression
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problem (2.13) (2.14) is independent of the dimension d of the feature space. This al-
lows us to work with feature spaces with large or even infinite dimensions implicitly, while
only having a computational cost dependent on the number of datapoints. This general
technique is called the kernel trick.

For example, one of the most commonly used kernels, the squared exponential kernel

k(x,x′) := exp

(
−1

2
‖x− x′‖2

)
corresponds to a feature space of infinite dimensions [38].

2.1.4 Function space view

We can arrive at the same expression for predictive distribution (2.13)(2.14) from a dif-
ferent problem setup than Bayesian linear regression. Instead of learning the posterior
distribution for the parameters w in (2.5) from known datapoints, we can treat the target
function f as a (possibly infinite) collection of random variables and obtain a distribution
for unknown datapoints conditioned on known datapoins. The former is often called the
weight space view and the latter the function space view. We now introduce Gaussian
processes to formalize the function space view.

A random function f : X → R is called a Gaussian process if, for every finite set of
points x ∈ XN , the finite-dimensional random vector f(x) is multivariate Gaussian. When
X is finite, as is the case in our consideration for Gaussian processes on graphs, such a
Gaussian process is equivalent to a multivariate Gaussian random vector. However, for
consistency with prior works, we use the language of Gaussian processes.

Each Gaussian process is uniquely defined by its mean function m(·) and a positive
semi-definite covariance kernel k(·, ·′)

m(·) = E(f(·)) (2.15)
k(·, ·′) = Cov(f(·), f(·′)) = E[(f(·)−m(·))(f(·′)−m(·′))], (2.16)

and we say that
f ∼ GP(m, k).

Commonly in practice, the training data is preprocessed to be zero-centered. Thus we
also take m(·) to be zero. A more general treatment can be found in [38].
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To adopt the same notation as for the weight space view, we consider the case when
X = Rn. However, in general X can take the form of any input space and our analysis
remains the same except for notation.

Given a set of data D = {(xi, yi)}Ni=1 from f where xi ∈ Rn is the input and

yi = f(xi) + ε, ε ∼ N (0, σε)

is the observation with noise, we can simply make use of the conditional property (2.4) of
multivariate Gaussian to incorporate D into predictive distributions f ∗ of f at new inputs
X∗. For that, we need to write down the joint Gaussian distribution of y and f ∗:[

y = f(X) + ε
f ∗ = f(X∗)

]
∼ N

(
0,

[
KX,X + σεI KX,X∗

KX∗,X KX∗,X∗

])
. (2.17)

Then, Equation (2.4) gives that

f ∗ | y ∼ N (KX∗,X(KX,X + σεI)−1y, KX∗,X∗ −KX∗,X(KX,X + σ2
ε I)−1KX,X∗). (2.18)

The expressions above coincide with those derived from the weight space view (2.13)
(2.14). In fact, for every Bayesian linear regression problem, there is a corresponding
Gaussian process with kernel calculated from the feature map and prior covariance (2.12).
On the other hand, every kernel has a corresponding (possibly infinite-dimensional) feature
map according to Mercer’s theorem [38], thus every Gaussian process has a corresponding
Bayesian lienar regression problem.

From the function space view, it is more apparent that the key ingredient in defining
such a regression model is the covariance function k. Commonly used kernels often cor-
respond to infinite-dimensional feature spaces, making the kernel approach more powerful
than Bayesian linear regression models with explicit feature space and prior covariance.
Kernel design is therefore a major area of research for Gaussian process methods.

2.2 Kernels on graphs

Let G = (V,E,w) be a graph with node set V , edge set E ∈ V × V , and weight function
w : E → R on the edges. We assume for now that G is undirected, and we will discuss
directedness in Section 3.3.

In this work, we consider the setting where the input space for Gaussian processes is
the node set V of the given graph. In the notation of Section 2.1.4, the input space X

12



corresponds to the set of nodes in G, which we usually identify as {1, 2, . . . , |V |}. For
simplicity of notation, we sometimes write the associated finite-dimensional vectors of the
target function f as f ∈ R|V |—that is, f(i) = (f)i for node i ∈ V .

From a prior design perspective, the key design choice for kernels on weighted undirected
graphs lies in how to translate the topology of the graphs, as specified by edges and weights,
into a positive semi-definite function between nodes. Most approaches for achieving this
[22, 39] are either defined from or can be shown to rely on the graph Laplacian, defined
as ∆ = D−A where D is the diagonal degree matrix and A is the adjecency matrix, to
capture the strength of the connections between nodes [3]. Some examples ([3]) include

• the graph exponential kernel, defined as

kΨ(i, j) =
N∑
n=1

Ψ(λn)fnf
T
n with Ψ(λ) = αe−

κ2

4
λ,

• the graph matérn kernel, defined as

kΨ(i, j) =
N∑
n=1

Ψ(λn)fnf
T
n with Ψ(λ) = α

(
2ν

κ2
+ λ

)− ν
2

,

• the random walk kernel, defined as

(I− (1− α)D−1/2∆D−1/2)p.

In the above, (λn,fn) are eigenvalues and eigenvectors of the graph Laplacian ∆, and
α, κ, ν, p are hyperparameters that can be chosen by, for example, maximizing the marginal
likelihood [38].

A Gaussian process prior (before conditioning on data) built using such Laplacian-based
kernels represents a random function f : V → R defined on the nodes of the graph, which
reflects the structure and connectivity of G by ensuring that the values of nodes are more
similar when the connections between them are stronger. We will use such kernels both as
baselines, and as potential building blocks for kernels that incorporate additional structure
in the rest of the sections.

Before proceeding, we note that these ideas admit a number of extensions and variations
that differ from the ones we study. For example, [34] study graphs with node features,
[57, 50] study multi-output processes, and [52, 23] study Gaussian processes f : G → R
whose input is an actual graph G ∈ G within some space of graphs G. We focus on the
case where the unknown quantity is a real-valued function on the nodes of a given graph.
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2.3 Interdomain GP and constrained GP

In our construction of the graph kernel, we start with a given covariance matrix and then
transform it into a kernel that satisfies the linear dependencies. This falls into the general
technique of interdomain Gaussian processes, which was first introduced in the context
of sparse Gaussian process inference [26] and has been used in numerous applications to
enable computationally efficient Gaussian process models [28, 48, 47]. The interdomain
technique has also been used for graph kernel construction in [34].

Our goal of fitting Gaussian processes that satisfy certain linear dependencies falls
into the general area of constrained Gaussian processes. There have been many works
using various constraint methods for Gaussian processes [45]. In particular, several works
[19, 25, 2, 37] in the numerical ODEs and PDEs literature, as well as [10] in the statistics
literature, also use transformed covariance matrix for linear constraints.

2.4 Offline reinforcement learning

Reinforcement learning (RL) is a machine learning framework for making sequencial de-
cisions by interacting with the environment. An RL environment can be modeled as a
Markov decision process, which includes

• a set of states S,

• a set of actions A,

• a transition model that for all s ∈ S, a ∈ A, and s′ ∈ S. specifies

P (st+1 = s′ | st = s, at = a),

which is the probability of transitioning to state s′ at time t+1 given that we executed
action a in state s at time t,

• a reward function that for all s ∈ S, a ∈ A, and s′ ∈ S, specifies R(s, a, s′), the
reward for transitioning from s to s′ by executing action a.

Note that the reward function can be as simple as a deterministic function dependent only
on s, as in most maze environments, but it can also be a stochastic function depending on
s, a′, and s′.
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Given the environment, our goal is to learn a policy π to (deterministically or stochasti-
cally) select an action given the current state S. A policy π∗ is optimal when it maximizes
the accumulated reward over all time steps

π∗ = argmaxπ
h∑
t=0

γt Eπ(rt).

Here rt is the reward obtained in step t, and h is the total number of time steps, also called
the horizon. There is also a fixed constant γ, called the discount factor, with 0 ≤ γ ≤ 1.
The discount factor controls how important future time steps are with respect to a current
time step, and a discount factor strictly less than 1 is required to learn a sensible policy
when the horizon h is infinite.

When the MDP is known, we can compute the optimal policy exactly via dynamic
programming [44]. In RL, however, the transition model and reward function for the
environment are a priori unknown, and information about them can only be gained by
interacting with the environment and observing the transition and reward for each executed
time step. The goal is to learn a good policy given interactions with the environment, called
trajectories, in the form of state-action-state triples {(si, ai, si+1)}h−1

i=1 .

The setup where the executed RL algorithm, also called an agent, obtain trajectories
by interacting with the environment in real time is called online RL. On the other hand,
the setup where the agent learns from pre-recorded trajectories is called offline RL. Online
RL allows more flexible exploration of the environment, whereas offline RL are preferred
in safety-critical tasks. In this work, we are concerned with offline RL.

2.5 Reinforcement learning with graph structure

Our application of graph kernels to RL is based on the observation that, the states and
actions of a discrete-state RL problem form a natural graph structure, where nodes are
states and edges are transitions between states. Learning a policy while taking into account
this graph structure might be more efficient than treating the state and action labels as
Euclidean data, as for common deep RL models [33, 24]. There are numerous existing
works that also incorporate graph structure into RL algorithms. [30] and [51] use the
state-action graph in maze environments to obtain low-dimensional vector embeddings of
the states, and use these embeddings as state features that feed into Q-networks. They
show improved performance over using raw state labels. [11] solves the state-space coverage
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problem using RL and GNN, and uses the state-action graph to faciliate exploration and
transferring to unseen state graphs.

Some other works use graph structures existing in the environment that do not use
states themselves as nodes, and optimization can be done as message passing on these
graphs. For example, [53] models the body parts of a robot as a graph; [18] models a
multi-agent environment as a graph; [9] uses the graph structure in dialogues for dialogue
policy optimization; [49] uses a causal relation graph for probabilisitc planning.
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Chapter 3

Graph Gaussian processes with linear
dependencies

In this chapter, we introduce our method, analyze its properties, and demonstrate its
efficiency and robustness on synthetic data.

3.1 Graph kernels with linear dependencies up to noise

We now describe how to incorporate linear dependencies into the covariance kernels used
to define Gaussian processes on graphs. The basic idea is to start with a graph kernel
that encodes assumptions about the noise terms on the graph, and then transform it into
a kernel that obeys the linear dependencies. In what follows, we begin by outlining the
precise construction, and then explore the prior information it introduces in more detail
and explore its connections with other kernels.

3.1.1 Kernel construction

Let G = (V,E,w) be a graph. We consider the noisy version of the constraints (1.1):

f(i) = δ(i) +
∑

j∈V,(i,j)∈E

mijf(j). (3.1)

for all i ∈ V . Here δ(i) is the noise term at node i.
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We seek to construct a Gaussian process prior for the target function f in (3.1). We
overload notation and still write f for the Gaussian process. We assume that the noise
terms are represented by a Gaussian process δ : V → R whose distribution is δ ∼ GP(0, kδ)
on graph G. For example, the simplest choice can be to take δ to be i.i.d. at each node.

Then, Equation (3.1) becomes an equation between two graph Gaussian processes,
namely f and δ, which are related to each other via an interdomain operator representing
the linear transformation defined by the dependencies. To see this explicitly, we can rein-
terpret this equation using matrices and vectors, and write f = δ+ Mf , which rearranges
into

f = (I−M)−1δ (3.2)

This equation therefore defines a Gaussian random vector at every node, and hence a
graph Gaussian process f : G → R, whose covariance kernel we denote by k. Since k is
the covariance kernel of a linear transformation of a Gaussian random vector, it follows
immediately from (2.4) that the resulting kernel is positive semi-definite, and has the form

k(i, j) = [(I−M)−1Λ(I−M)−T ]ij (3.3)

where the matrix Λ is defined as Λij = kδ(i, j). We call the kernel constructed this way a
graph kernel with linear dependencies M.

3.1.2 Understanding the prior information introduced by linear
dependencies

We now investigate qualitatively how our kernel incorporates the structure of the linear
dependencies.

We focus on differences with the most-common class of graph kernels, namely Laplacian-
based kernels, as introduced in Section 2.2. Though they are in general not distance-based,
most Laplacian-based kernels propagate uncertainty in a manner that resembles Euclidean
stationary kernels. One way to see this is through their connection with random walks: for
instance, certain forms of the graph diffusion kernel can be shown to equal the unnormalized
density of a random walk on the graph. The correlations induced by such kernels will tend
to be large in regions of the graph that are close-by, and small in regions that are far away.

The linearly constrained kernels of Section 3.1 do not generally behave this way. One
key difference is directedness : Laplacian-based graph kernels are only defined on weighted
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(a) (b) (c) (d) (e) (f)

Figure 3.1: Visualization of a linearly constrained kernel on a star graph (first 3 graphs),
and a random graph (last 3 graph). (a) and (d): linear dependencies on the graph. Each
edge is shown as red if the coefficient is positive, and blue if it is negative. Less-transparent
edges correspond to coefficients that are greater in absolute value. (b) and (e): values of
a linearly constrained kernel (lck), where the size of each node indicates the kernel’s prior
variance, and color/transparency indicates the sign and magnitude of the kernel’s value
between the respective edges. (c) and (f): values of a graph Matérn kernel with smoothness
ν = 3/2, for comparison.

undirected graphs, whereas our model allows directed linear dependencies, i.e. linear de-
pendencies where the coefficient matrix M is asymmetric. This allows our kernel to vary
the degree of correlation according to the directionality of the dependencies. In particular,
one can use this extra flexibility to construct kernels on directed graphs, which we explore
further in Section 3.3. Furthermore, Laplacian-based graph kernels have non-negative
prior covariance, whereas our kernel can model negative correlations by using negative
coefficients in linear constraints.

In Figure 3.1 and Figure 3.2, we visualize the properties discussed above on two graphs
with 10 nodes, namely a star graph and a random graph. In Figure 3.1, one can see
that the covariances represented by our kernel reflect the structure of the dependencies:
in particular, stronger dependencies tend to result in stronger covariances. The kernel
tends to assign negative correlations to nodes whose corresponding linear dependencies are
negative. In cases where the linear dependencies are positive in one direction, but negative
in the opposite direction, both positive and negative correlations can result, depending on
the strength of the dependencies and overall structure of the graph. In Figure 3.2, one can
see that the signedness pattern of random draws from a GP prior with linearly constrained
kernel is similar to the signedness pattern of the ground truth function. In comparison,
random draws from the graph Matérn kernel have values with the same signedness, or
values that vary gradually based on the geometry of the graph.
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(a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e) (f)

Figure 3.2: Visualization of random draws from a linearly constrained kernel on a star
graph (first 3 graphs), and a random graph (last 3 graph). First row is a draw with seed 1.
Second row is a draw with seed 2. The edge colors have the same meaning as in Figure 3.1.
(a) and (d): ground truth function on the graph. (b) and (e): values of a function randomly
drawn from GP prior with linearly constrained kernel. (c) and (f): values of a function
randomly drawn from GP prior with graph Matérn kernel with smoothness ν = 3/2, for
comparison. A node is shown as red if the function value is positive, and blue if it is
negative. Less-transparent nodes correspond to function values of greater absolute value.
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3.2 Robustness of GP prediction with linearly
constrained kernels

Our construction requires prior information on the matrix M that specifies linear dependen-
cies between nodes on graph G. However, accurate knowledge of M cannot be guaranteed
in most applications. In this section, we explore theoretically the robustness of our model
in the case that the linear dependencies in M are misspecified. In Section 3.4, we evaluate
the robustness of our model empirically on synthetic data.

3.2.1 Tolerance for misspecified linear dependency

In this section, we apply known results from [14] to give a probabilistic bound for how much
the posterior GP deviates from the ground truth function when using a linearly constrained
kernel with misspecified linear dependencies. The result in [14] uses the Reproducing Kernel
Hilbert Space (RKHS) framework, for which we refer the reader to [20] for an introduction.

Theorem 1 ([14]) Let D 6= ∅ be a set and k : D ×D → R a positive definite kernel with
corresponding RKHS (Hk, ‖ · ‖k). We define the kernel matrix KN = (k(xi, xj))i,j=1,...,N

and the column vectors kN(x) = (k(xi, x))i=1,...,N and yN = (yi)i=1...,N .

Let f be a function such that f ∈ Hk with ‖f‖k ≤ B for some B ≥ 0. Let x1, . . . , xN ∈
D be given and ε1, . . . , εN be real-valued independent Gaussian random variables with vari-
ance σ2

ε . Furthermore, define yn = f(xn) + εn for all n = 1, . . . , N .

Consider a Gaussian process g ∼ GP(0, k) and denote its posterior mean function by
µN , its posterior covariance function by kN and its posterior variance by σ2

N(x) := kN(x, x),
w.r.t. to data (x1, y1), . . . , (xN , yN), assuming in the likelihood independent Gaussian noise
with mean zero and variance λ ≥ 0. Then for any δp ∈ (0, 1) with

ηN(x) = σε‖(KN + λIN)−1kN(x)‖
√
N + 2

√
N
√

log(1/δp) + 2 log(1/δp) (3.4)

one has
P [|µN(x)− f(x)| ≤ BσN(x) + ηN(x) ∀x ∈ D] ≥ 1− δp. (3.5)

To apply Theorem 1, we also need the following theorem from [40]:
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Theorem 2 Denote by P ∈ Rm×m a positive semidefinite matrix and denote by H the
image of Rm under P. Then H with dot product 〈f, f〉H := 〈f ,Pf〉 is a RKHS and its
kernel is k(i, j) = [P−1]ij where P−1 denotes the pseudo-inverse if P is not invertible.

Now, let M be the true linear dependencies that generated the target function f in (3.2).
Let M′ be the linear dependencies assumed in the linearly constrained kernel k in (3.3),
which we can select such that I −M′ is invertible. Then k has the matrix form K :=
(I −M′)−1Λ(I −M′)−T . According to Theorem 2, the kernel k has the corresponding
RKHS (H, ‖ · ‖k) that is the image of K−1 with norm ‖ · ‖k = 〈·,K−1·〉.

Then, we can apply Theorem 1 to k and f . In the expressions (3.4) and (3.5), the
variance for observational noise σε can be specified based on the task at hand, and the
value of λ is a modeling choice. The rest of the quantities are known. It therefore remains
to upperbound ‖f‖k by a constant B.

In our case, since f = (I −M)−1b for some random vector b that models local noise,
we can calculate ‖f‖k as

‖f‖k = fTK−1f = bT (I−M)−T (I−M′)TΣ−1(I−M′)(I−M)−1b. (3.6)

An upperbound on the expression above can be obtained in different ways, depending
on the modeling for the task. For example, the norm of b and the magnitude of entries
of M can be specified by domain knowledge, and the form of Σ can be chosen to ease
computation (e.g. Σ can be a scalar multiple of the identity matrix as in our experiments).
Matrix perturbation bounds such as those in [42] can also be used to bound the norm of
(I−M′)(I−M)−1 if how much M′ deviates from M is easy to model.

3.2.2 Graph Matérn kernels as linearly constrained kernels

In the previous section, we showed that when the linear dependencies are not exactly
accurate but close to the true dependencies, the GP model with our kernel still gives
predictions that are close to the target function. However, there might be applications
where information about the linear dependencies is too inaccurate for Theorem 1 to be
meaningful, or no accurate information about the dependencies is available at all. In these
cases, we show that our kernel can fall back to Laplacian-based kernels.

Indeed, with appropriate modeling choices, graph Matérn kernels are linearly con-
strained kernels. Let the noise covariance matrix Λ = c1I be a constant multiple of
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the identity. Let A = D−1/2AD−1/2 be the normalized adjacency matrix of G, and let
∆ = I−A be the symmetric normalized graph Laplacian. Let the constraint matrix be

M = (1− c2)I−∆. (3.7)

Using this choice, we obtain

k(i, j) = [c1(I−M)−2]ij = [c1(c2I + ∆)−2]ij

which is a graph Matérn kernel with parameters α = c1, ν = 4, and κ =
√

8/c2. As a
consequence, such choices of M will result in similar prior information and performance as
graph Matérn kernels. This connection allows one to specify linearly constrained kernels
which mirror the behavior of Laplacian-based kernels where needed.

3.3 Kernels for directed graphs via linear dependencies

Since Laplacians arising from asymmetric adjacency matrices are not positive semi-definite,
Laplacian-based kernels apply only to undirected graphs. Hence, there are less kernels avail-
able for directed graphs than for undirected graphs, and many examples are constructed
by first converting the adjacency or Laplacian matrix into suitable analogs which resemble
undirected graphs—see for example [29], which suggest using a graph advection operator
for this purpose.

One can use linearly constrained kernels to define a kernel for directed graphs. For
a weighted directed graph G, we assume we have a well-defined base kernel, such as the
identity kernel k(i, j) = 1i=j. By choosing M = A to be the (asymmetric) adjacency
matrix of G, we obtain a linearly constrained kernel which reflects the structure of the
directed graph.

For this construction to be well-defined, the matrix I−A needs to either be invertible, or
replaced by a suitable analog such as a pseudoinverse. In general, there is no known natural
graph-theoretic characterization for the invertibility of adjacency matrices. However, in all
our synthetic and applied experiments, the graphs encountered satisfied this requirement.

There are many further design choices in constructing such a kernel for directed graphs,
based on the application at hand. For example, one can take into account the in-degree,
out-degree, or both when choosing the base kernel, and one can also use the degrees to
normalize the adjacency matrix before using it to construct kernels.
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3.4 Experiments on synthetic graphs with linear depen-
dencies

We now empirically evaluate the accuracy and data-efficiency of GP model with linearly
constrained kernels. We also demonstrate the robustness of model performance against
misspecified linear dependencies, and explore how the choice of the base kernel for the
noise terms affects model performance.

Given a graph G with n nodes, we generate an n×n coefficient matrix M by replacing
each non-zero entry of the adjacency matrix A of G with a random number sampled
uniformly from [−1, 1]. We then define a synthetic function on the nodes of the graph,
through the vector representation f = (I −M)−1ζ where ζ ∼ N(0, I). We consider three
kinds of random graphs, including a Barabási–Albert graph with 500 nodes and 3 edges
per node, an Erdős–Rényi graph with 500 nodes and parameter p = 0.2, and a Gaussian
random partition graph with 500 nodes. Full experimental details are given in Appendix B.

For each f , we evaluate GP predictions for test values of f , and examine the mean ab-
solute error with standard error for each model, against the number of training nodes. We
consider the graph Matérn kernel, the graph exponential kernel, the random walk kernel,
linearly constrained kernel as a Matérn kernel as described in Section 3.2.2, and linearly
constrained kernel (lck) with base kernel I, 10I, 100I, respectively. For each model, we
construct a version with exact M, a version with M perturbed by adding independent
Gaussian noise sampled from N(0, 0.1) to each nonzero entry, and a version similarly per-
turbed with noise from N(0, 0.2). Finally, we include a linearly constrained kernel which
instead uses a normalized adjacency matrix as in (3.7). To assess variability, we repeat
each experiment ten times.

Figure 3.3 gives the results, which show that all kernels that incorporate exact or
perturbed M clearly outperform the two kernels that do not use M. We further see that all
versions of our kernel perform comparably when M is well-specified. On closer inspection,
kernels with lower base kernel variance perform better in this case. In misspecified cases,
kernels with higher base kernel variance perform better.

These results illustrate that our construction does reflect the structure of the linear de-
pendencies and improves the quality of predictions in cases where this structure is present,
as expected. Moreover, linearly constrained kernels are robust against moderate perturba-
tions.
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Figure 3.3: Mean absolute error of predictions at test nodes for three different random
synthetic graphs, as a function of data size. We compare several variants of linearly con-
strained kernel and a graph Matérn baseline. As we aim to verify, kernels which incorporate
linear constraints significantly outperform the Matérn baseline, even when the linear con-
straints are perturbed by noise. When using the normalized adjacency matrix as in (3.7)
instead of the constraints, our kernel performs similarly to a Matérn kernel. Thus, our
model reverts to baseline performance in cases when the linear constraints are misspecified
or not available.
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Chapter 4

Applications

In this chapter, we demonstrate the usefulness of linearly constrained kernels in practical
domains by applying GP models with linearly constrained kernels to two tasks, traffic
speed prediction and offline discrete-state reinforcement learning.

4.1 Traffic Speed Prediction

We study the task of traffic speed prediction, a regression problem where the input is
speed data on nodes of a graph representing a road network. Given speed sensor data
on certain nodes, our task is to predict traffic speed on other nodes in the network. We
begin by showing how to derive a set of approximate linear dependencies between speeds
on adjacent nodes, and then construct our kernel based on these dependencies.

4.1.1 Model derivation

For each node i, let Ni be the number of cars per lane passing by node i during a time
interval of length t, let di and si be the distance between, resp. speed of, cars around node
i. We can model si as

si =
di
t/Ni

. (4.1)

Let pji be the transition probability of a car going from an adjacent node j to i, and let
`i be the number of lanes around node i. We assume that the traffic conditions on different
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lanes around node i are the same. Based on the conservation of the number of cars on
the road—that is, based on the fact that the cars exiting a road has to enter another road
—we have that

`i ·Ni = ai +
∑
j: j∼i

pji · `j ·Nj (4.2)

Here, the term ai represents cars which appear from roads not included in the graph—for
instance, because they are too small to model at the scale in question. Summation in (4.2)
is performed over all nodes j such that cars can go from j to i. Note that, in spite of
the probabilistic interpretation of pij, the sum of these values need not necessarily equal
1, as there might be cars turning to roads not included in the graph or going off roads.
Combining (4.1) and (4.2) gives

`i
si
di

= ai +
∑
j: j∼i

pji`j
sj
dj
. (4.3)

which define the linear dependencies used to construct our kernel. In practice, the relevant
terms in (4.3) can be easily collected from traffic sensors. One can also straightforwardly
either simplify these assumptions, or extend them to more complex forms that allow for
more accurate modeling.

4.1.2 Application and results

Next, we apply the above modeling to a real-world data. We consider a simplified variant of
the linear constraints derived in Section 4.1, constructed as follows. Assume that `i = di for
all nodes, and absorb the scalars into ai. Take the transition probabilities to be 1/ deg(j)
where deg(j) is the number of edges adjacent to j, and introduce a global multiplicative
scalar b for the transition probabilities to account for cars going off the modeled network.
With these choices, we obtain the linear dependencies

si = ai + b
∑
j: j∼i

1

deg(j)
sj. (4.4)

which we use to construct a linearly constrained kernel. Here our target function f maps
the node i to the speed at node i, that is, f i = si. The recorded speed on the training nodes
corresponds to entries of the noisy observation y as in (2.18), and b/ deg(j) corresponds
to the coefficients mij as in (3.3). Additional details on this construction are given in
Appendix B.
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Figure 4.1: (a): Comparison for test loss on traffic data between several variants of linearly
constrained kernels and a Matérn baseline. Here, the x-axis is the number of training
nodes, and the y-axis is the testing loss. (b): speed sensor data at a highway interchange.
(c) and (d): predictions by our kernel, and the Matérn kernel. Nodes without black
borders are training nodes, and those with black borders are testing nodes. We see that
linearly constrained kernels, which are able to incorporate the directed structure of the
road network, achieve significantly lower loss than undirected baselines.
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We use this kernel to predict traffic on a highway network. Following [3], we choose a
road network located in San Jose, California, using street data from OpenStreetMap [35]
and sensor data from the California Performance Measurement System [8]. The resulting
graph has 979 nodes and 1138 edges, with speed data available at 283 of the nodes.

Among the set of nodes with sensor data, we train on a randomly selected subset, and
then test on the rest of the nodes with sensor data. We include linearly constrained kernels
using the same linear dependencies specified in (4.4), with base kernel 10I, 10D (diagonal
degree matrix), and a trainable graph Matérn kernel, respectively. We include a graph
Matérn kernel by itself as a baseline, as well as a graph diffusion kernel and a random walk
kernel. We train all models for 1000 iterations to fit hyperparameters, and repeat each
experiment ten times.

Figure 4.1, we plot mean absolute test error as a function of the number of training
nodes. We see that linearly constrained kernels consistently outperform baselines which do
not incorporate constraints. Figure 4.1 further illustrates a zoomed-in view of a highway
interchange to visualize the differences in predictions between constraint-based kernels and
those which do not incorporate this information. We see that the graph Matérn kernel is
less effective at capturing the true speed function in situations when the speeds change
sharply between nearby nodes, compared to the linearly constrained kernel shown, which
benefits from the additional prior information included.

4.2 Offline Reinforcement Learning

Following the intuition that states and actions naturally form a graph with linear structure
in RL problems, we apply GP models with linearly constrained kernel to discrete-state RL.

4.2.1 Linear dependencies in offline RL

Given a discrete-state reinforcement learning problem with finite state space S, action
space A, unknown environment transition probabilities P : S × S × A → [0, 1], unknown
reward function r : S → R, and discount factor γ ∈ [0, 1), we assume that we have access to
a graph G = (S, E) whose nodes are states, and each directed edge (s, a, s′) corresponds to
a pair of reachable states (s, s′) labeled by some action a, as well as recorded trajectories in
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the form of (s, a, s′) transition tuples. We estimate the transition probabilities as follows:

P̃ (s′, a|s) ∝

{
1 + #(s, a, s′) (s, a, s′) ∈ E
#(s, a, s′) otherwise.

(4.5)

where #(s, a, s′) is the number of visits to s′ after executing a in s observed from the
trajectories. We can also marginalize a to obtain P̃ (s′|s) =

∑
a P̃ (s′, a|s). Given this

transition model, we can define a linear system of equations that expresses dependencies
between the unknown value (discounted expected sum of rewards) V (s) at each state s:

V (si) = r(si) + γ
∑

j:(si,_,sj)∈E

P̃ (sj|si)V (sj) (4.6)

Since the given trajectories may have visited only a small fraction of the states, and
the rewards of the unreached states are unobserved, the above system of linear equations
cannot be used to directly estimate V . However, we can use the equations to set the
coefficients mij = γP̃ (sj|si) in Equation 3.1. This allows us to use our kernel on the graph
G to obtain a distribution over V for the unvisited states.

4.2.2 Experiment and results

To illustrate the applicability of linearly constrained kernels in offline reinforcement learn-
ing, we experiment with 30×30 mazes adapted from Gym-maze, where Figure 4.5(a) shows
an example maze. The mazes are stochastic, with positive and negative rewards (traps)
at different cells, and with teleport portals: we describe full details about the mazes and
trajectories used for training in Appendix. The task is to navigate from predefined start
states (not necessarily visited in the training trajectories) to the bottom right corner.

We assume the agents have access to the structure of the maze, namely the connectivity
of the cells. This is natural in navigation tasks, where an agent can observe the visual
aspect of the environment, but does not have knowledge of the interactive aspects of
the environment. We follow the formulation in Section 4.2, using (4.6) to construct our
kernel. Here the target function is the value function V : S → R that maps a state to
the expected cumulative reward at that state. We estimate the value at each state visited
in the trajectories using Monte Carlo estimation [44], and this corresponds to the noisy
samples y of the target function as in (2.18). The coefficients mij in (3.3) are defined as
γP̃ (sj|si) in this case. We then use our constructed kernel to estimate the value function
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at all states. Finally, we use (4.5) to convert the estimated values into Q-values. We then
evaluate the fixed policy induced by these Q-values on mazes.

As baseline, we use a conservative Q-learning (CQL) model [24]—a canonical baseline
for offline RL. Since CQL cannot naturally incorporate the prior modeling graph, we use a
CQL model equipped with node embeddings of the graph generated by DeepWalk [36] as
another baseline (CQL-DW). Specifically, we feed the embeddings of cells as state labels
instead of simply the position of the cells. This has been shown to improve performance
of deep Q-learning methods in maze environments [31]. We also include GP models with
graph Matérn kernel, graph diffusion kernel, and random walk kernel, which incorporate
the graph structure but not the exact relations between the value function of neighboring
states.

For each randomly constructed maze, we use the upper left (ul) corner, upper right (ur)
corner, lower left (ll) corner, and middle (m) as the initial states for evaluations. For each
initial state and a number of given trajectories, we record the cumulative reward of each
model for five runs. Moreover, to test the robustness of the models, we use trajectories with
different optimality for training. Figure 4.2, Figure 4.3, and Figure 4.41 show the average
cumulative rewards and standard error over five runs when given training trajectories
that are increasingly optimal, i.e. the trajectories have on average fewer steps and lower
variance. We note that to control the experiment scale, we have capped all models to a
maximum of 1000 steps if they have not reached the goal state. This corresponds to a
reward of −0.11 if no traps are visited. The plots have a cut-off at −1.5, so models with
lower than −1.5 rewards are not shown.

In total, we see that linearly constrained kernel achieve higher rewards and significantly
more stable performance compared to other methods. It especially outforms the other
methods when the starting state is different from that of the training trajectories, showing
that linearly constrained kernel effectively propagates the value function to unseen states
via the graph structure and the linear dependency structure. Moreover, it is least affected
by the trajectories being suboptimal, supporting our analysis of its robustness in Section 3.2
and Section 3.4.

Figure 4.5(a) visualizes a specific maze and the trajectories for different methods, start-
ing from the upper-right state. The black dots are cells visited by the five training trajec-
tories, the blue dots are cells visited by CQL-DW, the green dots are cells visited by the
Matérn model, and the red dots are cells visited by our model (lck). Our model successfully
reaches the goal state from a starting state unseen in the trajectories, while both CQL-DW
and the Matérn kernel get stuck in different corners and fail to reach the goal state up until

1Best viewed in color. Please contact yueheng.zhang@uwaterloo.ca for tabular data.
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Figure 4.2: Average cumulative rewards and standard error, using suboptimal training
trajectories (recorded after 400 iterations of tabular Q-learning) with step counts 56.3 ±
13.6, 96.0± 18.3, and 84.4± 18.9 for maze 1, 2, and 3, respectively.

the step limit (1000). We omit CQL as it is outperformed by CQL-DW in this particular
run.
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Figure 4.3: Average cumulative rewards and standard error, using suboptimal training
trajectories (recorded after 700 iterations of tabular Q-learning) with step counts 39.6±6.7,
68.2± 9.7, and 59.8± 10.0 for maze 1, 2, and 3, respectively.

Figure 4.4: Average cumulative rewards and standard error, using suboptimal training
trajectories (recorded after 1000 iterations of tabular Q-learning) with step counts 35.7±
6.5, 63.2± 9.4, and 54.2± 8.1 for maze 1, 2, and 3, respectively.
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Figure 4.5: A visualization of the maze with seed 1. The black dots are cells visited by
the five given trajectories, the blue dots are cells visited by CQL-DW, the green dots are
cells visited by the Matérn model, and the red dots are cells visited by our model. Our
model successfully reaches the goal state in 80 steps with a reward of 0.99 (for reference,
the average length of the five given trajectories starting from upper-left is 63 steps with a
variance of 14, and the average reward is 0.99), whereas both CQL-DW and the Matérn
kernel failed to reach the goal state up until the step limit (1000).
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Chapter 5

Conclusion

In this work, we propose a type of kernels on graphs for Gaussian processes which incor-
porates information about linear dependencies between target function values at different
nodes. These constructed kernels, in contrast with Laplacian-based kernels, can incorpo-
rate directed information into their structure. Meanwhile, the graph Matérn kernels with
certain parameters can be seen as a special case of this construction, demonstrating the gen-
erality of our construction. We also analyze theoretically and empirically the robustness of
this construction under misspecified linear dependencies. To illustrate the usefulness of this
construction, we showcased how to derive linear dependencies in traffic speed prediction
and offline reinforcement learning settings. In both applications, these kernels significantly
improve performance and data-efficiency compared to alternatives that only include prior
information about connectivity. In addition, the traffic speed prediction task illustrates
that this construction is especially useful for tasks on graphs where directions are essential,
and the offline RL task further demonstrates robustness of our method.

The main limitations of this work and possible directions for future work are as follows.

• In the experiments, we derive task-specific linear dependencies. It would be useful
to develop a general principle for inferring the linear dependencies from data.

• We assumed additive observational noise on the nodes. It would be interesting to
study how our model changes with other assumptions, such as having noise on the
graph structure.

• Our experiments do not make use of the uncertainty quantification inherent in Gaus-
sian processes. It would be worth exploring our kernel in a risk-management setting,
where both predictive mean and predictive variance of the GP can be utilized.
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• It would be interesting to explore more diverse choices of base kernels, for example
such that they take into account the uncertainty in the linear dependencies.

• When applied to RL problems, we are limited to environments with discrete states
and actions. It would be interesting to explore applications to continuous spaces by
discretization. Furthermore, it would be challenging but very useful to generalize our
method so that it is directly applicable to continuous spaces.
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Appendix A

Matrix identities

Woodbury matrix identity For matrices A ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k, and
V ∈ Rk×n, the Woodbury matrix identity [55] states that

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (A.1)

when all relevant inverses exist.

Matrix square root Let A ∈ Rn×n be a positive-semidefinite matrix. By definition, A
is symmetric and thus has an eigendecomposition according to the spectral theorem [43]:

A =
n∑
i=1

λiviv
T
i where λi ∈ R and λi ≥ 0.

Then, the square root of A is defined as

A1/2 :=
n∑
i=1

λ
1/2
i viv

T
i . (A.2)

One can verify that A1/2 is symmetric and A1/2A1/2 = A.
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Appendix B

Experimental details

Our GP models are implemented with GPflow [32]. The baseline Matérn kernel has three
trainable parameters, with initial values ν = 3/2, κ = 5, and σf = 1. The baseline diffusion
kernel has two trainable parameters, with initial values κ = 5 and σf = 1. The baseline
random walk kernel has parameters α = 0.5 and p = 10 determined by grid search, and
trainable parameter σf set to be 1 initially. Our kernel has trainable parameter σf , initially
set to be 1. Below we provide experiment-specific details.

B.1 Synthetic Data

The random graphs we experiment on are (1) a Barabási–Albert graph with 500 nodes
and 3 edges per node, (2) an Erdős–Rényi graph with 500 nodes and parameter p = 0.2,
and (3) a Gaussian random partition graph with 500 nodes, mean cluster size 5, shape
parameter 5, in-cluster probability 0.2, and out-of-cluster probability 0.1. All three graphs
are generated using NetworkX [16] graph generators with random seed 1. Experiment
results on graphs generated with other seeds are very similar.

During training, we conduct ten runs with seeds [1, 2, . . . , 10], where the randomness
affects how training nodes are chosen. Each model is trained for 1000 iterations.

B.2 Traffic Speed Prediction

We use the same experiment setup as in [3]. More specifically, we use the same snapshot
speed data from PeMS [8] as this work. As a result, we do not utilize the temporal aspects
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of the data, and we do not compare against GNNs for temporal traffic forecasting.

For the four models that make use of the linear dependencies in Equation (14), we do a
rough grid search among [0.85, 0.90, 0.95, 0.99999] to determine a good value for the scalar
b in our linear dependencies. It turns out 0.95 is the best value for all models.

We conduct ten runs with seeds [1, 2, . . . , 10], where the randomness affects how training
nodes are chosen. Each model is trained for 12000 iterations.

B.3 Offline Reinforcement Learning

B.3.1 Environment Details

The three 30×30 mazes are generated with random seeds [1, 2, 3]. In the environment, the
states are the cells in the maze, and the actions are going up, down, left, and right. When
an agent performs an action in a certain direction, there is a 0.1 probability to transit to
each lateral direction. For example, if an agent executes an action to go down, with 0.8
probability it will transit to the cell below, with 0.1 probability each it will transit to the
cells on the left or right. When an agent tries to move in a direction where there is a wall,
it stays at the current cell. There are five pairs of portals in the maze. If an agent reaches
a portal in a pair, it will be directly teleported to the other portal in the pair. The goal
state is the cell in the lower right corner, with a reward of 1.0. There are five traps in the
maze, each with a reward of −1.0. All other states have a reward of −0.1/900. In order
to maximize the cumulative rewards, an agent would try to reach the goal state using as
few steps as possible while avoiding traps. Note that there are potentially many paths to
reach the goal state.

B.3.2 Offline Trajectories collection

We collect sub-optimal trajectories going from the upper left corner to the goal state, by
recording trajectories of a tabular Q-learning agent for 100 consecutive episodes after 700,
1000, or 3000 episodes of training. Statistics of the trajectories are given in the main text.

B.3.3 Training and Evaluation Details

We use a linearly constrained kernel with base kernel 0.1I. Our baseline CQL model has
a hidden layer of size 256. The input dimension is 2 for CQL, and 30 for CQL-DW with
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embedding dimension 30. We train CQL-based models for 50 episodes with batch size 128,
and GP models for 2000 iterations. During evaluation, for each datapoint, we conduct 5
runs with random seeds [1, 2, . . . , 5], where randomness affects stochasticity of the maze.

We empirically compare the training time for the four models using line_profiler. The
training time for CQL, CQL-DW, and the GP model with Matérn kernel are similar. The
training time for the GP model with our kernel is roughly half of those for other models.
Generating node embeddings for CQL-DW takes additional time that is of the same order
as the training time, and so does converting the value estimates of the GP into Q-values. A
more vectorized implementation of our method might have much shorter conversion time.
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