
Policy Learning under Uncertainty
and Risk

by

Yudong Luo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Yudong Luo 2024



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Mohammad Ghavamzadeh
Senior Principal Scientist
Amazon

Supervisor(s): Pascal Poupart
Professor, School of Computer Science
University of Waterloo

Internal Member: Yuying Li
Professor, School of Computer Science
University of Waterloo

Hongyang Zhang
Assistant Professor, School of Computer Science
University of Waterloo

Internal-External Member: Yash Vardhan Pant
Assistant Professor, Dept. of Electrical and Computer Engineering
University of Waterloo

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Statement of Contributions

This thesis consists of three of the author’s research works during his PhD at the University
of Waterloo, including Luo et al. (2022), Luo et al. (2023), and Luo et al. (2024). The
first work was published at ICLR 2022. The second work was published at NeurIPS 2023.
The third work was published at RLC 2024. Yudong Luo is the first author of these three
papers, who proposed the ideas, conducted the experiments and wrote the papers.

iv



Abstract

Recent years have seen a rapid growth of reinforcement learning (RL) research. In year
2015, deep RL achieved superhuman performance in Atari video games (Mnih et al., 2015).
In year 2016, the Alpha Go developed by Google DeepMind beat Lee Sedol, one of the
top Go players in South Korea. In year 2022, OpenAI released ChatGPT 3.5, a powerful
large language model, which is fine-tuned by RL algorithms. Traditional RL considers
the problem that an agent interacts with an environment to acquire a good policy. The
performance of the policy is usually evaluated by the expected value of total discounted
rewards (or called return) collected in the environment. However, the mostly studied
domains (including the three mentioned above) are usually deterministic or contain less
randomness. In many real world applications, the domains are highly stochastic, thus
agents need to perform decision making under uncertainty. Due to the randomness of the
environment, another natural consideration is to minimize the risk, since only maximizing
the expected return may not be sufficient. For instance, we want to avoid huge financial
loss in portfolio management, which motivates the mean variance trade off.

In this thesis, we focus on the problem of policy learning under uncertainty and risk.
This requires the agent to quantify the intrinsic uncertainty of the environment and be
risk-averse in specific cases, instead of only caring for the mean of the return.

To quantify the intrinsic uncertainty, in this thesis, we stick to the distributional RL
method. Due to the stochasticity of the environment dynamic and also stochastic polices,
the future return that an agent can get at a state is naturally a random variable. Distri-
butional RL aims to learn the full value distribution of this random variable. Usually, the
value distribution is represented by its quantile function. However, the quantile functions
learned by existing algorithms suffer from limited representation ability or quantile crossing
issue, which is shown to hinder policy learning and exploration. We propose a new learning
algorithm to directly learn a monotonic, smooth, and continuous quantile representation,
which provides much flexibility for value distribution learning in distributional RL.

For risk-averse policy learning, we study two common types of risk measure, i.e., mea-
sure of variability, e.g., variance, and tail risk measure, e.g., conditional value at risk
(CVaR). 1) Mean variance trade off is a classic yet popular problem in RL. Traditional
methods directly restrict the total return variance. Recent methods restrict the per-step
reward variance as a proxy. We thoroughly examine the limitations of these variance-
based methods in the policy gradient approach, and propose to use an alternative measure
of variability, Gini deviation, as a substitute. We study various properties of this new risk
measure and derive a policy gradient algorithm to minimize it. 2) CVaR is another popular
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risk measure for risk-averse RL. However, RL algorithms utilizing policy gradients to op-
timize CVaR face significant challenges with sample inefficiency, hindering their practical
applications. This inefficiency stems from two main facts: a focus on tail-end performance
that overlooks many sampled trajectories, and the potential of gradient vanishing when
the lower tail of the return distribution is overly flat. To address these challenges, we start
from an insight that in many scenarios, the risk-averse behavior is only required in a subset
of states, and propose a simple mixture policy parameterization. This method integrates
a risk-neutral policy with an adjustable policy to form a risk-averse policy. By employing
this strategy, all collected trajectories can be utilized for policy updating, and the issue of
vanishing gradients is counteracted by stimulating higher returns through the risk-neutral
component, thus the sample efficiency is significantly improved.
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Chapter 1

Introduction

Reinforcement learning (RL) considers the problem that an agent interacts with an envi-
ronment to maximize its expected cumulative rewards (or called return) (Sutton & Barto,
2018). This interaction is usually modeled as a Markov decision process (MDP) as shown
in Fig. 1.1, but the agent is initially uncertain about the true dynamics and rewards of the
MDP. Each time, the agent performs an action, receives a reward, and moves to the next
state. With this data collected, the agent will be more and more certain of the environ-
ment and learn which action leads to higher return. Usually, the expected future return
the agent can get by taking an action at a state is called the Q value.

RL algorithms have shown super human performance in several domains, e.g., Atari
video games (Mnih et al., 2015), and Go. We should notice that these domains are deter-
ministic, and the algorithms used to master these domains are risk-neutral, i.e., the goal
is to maximize the expectation of the return. In real world applications, the environ-

Figure 1.1: Markov Decision Process, figure from Sutton & Barto (2018). Agent interacts
with the environment by taking action At. Environment transits agent to St+1 and provides
a reward Rt+1.
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Figure 1.2: Random trajectories. Even though the agent starts from the same initial state,
it may end up with different trajectories due to the intrinsic uncertainty.

ment dynamic is usually stochastic, thus the uncertainty of the environment need to be
considered, and the risk need to be avoided. For instance, we want to avoid huge finan-
cial losses in portfolio management, which motivates mean-variance portfolio management
research (Markowitz & Todd, 2000).

1.1 Uncertainty in RL and Distributional RL

Generally, the uncertainty in RL stems from two sources:

Aleatoric uncertainty due to the intrinsic stochasticity of the environment such as
stochastic rewards, transitions, and the intrinsic stochasticity of agent’s policy.

Epistemic uncertainty due to limited data samples caused by insufficient exploration.
While the epistemic uncertainty can be eliminated if the agent is equipped with a perfect
exploration strategy, the aleatoric uncertainty always remains during the learning process.

Due to the aleatoric uncertainty, even though the agent starts from the same initial state
and takes the same initial action, it may end up with different trajectories and therefore
different returns, as shown in Fig. 1.2. This naturally suggests the return at each state is
a random variable. Estimating the uncertainty of the return variable has been widely used
in RL for guiding exploration and stabilizing policies. O’Donoghue et al. (2018) designed
an uncertainty Bellman equation that estimates the variance of the Q value posterior
distribution. Distributional RL methods (Bellemare et al., 2017; Dabney et al., 2018b,a;
Zhou et al., 2020; Luo et al., 2022) directly model the distribution of return variables.
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Figure 1.3: Traditional RL V.S. distributional RL. Traditional RL aims to learn a point
estimation for the action value. Distributional RL instead aims to recover the full action
value distribution.

Bootstrapped methods (Osband et al., 2016; Da Silva et al., 2020) learn ensembles of Q
values to capture uncertainty.

In this thesis, we focus on the distributional RL methods. The difference between
traditional RL and distributional RL is briefly depicted in Fig. 1.3. In traditional RL,
the algorithms only estimate a scalar value, i.e., Q value (or expected return) to quantify
the preference of an action. In distributional RL, the whole distribution of the return is
modeled, which provides a richer understanding of uncertainty in the environment and
allows agents to make more informed decisions. For example, agents can choose actions
with the highest expected value (i.e., Q value) as in risk-neutral setting, or choose actions
according to risk values extracted from the value distribution (Dabney et al., 2018a).
Distributional RL is shown to outperform traditional RL in several domains, e.g., Atari
video games (Bellemare et al., 2017).

In distributional RL, how to parameterize the return distribution is crucial. The main
stream methods represent the distribution by its quantile function, also known as in-
verse cumulative distribution function. Existing distributional RL methods use step func-
tions (Dabney et al., 2018b,a; Zhou et al., 2020) or piece-wise linear functions (Zhou et al.,
2021) to represent the quantile, which have limited representation ability. Some of them
also suffer from quantile crossing issue, which will be discussed later in Chapter 3.
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1.2 Risk Measures and Risk-Averse RL

The demand for avoiding risk in decision making motivates risk-averse RL. For example,
we want to avoid collisions in autonomous driving (Naghshvar et al., 2018), or avoid huge
financial losses in portfolio management (Björk et al., 2014). The classical or risk-neutral
RL methods (Sutton & Barto, 2018) only care about the expectation (or mean) of the
return, where the higher order moments or other statistics of the return are neglected. In
contrast, risk-averse RL optimizes some risk measures of the return instead of optimizing
the mean only.

In this thesis, we focus on two commonly used risk classes, i.e., measure of variability
and tail risk measure. Measure of variability reflects the dispersion of a random vari-
able, thus it considers the information of the whole distribution (we do not consider semi-
deviation in this paper). For example, variance and standard deviation are well known and
common choices for measures of variability. Tail risk measure only cares about the value
of a distribution in its left tail and reflects the worst case values of a distribution, thus
only partial information of the distribution is considered. Value at risk (VaR) and condi-
tional value at risk (CVaR) are two common examples of tail risk measures. For readers
not familiar with VaR and CVaR, we give a visualization in Fig. 1.4. VaR is the smallest
value if the probability of a random variable larger than this value is no less than a given
threshold (also called a risk level). CVaR is the expected value smaller than VaR. In RL,
a policy’s return with low variance indicates a stable performance. While a policy’s return
with high CVaR indicates a good performance guarantee even in worst case scenarios.

Usually, users may expect some properties of risk measures, and risk measures satis-
fying some of them are called coherent (Furman et al., 2017). Let M denote the set of
real random variables. Consider a measure ρ : M → (−∞,∞] along with the following
properties

• (A) Law-invariance: if X, Y ∈M have the same distributions, then ρ(X) = ρ(Y )

• (A1) Positive homogeneity : ρ(λX) = λρ(X) for all λ > 0, X ∈M

• (A2) Sub-additivity : ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for X, Y ∈M

• (B1) Monotonicity : ρ(X) ≤ ρ(Y ) when X ≤ Y , X, Y ∈M

• (B2) Translation invariance: ρ(X −m) = ρ(X)−m for all m ∈ R, X ∈M

• (C1) Standardization: ρ(m) = 0 for all m ∈ R
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Figure 1.4: Visualization of VaR and CVaR of a distribution. By choosing a VaR value
at the tail of a distribution, CVaR is the average value of the distribution no larger than
VaR.

• (C2) Location invariance: ρ(X −m) = ρ(X) for all m ∈ R, X ∈M

Coherent measure of variability : a measure of variability is coherent if it satisfies prop-
erties (A), (A1), (A2), (C1) and (C2) (Furman et al., 2017). Standard deviation is coherent
while variance is not since variance does not satisfy (A1). However, variance is still a com-
mon choice in RL given its easy interpretability and computation, which leads to the field
of mean-variance RL (see Chapter 4).

Coherent risk measure: a risk measure is coherent if it satisfies properties (A1), (A2),
(B1) and (B2). CVaR is coherent while VaR is not (whose definitions will be given in
Chapter 5). CVaR is often preferred to VaR in RL since CVaR considers the expectation
of the tail while VaR is like a chance constraint.

Optimizing risk of the total return, e.g., variance and CVaR, in RL is not easy due
to the lack of time consistency, i.e., optimizing risk at each step is not consistent with
optimizing risk of the total return. As a result, the well developed value-based risk-neutral
RL algorithms can not be directly applied, e.g., Bellman equation (Eq. 2.6). The most
straightforward way to optimize variance or CVaR is still policy gradient. The idea of policy
gradient is similar as doing gradient descent to minimize some loss function in supervised
learning. The policy is usually parameterized by a function with some parameters. The
gradient of the objective with respect to policy parameters is computed and the policy
parameters are updated via gradient ascent. For measure of variability, e.g., variance, the
objective is usually maximizing the mean of the total return while minimizing the return
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variance. For tail risk measure, e.g., CVaR, the objective is usually maximizing the CVaR
of total return given a risk level.

Tough the policy gradient for variance is easy to compute, we give a thorough analysis
in Chapter 4 to reveal the issue caused by using variance which leads to unstable policy
update. For tail risk measure, e.g., CVaR, by definition, it only uses the tail data of the
return distribution (usually a small portion), thus the sample efficiency is extremely low
with the majority data being discarded after the policy update.

1.3 Contribution

Based on the brief analysis above, in this thesis, we focus on the following questions:

1. What is an efficient way to learn quantile functions of value distributions in distri-
butional RL?

2. How to stabilize policy gradient for measure of variability?

3. How to improve sample efficiency of CVaR policy gradient?

To give answers to these questions, our contributions can be summarized as follows.

1. For distributional RL, we propose a new learning framework to learn quantile func-
tions for value distributions. Specifically, our quantile parameterization, inspired by mono-
tonic splines, directly learns a smooth continuous and monotonic quantile function, which
offers more flexibility compared to previous methods. Also, the quantile crossing issue is
avoided thanks to the monotonicity guarantee of our method. We compare our method
with all existing distributional RL methods by the time when this work was published in
several stochastic environments. Particularly, one method named NDQFN (Zhou et al.,
2021) also learns continuous and monotonic quantile function, we compare with this method
under different quantile sampling regimes. Results show that our estimation for quantile
functions enhances distributional RL in terms of faster empirical convergence and higher
rewards in most cases.

2. To optimize measure of variability, we show the commonly used term variance (de-
fined on both total return and per-step reward) leads to unstable policy updates, and may
fail to learn a reasonable risk-averse policy. This optimization issue is caused by the square
function used by variance. We thoroughly examine the limitations of these variance-based
methods, such as sensitivity to numerical scale and hindering of policy learning, and pro-
pose to use an alternative measure of variability, Gini deviation, as a substitute. Different
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from variance, Gini deviation computes the absolute value of the difference between sam-
ples, and Yitzhaki et al. (2003) showed that Gini deviation is superior to variance if the
underlying distribution is far from Gaussian. The corresponding policy gradient algorithm
is derived for optimizing Gini deviation in RL. Since standard deviation (STD) gets rid of
the square term in variance by taking the square root of variance, we also give a discussion
on the policy gradient of STD and a comparison between Gini deviation and STD in the
experiments.

3. To optimize CVaR, generally, the sample efficiency of CVaR policy gradient is low
and improving sample efficiency of CVaR optimization is hard due to the following two
facts: 1) according to CVaR gradient formula, the majority of samples do not contribute
to the gradient calculation; 2) the gradient may potentially vanish if the left tail of the
distribution’s quantile function is overly flat. We give a concrete example to reveal this
gradient vanishing issue. To address these challenges, we provide insight that in many do-
mains the risk-averse behavior is only required in a subset of states and agents can behave
akin to a risk neutral agent in the remaining states. We provide a concrete example to
validate this idea. Based on this insight, we propose a simple mixture policy parameter-
ization. This method integrates a risk-neutral policy with an adjustable policy to form
a risk-averse policy. By employing this strategy, all collected trajectories can be utilized
for policy updating which improves sample efficiency, and the issue of vanishing gradients
is counteracted by stimulating higher returns through the risk-neutral component, thus
lifting the tail and preventing flatness. Our empirical study reveals that this mixture pa-
rameterization is uniquely effective across a variety of benchmark domains. Specifically,
it excels in identifying risk-averse CVaR policies in some Mujoco environments where the
traditional CVaR-PG fails to learn a reasonable policy.
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Chapter 2

Reinforcement Learning Background

This chapter introduces some basic background in RL. It is mainly based on the commonly
referred book by Sutton & Barto (2018). We first introduce the background of the Markov
decision process (MDP) (Bellman, 1957), which is the main theoretical framework for RL.
We then introduce the value based algorithm and the policy gradient (PG) algorithm,
which are two main stream algorithms in RL. Finally, we introduce the concept of offline
RL.

2.1 Markov Decision Process

The interaction between agent and environment is modeled as a MDP (Fig. 1.1), repre-
sented by a tuple (S,A, P, R, γ, µ0). S and A denote state and action spaces. P (·|s, a)
defines the state transition dynamics, with P : S×A×S → [0,∞). R is the state and action
dependent reward. γ ∈ [0, 1] is a discount factor, which controls the importance of rewards
that are closer in time to the agent, and µ0 is the distribution of the initial state. The agent
starts from the initial state S0 ∼ µ0. At any time point t, the agent is in a state St and has
to take an action At according to its policy π, i.e., At ∼ π(·|St), with π : S ×A → [0,∞).
Upon taking this action, the agent transits to next state St+1 ∼ P (·|St = st, At = at) and

receives a scalar reward r sampled from Rt+1
def
= R(St, At). We will overload the notation

of R to represent the reward random variable when states and actions are given. For ex-
ample, R(s, a) is the reward random variable when agent takes action a in a particular
state s, and the scalar value r(s, a) sampled from R(s, a) is what the agent actually gets
when it visits state s and takes action a (some work may treat R(s, a) as a scalar, while
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we treat it as a random variable as a general case). We may also overload the notation of
P to represent the probability of other quantities when the context is clear.

The return random variable at time t, denoted by Gπ
t is the discounted sum of future

rewards given that actions are selected according to π (we may write Gt for simplicity).

Gt
def
=Rt+1 + γRt+1 + γ2Rt+3 + ...

=Rt+1 + γGt+1

(2.1)

Thus, the random variable G0 indicates the return starting from the initial state following
π. The goal of the agent (in a risk-neutral setting) is to maximize the expected value of
G0, i.e.,

max
π

E[G0] (2.2)

Note that the choice of γ and whether the summation in Eq. 2.1 goes to infinity will
lead to different considerations for the problem defined in Eq. 2.2. Usually, γ = 0 is not
particularly studied since the agent is myopic in being concerned only with maximizing
immediate rewards. When γ > 0, we can write Eq. 2.1 in a more unified way as

Gt =
T∑

k=t+1

γk−t−1Rk (2.3)

When T ̸= ∞, γ can equal to 1. This is often called an episodic task. When T = ∞,
γ is set to be smaller than 1 to ensure Gt is bounded. This is often called a discounted
continuing task. The undiscounted continuing task, also known as the average reward
setting, i.e., T =∞ and γ = 1, is also possible, but requires different techniques to solve,
which is outside the scope of this thesis.

In this thesis, we focus on the discounted continuing task, i.e., T = ∞ and γ ∈ (0, 1).
For on-policy policy gradient methods, sometimes we are unable to sample a trajectory
with T =∞. In this case, it is a discounted episodic task, and we can regard it as a special
case of the discounted continuing task by treating the reward to be 0 when time t > T .

It is usually convenient to define the value function to represent the expected return
the agent can get when it is in some status. The state value function is defined as

V π(s)
def
= E[Gt|St = s, π] (2.4)

The state-action value function is defined as

Qπ(s, a)
def
= E[Gt|St = s, At = a, π] (2.5)
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2.2 Value-based Method

The value-based method usually refers to the approaches that only estimate the value
functions in Eq. 2.4 or 2.5, and extract a policy from the value function accordingly, e.g.
taking argmax over the action space (when the action space is discrete). For simplicity of
expression, we consider the state and action spaces as discrete. The basic idea is that, the
optimal policy, i.e., the solution to Eq. 2.2, should achieve the maximum Q value for each
state-action pair. We can consider this through counter examples. Suppose a trajectory
the agent can get under π is (s0, a0, s1, a1, ...), if the value of Q

π(st, at) is not the maximum
and can be increased, it will in turn increase the value of Qπ(s0, a0) (we may think E[G0]
is estimated by Qπ(s0, a0)), which means π is not the optimal policy.

Define the optimal state-action value function as Q∗(s, a)
def
= argmaxπQ

π(s, a). Q∗(s, a)
satisfies the Bellman optimality equation as (Bellman, 1966)

Q∗(s, a) = E[R(s, a)] + γ
∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′) (2.6)

Based on this equation, one can define the Bellman optimality operator as

∀s ∈ S, a ∈ A T Q(s, a) = E[R(s, a)] + γ
∑
s′

P (s′|s, a)max
a′

Q(s′, a′) (2.7)

The Bellman optimality operator in Eq. 2.7 is known as a contraction mapping in the sense
that

∥T Q1 − T Q2∥∞ ≤ γ∥Q1 −Q2∥∞ (2.8)

for any Q function Q1 and Q2. This contraction property can be proved based on Banach
fixed-point theorem (Banach, 1922).

To interpret the Bellman optimality operator, consider that we initialize a state-action
value table with |S| × |A| entries. To update the value for every Q(s, a), while we do not
have a direct target as in supervised learning, we can push our value estimate towards the
target given by E[R(s, a)]+γ

∑
s′ P (s

′|s, a)maxa′ Q(s
′, a′), which is known as the temporal

difference (TD) target. This procedure is guaranteed to recover the optimal Q∗(s, a)
for each (s, a) when it converges. To extract the optimal policy, one can simply do π∗(s) =
argmaxaQ

∗(s, a).
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2.2.1 Q Learning

The above example to recover Q∗ is based on the Bellman optimality operator, which
requires the full knowledge of the reward and transition function of the MDP, and works
on the whole state-action space at a time. In real RL problems, agents only get point
samples, which are (st, at, r(st, at), st+1) tuples during the interaction. Thus, in practice
agents can only update Q functions based on these point samples, instead of the whole
state-action space at a time as done in Eq. 2.7.

To update with point samples, usually the learning process is that we choose a learning
rate αt and update the Q value after observing some transition data, i.e.,

Qt+1(st, at)← Qt(st, at) + αt(st, at)
[
r(st, at) + γmax

at+1

Qt(st+1, at+1)−Qt(st, at)
]

(2.9)

where 0 ≤ αt(st, at) ≤ 1 is the step size. Eq. 2.9 is also known as Q learning. The following
theorem shows that Q learning converges to the optimal value Q∗ under some conditions.

Theorem 1 Given a finite MDP, the Q learning algorithm, with the update rule in Equa-
tion 2.9 converges with probability 1 to the optimal Q function as long as∑

t

αt(s, a) =∞
∑
t

α2
t (s, a) <∞ (2.10)

for all (s, a) ∈ S ×A.

Proof. See the proof by Jaakkola et al. (1993).

2.2.2 Deep Q Learning

To leverage the advancement of deep learning, deepQ learning or deepQ network (DQN) (Mnih
et al., 2013) uses a deep neutral network as function approximator for the Q function.
When interacting with the environment, the transition samples are stored in a buffer B.
To update the Q function, a mini batch of {(s, a, r(s, a), s′)} is sampled from the buffer,
and the parameters of the Q function is updated to minimize the squared TD error

L2(ϕ) = E(s,a,r(s,a),s′)∼B

[
r(s, a) + γmax

a′
Qϕ−(s

′, a′)−Qϕ(s, a)
]2

(2.11)
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where ϕ is the training parameter of the Q function, ϕ− is the target network parameter
which is updated periodically with the most recent ϕ.

DQN has shown super human performance in video games (Mnih et al., 2013). There
are several follow up works of DQN, e.g., dueling DQN (Wang et al., 2016), double
DQN (Van Hasselt et al., 2016) to stabilize and improve the performance of DQN.

2.3 Policy Gradient Method

Recall that the goal is to solve the maximization problem in Eq. 2.2. A straightforward
way is doing gradient ascent to maximize E[G0] with respect to the parameter of policy π.
This is similar as doing gradient descent to minimize a loss function in supervised learning.

Denote the policy by πθ(a|s), i.e., the probability of choosing action a in state s, where
θ denotes the policy parameters. Here we are interested in computing ∇θE[G0]. This
gradient is given in Chapter 13 of the book by Sutton & Barto (2018) by calculating
∇θV

π(s0) (since V
π(s0) estimates E[G0]). We give another method based on Monte Carlo

sampling, i.e., sampling trajectories from the environment.

Given a policy πθ, by executing this policy, we get a trajectory τ = (s0, a0, r1, s1, a1, ...rT , sT ),
with the return of this trajectory Rτ = r1 + γr2 + ...+ γT−1rT . Note that E[G0] = Eτ [Rτ ],
thus ∇θE[G0] = ∇θEτ [Rτ ]

∇θEτ [Rτ ] = ∇θ

∑
τ

P (τ ; θ)Rτ =
∑
τ

RτP (τ ; θ)
∇θP (τ ; θ)

P (τ ; θ)

=
∑
τ

RτP (τ ; θ)∇θ logP (τ ; θ) = Eτ [Rτ∇θ logP (τ ; θ)]
(2.12)

where we applied the equality that ∇θ log(x) =
1
x
∇θx. At this point, we still need to com-

pute the log probability of the trajectory, i.e., logP (τ ; θ). The probability of a trajectory
is defined as

P (τ ; θ) = µ(s0)
T−1∏
t=0

[
πθ(at|st)P (st+1|st, at)

]
(2.13)

Thus, the logarithm is

logP (τ ; θ) = log µ(s0) +
T−1∑
t=0

[
log πθ(at|st) + logP (st+1|st, at)

]
(2.14)
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whose gradient is

∇θ logP (τ ; θ) = ∇θ

T−1∑
t=0

log πθ(at|st) (2.15)

Combining Eq. 2.12 and 2.15, the policy gradient is

∇θEτ [Rτ ] = Eτ
[
Rτ∇θ

T−1∑
t=0

log πθ(at|st)
]

(2.16)

The gradient in Eq. 2.16 has high variance. The variance can be reduced by the following
two commonly used techniques. First, there exists cross time terms in Eq. 2.16. Recall
that Rτ = r1 + γr2 + ...+ γT−1rT . Thus there exist terms of ri∇θ log πθ(aj|sj) with i < j.
Those terms can be removed. One simple explanation is that actions executed at later
time steps will not effect the rewards received earlier. In practice, the expectation of those

terms is zero, thus removing them can reduce variance. Denote Rτ,t
def
=

∑T
t′=t+1 γ

t′−t−1rt,
i.e., the return starting from time t of trajectory τ . Removing those cross time terms yields

∇θEτ [Rτ ] = Eτ
[ T−1∑
t=0

∇θ log πθ(at|st)γtRτ,t

]
(2.17)

Second, the term Rτ,t in Eq. 2.17 can be regarded as the Monte Carlo estimation of
Qπ(st, at). Based on the concept of control variate, we can subtract V π(st) from it to
reduce variance, since V π(st) = EatQπ(st, at), which results in

∇θEτ [Rτ ] = Eτ
[ T−1∑
t=0

∇θ log πθ(at|st)γt
(
Rτ,t − V π(st)

)]
(2.18)

Eq. 2.18 is more often known as REINFORCE with baseline, where V π(st) is the baseline.
In practice, we need another function to estimate this baseline.

Remark. The algorithm REINFORCE with baseline in Eq. 2.18 is also derived in
Chapter 13.4 of Sutton & Barto (2018). However, the readers who are familiar with RL
may find there is a γt term that does not appear in commonly used forms of policy gradient.
To understand this, define the unnormalized discounted state visitation distribution as

ρπ(s)
def
=

T−1∑
t=0

γtPr(St = s|π, P ) (2.19)
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By replacing Rτ,t with Q
π(st, at), the gradient in Eq. 2.18 equals to

Est∼ρπ(·),at∼πθ(·|st)
[
∇θ log πθ(at|st)(Qπ(st, at)− V π(st))

]
(2.20)

which reveals the commonly used form of policy gradient in the literature. In practice,
most policy gradient methods effectively use undiscounted state visitation distributions,
i.e., γ = 1 for ρπ (Gu et al., 2017).

2.3.1 Deterministic Policy Gradient

In the above policy gradient, the policy function πθ is always modeled as a probability
distribution over actions. Deterministic policy gradient (DPG) instead defines the policy
as a deterministic function, i.e., a = πθ(s), and aims to generalize the policy gradient from
a stochastic policy to a deterministic one. The gradient is given by (Silver et al., 2014)

∇θE[G0] = Es∼ρπ(·)
[
∇θπθ(s)∇aQ

π(s, a)|a=πθ(s)
]

(2.21)

Readers may refer to Silver et al. (2014) for the proof. For an intuitive interpretation of
this gradient, we can think of it as differentiating the Q-function (using the chain rule)

∇θEs∼ρπ(·)
[
Qπ(s, πθ(s))

]
(2.22)

Thus, doing gradient ascent maximizes Es∼ρπ(·)[Qπ(s, πθ(s))]. Recall that in value-based
approaches, the optimal action is a greedy maximization of the state-action value, i.e.,
π(s) = argmaxaQ(s, a). When greedy action is hard to compute, e.g., action space is
continuous, a simple and computationally attractive alternative is to move the policy in
the direction of the gradient of Q, rather than globally maximizing Q.

2.3.2 Off-Policy Policy Gradient

Both policy gradients described in Eq. 2.18 and 2.21 are on-policy policy gradients, i.e.,
the state is sampled from ρπ(·) induced by the current policy π. It is often the case that we
have trajectories generated by another behavior policy π̆ and try to optimize π with the
data we have. Under the off-policy setting, the objective to maximize is slightly different
from the on-policy setting, which is given by (Degris et al., 2012)

J(θ) =
∑
s

ρπ̆(s)
∑
a

πθ(a|s)Qπθ(s, a) (2.23)
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The gradient is

∇θJ(θ) = ∇θEs∼ρπ̆(·)
[∑

a

Qπθ(s, a)πθ(a|s)
]

≈ Es∼ρπ̆(·)
[∑

a

Qπθ(s, a)∇θπθ(a|s)
]

= Es∼ρπ̆(·),a∼π̆(·|s)
[πθ(a|s)
π̆(a|s)

Qπθ(s, a)∇θ log πθ(a|s)
] (2.24)

The approximation in the second line of Eq. 2.24 ignores the term πθ(a|s)∇θQ
πθ(s, a) since

∇θQ
πθ(s, a) is hard to compute in reality. However, Eq. 2.24 still guarantees a policy

improvement, which is justified by Degris et al. (2012).

When a policy is deterministic, the objective function is thus

J(θ) =
∑
s

ρπ̆(s)Q
πθ(s, πθ(s)) (2.25)

whose gradient is (Silver et al., 2014)

∇θJ(θ) ≈ Es∼ρπ̆(·)
[
∇θπθ(s)∇aQ

πθ(s, a)|a=πθ(s)
]

(2.26)

Again, the term that depends on ∇θQ
πθ(s, a) is ignored.

2.3.3 Policy Gradient with Deep Learning

In deep RL, the policy can be modeled by a deep neutral network. For a stochastic policy,
when the action space is discrete, the policy is usually a categorical distribution; when the
action space is continuous, a Gaussian distribution is a common choice, whose mean and
standard deviation are the outputs of a neutral network. For a deterministic policy, the
policy is just a one-to-one mapping from states to actions.

Here we briefly introduce some well-known deep PG algorithms.

On-Policy. REINFORCE with a baseline is definitely one of the most important
algorithms, which is introduced in Eq. 2.18. By representing policy and baseline functions
with deep neutral networks, it is then incorporated with the deep learning framework.
Trust region policy optimization (TRPO) (Schulman et al., 2015) sets a constraint that
ensures the updated policy stays close to the previous policy to ensure stability. Proximal
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policy optimization (PPO) (Schulman et al., 2017) uses a simple clip ratio function to
approximately achieve the constraint in TRPO.

Off-Policy. Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2016b) is the
deep learning version of the off-policy DPG in Eq. 2.26. With the help of the deep learning
framework, it is convenient to compute the gradient of the Q function with respect to
actions. TD3 (Fujimoto et al., 2018) enhanced DDPG by learning two Q functions and
taking the minimum value of them to address function approximation errors in DDPG.
Soft actor critic (SAC) (Haarnoja et al., 2018) is based on maximum entropy RL, and is
mathematically different from the policy gradients introduced in this chapter. Interested
readers may refer to Haarnoja et al. (2018) for details.

2.4 Offline Reinforcement Learning

The methods discussed above are all online RL methods, i.e., there is an online environ-
ment that agents can interact with. In practice, the environment is usually provided as
a simulator, i.e., Atari games (Bellemare et al., 2013), Mujoco (Todorov et al., 2012), or
real world simulators like Commonroad (Wang et al., 2021). In many real world applica-
tions, directly interacting with the environment is expensive or impossible. For example, it
is dangerous to directly learn autonomous driving policies using real cars on the highway.
Though using simulator for policy learning is safe, developing accurate simulators for every
real world domains is challenging.

Compared with learning policies from scratch via trials in interactive domains, usually,
the data generated by other users is relatively easy to collect. For example, it is easy to
collect the driving behavior of taxi drivers in a city by installing some tracking system on
the vehicles. Thus, we can consider learning autonomous driving policies from the collected
data instead of interacting with the environment.

Learning a policy directly from a fixed dataset without interacting with the environment
is called offline RL. The challenge of learning a policy from a dataset only is that the dataset
may not have full coverage of all actions. Thus, greedy decisions based on the learned Q
values as in Eq. 2.9 is problematic especially when the Q value is an overestimate for
out-of-distribution actions (Fujimoto et al., 2019).

Offline RL methods can be broadly categorized into value-based, policy-based, and
model-based approaches. Value-based methods, such as conservative Q learning (Kumar
et al., 2020) and its variants, learn a value function from the data and use it to derive
policies. To avoid selecting out-of-distribution actions, the Q values of out-of-distribution
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actions are underestimated. Policy-based methods, including behavioral cloning and im-
itation learning (Fujimoto & Gu, 2021), directly optimize policies based on the observed
behavior. Model-based methods leverage the data to learn a model of the environment
dynamics, which can be used for planning or policy improvement (Yu et al., 2020). Since
offline RL is not the main focus of this thesis, and it only contributes to a component of
the algorithm proposed in Chapter 5, we only provide a brief review in this section.
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Chapter 3

Distributional Reinforcement
Learning with Monotonic Splines

3.1 Introduction

As introduced in Chapter 2, a fundamental problem in traditional value-based RL is to
estimate the expectation of future returns (Mnih et al., 2015; Van Hasselt et al., 2016).
However, due to the stochastic environment transition dynamics and stochastic policies,
the future return is naturally a random variable. Distributional RL differs from traditional
RL by also taking into account the intrinsic randomness of returns (Morimura et al., 2010;
Bellemare et al., 2017). To do so, distributional RL algorithms estimate the underlying
distribution of the total return random variable. In contrast, traditional value-based RL
algorithms focus only on the mean of the random variable.

Distributional RL offers several advantages over traditional value-based RL that com-
putes only expected returns. The distribution of returns enables risk-sensitive RL by facili-
tating the optimization of other statistics than just the mean of the returns (Dabney et al.,
2018a; Martin et al., 2020). Even when we stick to maximizing the mean of the returns,
the distribution offers a more reliable and robust way of computing the expectation, which
has led to a series of records on the Atari benchmark among value-based non-distributed
RL techniques (Bellemare et al., 2017; Dabney et al., 2018a,b; Hessel et al., 2018; Yang
et al., 2019; Zhou et al., 2020; Nguyen et al., 2021). Intuitively, while it is sufficient to
represent an expected return by a single mean value, errors due to finite samples and
function approximations can be reduced by ”canceling” each other when multiple sample
returns or quantile values are used. This is similar to the benefits of ensemble learning

18



techniques although, strictly speaking, distributional RL is not an ensemble RL technique.
In fact, distributional RL has been combined with ensemble learning and truncated critic
predictions to mitigate the overestimation bias in continuous control (Kuznetsov et al.,
2020).

One key aspect of distributional RL algorithms is the parameterization of return dis-
tributions. In Categorical DQN (C51) (Bellemare et al., 2017), the return distributions
are limited to categorical distributions over a fixed set of discrete values. It is also shown
that the distributional Bellman operator is a contraction under the maximal form of the
Wasserstein metric, but in practice, C51 optimizes the cross-entropy loss with a Cramér-
minimizing projection (Rowland et al., 2018). To bridge the gap between theoretical anal-
ysis and algorithmic implementation, quantile regression (QR)-based distributional RL
algorithms (Dabney et al., 2018a,b; Yang et al., 2019; Zhou et al., 2020) estimate a finite
number of quantile values instead of the distribution of returns since quantile regression
can easily use the Wasserstein metric as the objective. In fact, the Wasserstein metric is
approximately minimized by optimizing the quantile Huber loss (Huber, 1992) between
the Bellman updated distribution and the current return distribution.

Although with an infinite number of quantiles, the step quantile function in those
quantile regression based methods will approximate the full quantile function arbitrarily
closely, in practice, it is infeasible to have infinite quantiles in most existing architectures.
In addition, the quantile crossing issue, recently pointed out and solved by (Zhou et al.,
2020), was ignored by previous distributional RL techniques. The issue is that if no global
constraint is applied, the quantile values estimated by a neural network at different quantile
levels are not guaranteed to satisfy monotonicity, which can distort policy search and affect
exploration during training (Zhou et al., 2020).

In this chapter, we propose to learn a continuous representation for quantile func-
tions based on monotonic rational-quadratic splines (Gregory & Delbourgo, 1982). The
monotonic property of these splines naturally solves the quantile crossing issue described
above. Furthermore, unlike step functions or piecewise linear functions that provide a
crude approximation in each bin, monotonic splines provide a more flexible and smooth
approximation. With sufficiently many knots, splines can approximate any quantile func-
tion arbitrarily closely. We compare empirically our spline-based technique with other
quantile-based methods in stochastic environments. We demonstrate that our method of-
fers greater accuracy in terms of quantile approximation, faster convergence during training
and higher rewards at test time.

Remark. Tough distributional RL captures the intrinsic uncertainty of the environ-
ment, in this chapter, we consider policy learning in risk-neutral setting, i.e., maximizing
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the expected return (Eq. 2.2).

3.2 Background: Distributional RL

For a policy π, the discounted sum of returns starting from state s by taking action a is

denoted as a random variable Zπ(s, a)
def
=

∑∞
t=0 γ

tR(St, At), where S0 = s, A0 = a, St+1 ∼
P (·|St, At), and At ∼ π(·|St). The Q value defined in Chapter 2 is Qπ(s, a) = E[Zπ(s, a)].
In most deep RL studies, Q is approximated by a neural network. To update Q, Q learning
trains the network iteratively to minimize the squared temporal difference (TD) error in
Eq. 2.11.

Instead of learning the scalar Q(s, a), distributional RL considers the distribution over
returns (the law of Z) to capture the aleatoric uncertainty. A similar distributional Bellman
operator for Z can be derived as (Bellemare et al., 2017)

T πZπ(s, a)
D
= R(s, a) + γZπ(S ′, A′), (3.1)

with S ′ ∼ P (·|s, a), A′ ∼ π(·|S ′), and X
D
= Y indicates that random variables X and Y

follow the same distribution. In theory, Bellemare et al. (2017) proved the distributional
Bellman operator is a contraction in the maximal of p-Wasserstein metric (see Lemma 3
of Bellemare et al. (2017))

Wp(X, Y ) =
(∫ 1

0

|F−1
X (ω)− F−1

Y (ω)|pdω
)1/p

, (3.2)

where F−1 is the quantile function (inverse cumulative distribution function). Following
this theory, a series of distributional RL algorithms have been proposed based on quantile
regression to estimate F−1 at precisely chosen quantile levels, such that the Wasserstein
metric is approximately minimized.

For a random variable Z with cumulative distribution function FZ(z) = P(Z ≤ z), the
ζ-level quantile of Z is min{z|FZ(z) ≥ ζ}, ζ ∈ (0, 1]. For a given quantile level ζ̆ and value
v, the quantile regression loss is expressed as

EZ
[(
ζ̆I{Z>v} + (1− ζ̆)I{Z<v}

)
|Z − v|

]
(3.3)

The gradient is

EZ
[
ζ̆I{Z>v} − (1− ζ̆)I{Z<v}

]
(3.4)
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Similar to the Q learning algorithm in Eq. 2.9, we can only use point samples to
do quantile regression. Suppose the return variable Z(st, at) is represented by a set of
quantiles {Θ1(st, at), ...,ΘN(st, at)}, corresponding to quantile levels {ζ1, ζ2, ..., ζN}. The
return variable for the next state-action Z(st+1, at+1) is represented by a set of quantiles
{Θ1(st+1, at+1), ...,ΘN(st+1, at+1)}. The gradient in Eq. 3.4 leads to the update rule

Θt+1
i (st, at)← Θt

i(st, at) +
αt(st, at)

N

N∑
j=1

(ζi − I{r(st, at) + γΘt
j(st+1, at+1) < Θt

i(st, at)})

(3.5)

Theorem 2 (Theorem 5.1 in Rowland et al. (2023)) Given a finite MDP, consider
the quantile update rule in Eq. 3.5 with non-negative step sizes satisfying

∞∑
t=0

αt(st, at) =∞, αt = o(1/ log t) (3.6)

Then Θk converges almost surely to the set of fixed points with probability 1.

Remark. The distributional Bellman operator in Eq. 3.1 is in the policy evaluation
setting, i.e., the policy π is given and fixed. It is different from the Bellman optimality
operator in Eq. 2.7 where there is a maximum for the next Q value. The contraction
property for the random variable of Eq. 3.1 is thus in the policy evaluation setting. If we
apply a similar greedy action selection for S ′ for Eq. 3.1, i.e.,

T Z(s, a) D
= R(s, a) + γZ(S ′, A′), A′ = argmax

a′
E[Z(S ′, a′)], (3.7)

then we can only expect a contraction for E[Z], e.g., see Lemma 4 of Bellemare et al.
(2017).

In this chapter, we focus on the control problem in risk neutral setting, i.e., Eq. 3.7.

In addition, users can only perform quantile regression with limited quantile points in
practice. In this case, we may think the random variable Z is projected to a quantile
distribution space. The projected distributional Bellman operator is still a contraction
mapping (see Proposition 2).
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3.2.1 Quantile Regression based Methods

Different distributional RL methods consider different parameterization of quantiles. In
QR-DQN (Dabney et al., 2018b), the random return is approximated by a uniform mixture
of N Diracs

ZΘ(s, a) =
1

N

N∑
i=1

δΘi(s,a), (3.8)

with each Θi set to a fixed quantile level, ζ̂i =
ζi−1+ζi

2
for 1 ≤ i ≤ N , and ζi = i/N . The

quantile estimation is performed by minimizing the quantile Huber loss (Huber loss is for
the purpose of making the loss function smooth), with threshold η

1

N

N∑
i=1

N∑
j=1

ρη
ζ̂i
(δij) (3.9)

on the pairwise TD error δij = r + γΘj(s
′, a′)−Θi(s, a), where

ρηζ(δ) = |ζ − Iδ<0|Lη(δ), with

Lη(δ) =

{
1
2
δ2, |δ| ≤ η

η(|δ| − 1
2
η), otherwise.

(3.10)

Based on QR-DQN, Dabney et al. (2018a) proposed to sample quantile levels from a
base distribution, e.g. ζ ∈ U([0, 1]) rather than fixing them. They built an implicit quantile
network (IQN) to learn mappings from sampled probability embeddings to corresponding
quantile values. FQF (Yang et al., 2019) further improves IQN by learning a function to
propose τ ’s. However, the quantile values generated by neural networks may not satisfy
the non-decreasing property of F−1 (known as the quantile crossing issue). This was
recently solved by NC-QR-DQN (Zhou et al., 2020), by applying a softmax, followed by
a cumulative sum of the output logits of the neural network Ω, and then rescaling by
multiplying a non-negative factor α(s, a) and adding an offset β(s, a):

Θi(s, a) = α(s, a)× ιi,a + β(s, a), with

ιi,a =
i∑

j=0

χj,a, and χj,a = softmax(Ω(s))j,a
(3.11)

One recent method NDQFN (Zhou et al., 2021) further combines the ideas of NC-QR-
DQN and IQN to learn a monotonic function for F−1 by connecting the neighboring two
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Figure 3.1: The architecture of DQN, QR-DQN, IQN, and NDQFN. In this figure, we
assume the size of the action space is 4. The colored dots represent the output value of
the network. DQN only outputs a single value for an action. Distributioanl RL methods
generally output multiple (quantile) values for an action.

monotonic quantile data points with line segments. Different from NC-QR-DQN, NDQFN
generates monotonic quantile values by first learning a baseline value and then adding
non-negative increments.

We briefly show the architecture of different quantile based distributional RL methods
in Fig. 3.1. Suppose the size of the action space is 4. DQN (Mnih et al., 2013) outputs 4
scalar values, one for each action to represent the Q value, i.e., Q(s, a). QR-DQN (Dabney
et al., 2018b) outputs N values for each action dimension, to represent the quantile values
of Z(s, a). QR-DQN assumes these N quantile values are uniformly spaced. IQN (Dabney
et al., 2018a) instead samples the quantile level from uniform(0,1), and embeds the quantile
level as input to output corresponding quantile values. NDQFN (Zhou et al., 2021) assumes
a fixed quantile level set (ζ1, ...ζn) and outputs the corresponding quantile values. Then
piece-wise linear interpolation is applied. The output layer of NC-QR-DQN (Zhou et al.,
2020) is the same as QR-DQN, and the architecture of FQF (Yang et al., 2019) is similar
to IQN, which are not shown in the figure.
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3.2.2 Other Distributional Methods

Other recent methods investigate different metrics for the distributional Bellman operator.
Moment matching, generally parameterized as the maximum mean discrepancy (MMD)
between two sample sets in a reproducing Hilbert kernel space (Gretton et al., 2012), is
adopted by Nguyen et al. (2021) to propose moment matching DQN (MM-DQN). The
MMD loss with kernel κ is derived as:

d2κ({υi}, {ψi}) =
1

N2

∑
i,j

κ(υi, υj) +
1

M2

∑
i,j

κ(ψi, ψj)−
2

NM

∑
i,j

κ(υi, ψj), (3.12)

where {υi}Ni=1 ∼ Z(s, a) and {ψi}Mi=1 ∼ R(s, a) + γZ(S ′, A′).

It is worth noting that the theoretical analysis by Nguyen et al. (2021) shows the
distributional Bellman operator under MMD is not a contraction with commonly used
Gaussian kernels or exp-prod kernels. It is a contraction only when the kernel function is
shift invariant and scale sensitive.

Categorical distributional RL was also combined with policy gradient to obtain the
Reactor algorithm (Gruslys et al., 2018) for discrete control and the Distributed Distribu-
tional Deep Deterministic Policy Gradient (D4PG) algorithm (Barth-Maron et al., 2018)
for continuous control. Subsequently, Singh et al. (2020) replaced categorical return dis-
tributions by samples in Sample-based Distributional Policy Gradient (SDPG), yielding
improved sample efficiency. The return distribution can also be represented by a gen-
erative network trained by adversarial training (in the same way as GANs) to minimize
temporal differences between sampled returns (Doan et al., 2018; Freirich et al., 2019).
While most distributional RL techniques compute state-action return distributions, Li &
Faisal (2021) proposed the Bayesian Distributional Policy Gradient (BDPG) algorithm
that computes state return distributions and uses inference to derive a curiosity bonus.
In another line of work, Tessler et al. (2019) introduced the Distributional Policy Opti-
mization (DPO) framework in which an agent’s policy evolves towards a distribution over
improving actions.

3.3 Learning a Return Distribution via Monotonic

Splines

Our method is originally motivated by NC-QR-DQN, where a special architecture is de-
signed for the last layer of the neural network to satisfy the monotonicity of F−1. The
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output represents the estimated quantile values at chosen quantile levels. One drawback
of discretization is that a precise approximation for F−1 may need infinite levels. But in
practice, one can only use finite quantile levels to estimate quantile values for decision
making. In this work, we propose to learn a dense approximation for F−1 using monotonic
rational-quadratic splines (Gregory & Delbourgo, 1982) as a building block.

3.3.1 Quantile Approximation with Monotonic Rational Quadratic
Splines

Monotonic splines produce a monotonic interpolation to a set of monotonic data points
(called knots) {(xk, yk)}Kk=0, which has been recently used as a transformation function
in normalizing flows (Durkan et al., 2019; Dolatabadi et al., 2020). Furthermore, denote
{dk}Kk=0, a set of positive numbers, as the derivative of each knot. The monotonic rational-

quadratic splines aim to find rational-quadratic functions with form fk(x) = Ok(x)
Pk(x)

to fit

the points and derivatives in each interval (called bin) [xk, xk+1], where Ok and Pk are
quadratic functions (with form ax2 + bx+ c).

Gregory & Delbourgo (1982) suggested to construct Ok and Pk as follows. Denote
gk = (yk+1 − yk)/(xk+1 − xk) and hk(x) = (x − xk)/(xk+1 − xk) for x ∈ [xk, xk+1]. The
expressions for the quadratic Ok(hk(x)) and Pk(hk(x)) for the k

th bin is defined by (use hk
for short of hk(x)):

Ok(hk) = gkyk+1h
2
k + (ykdk+1 + yk+1)hk(1− hk) + gkyk(1− hk)2

Pk(hk) = gk + (dk+1 + dk − 2gk)hk(1− hk)
(3.13)

Then, the rational-quadratic function for the kth bin is computed by the quotient of Ok

and Pk

fk(hk) =
Ok(hk)

Pk(hk)
= yk +

(yk+1 − yk)[gkh2k + dkhk(1− hk)]
gk + (dk+1 + dk − 2gk)hk(1− hk)

. (3.14)

Equation 3.14 is proven to be monotonic and continuously differentiable, while passing
through the knots and satisfying the given derivatives at the knots (Gregory & Delbourgo,
1982).

Proposition 1 (Gregory & Delbourgo (1982)) The function f whose formulation in
k-th bin given by Eq. 3.14 is monotonic on [x0, xK ]
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Proof. Here we assume the derivatives satisfy the necessary conditions for monotonicity,
i.e.,

sgn(dk) = sgn(dk+1) = sgn(gk) (3.15)

For x ∈ [xk, xk+1],

f ′
k(x) =

P ′
k(hk)Qk(hk)− Pk(hk)Q′

k(hk)

(xk+1 − xk)Qk(hk)2
(3.16)

The numerator is

P ′
k(hk)Qk(hk)−Pk(hk)Q′

k(hk) = (xk+1−xk)g2k[dk+1h
2
k+2gkhk(1−hk)+dk(1−hk)2] (3.17)

Since hk = x−xk
xk+1−xk

, hk ∈ [0, 1]. Thus hk(1 − hk) ≥ 0. Using the necessary condition in

Eq. 3.15, we have

sgn
(
dk+1h

2
k + 2gkhk(1− hk) + dk(1− hk)2

)
= sgn(gk) (3.18)

which shows the spline function is monotonic.

The fact that spline functions satisfy the end point values (yk, yk+1) and derivatives
(dk, dk+1) is easy to check by setting x = xk and x = xk+1.

The monotonicity of the above splines fits the non-decreasing property of F−1. Let
F−1
Z(s,a)(ζ) be the quantile function for the random variable of the discounted total return

Z(s, a) with ζ ∈ [0, 1]. Given the number of bins K, the aims of the spline approximator
for F−1

Z(s,a) are threefold. First, propose a partition for the domain of definition [0, 1] with
ζ0 < ... < ζk < ... < ζK . Here ζ0 = 0 and ζK = 1. Second, estimate the corresponding
quantile values q0 < ... < qk < ... < qK . Third, assess the derivatives at those points with
d0, ..., dk, ..., dK . We give a small fixed positive value for d0 and dK as they are assigned
with endpoints. After the generation of these three sets of statistics, the monotonic spline
of each bin is given by Equation 3.14 (by replacing xk by ζk and yk by qk).

3.3.2 Model Implementation

We now show how to learn the monotonic splines for quantile functions in distributional
RL by neural networks, and we name the technique spline DQN (SPL-DQN). As shown in
Figure 3.2, the SPL-DQN consists of three major components, including a Feature Extractor
which extracts latent features from a state, a Knots Logit Network which, for each action,
generates the logits of the widths and heights for K bins, and derivatives for K − 1 inner
knots, and a Bin Scale Network which recovers the heights in [0, 1] to the original quantile
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Figure 3.2: System Flow of SPL-DQN architecture

range. Here we describe the model for a discrete action space of size |A|. To use monotonic
splines in continuous control, the model can be modified by taking state-action pairs as
input and only producing knots for that state-action pair.

The Feature Extractor F is usually made up of multiple convolutional layers with
subsequent fully-connected layers for image-like inputs or stacked fully-connected layers for
non-image inputs. It produces the feature embedding F(s) ∈ Rd of state s. Then the Knots
Logit Network W maps F(s) to unconstrained logits v with dimension |A|×(3K−1) using
a fully-connected layer. The vector va for each action a is partitioned as va = [vWa , v

H
a , v

D
a ],

where vWa and vHa have length K, and vDa has length K − 1. Instead of directly learning
ζk,a and qk,a associated with each monotonic knot, we propose to learn the normalized
width and height of each bin. Here, vectors vWa and vHa are each passed through a softmax
function and are interpreted as the normalized widths and heights. Vector vDa is regarded
as the derivatives, and is passed through a softplus function to satisfy monotonicity.

With the width and height of each bin, ζk,a and qk,a of each knot can be easily calculated
by a cumulative sum. Since the values of vWa and vHa fall into [0, 1], each ζk,a (k > 0) is
computed by

ζk,a =
k∑
i=1

vWi,a, k = 1, ..., K; a = 1, ..., |A| (3.19)

without rescaling as the domain of a quantile function is [0, 1] (ζ0,a = 0 by definition).
To compute each qk,a, another transformation is required to rescale vHa to a range corre-
sponding to the true quantile values. Inspired by NC-QR-DQN, we introduce the Bin Scale
Network to generate two adaptive scale factors α and β by applying a fully connected layer
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C: Rd → R|A|×2 to the state embedding F(s). We compute the exponential of α to ensure
the total bin height is positive. Then q0,a = βa and for k > 0, qk,a is computed by

qk,a = exp(αa)×
k∑
i=1

vHi,a + βa, k = 1, ..., K; a = 1, ..., |A| (3.20)

3.3.3 Approximate Wasserstein Metric Minimization

When using continuous approximations of the quantile functions, there are several choices
to compute the integral of the Wasserstein metric between two quantile functions. We can
try to calculate the integral directly, but this is not straightforward for rational-quadratic
functions since the integral rarely has a closed form. Alternatively, we can calculate the
Riemann integral, but this leads to a loss function analogous to the L1-norm, which may
cause instability in training. Thus, in this work, we perform quantile regression (Koenker
& Hallock, 2001) in a projected space to approximately minimize the Wasserstein metric.

Let ζ̃ = (ζ̃0, ..., ζ̃N) be a fixed sequence of non-decreasing quantile levels (note that the
set ζ̃ is different from the x-values of knots in Section 3.3.1 to partition the [0, 1] domain,
which are learned by the neural network. In our experiments, we let ζ̃ be uniformly fixed),
we project the monotonic spline quantile function f to a quantile distribution space ZQ by
computing

Zq(s, a) =
N∑
i=1

(ζ̃i − ζ̃i−1)δq̂i(s,a), (3.21)

where each q̂i(s, a) is the corresponding quantile value at the quantile level ζ̂i =
ζ̃i−1+ζ̃i

2

given by f(ζ̂i) with 1 ≤ i ≤ N . To compute f(ζ̂i), we first search which bin ζ̂i lies in. Then
the value is returned by the corresponding spline function given hk(ζ̂i) as input. In this
case, the optimal value distribution Z is achieved by minimizing the 1-Wasserstein metric
with Zq

W1(Z(s, a), Zq(s, a)) =
N∑
i=1

∫ ζ̃i

ζ̃i−1

|F−1
Z(s,a)(ω)− q̂i(s, a)|dω, (3.22)

which is equivalent to finding a projection operator ΠW1 such that

ΠW1Z := arg min
Zq∈ZQ

(Z,Zq). (3.23)
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Furthermore, Dabney et al. (2018b) shows that the unique minimizer of this operator is
given by

F−1
Z(s,a)(ζ̂i) = q̂i(s, a), ζ̂i =

ζ̃i−1 + ζ̃i
2

(3.24)

Proposition 2 (Proposition 2 in Dabney et al. (2018b)) Let ΠW1 be the quantile pro-
jector defined above. When applied to value distributions, it gives a projection for each
state-value distribution. For any two value distributions Z1, Z2 ∈ Z for an MDP with
countable state and action spaces,

d∞(ΠW1T πZ1,ΠW1T πZ2) ≤ γd∞(Z1, Z2), (3.25)

where dp(Z1, Z2) = sups,aWp(Z1(s, a), Z2(s, a)) and Z is the space of action-value distri-
butions with finite moments.

Proposition 2 suggests that after projecting f to Zq, the operator ΠW1T π is a γ-
contraction under the measure d∞ and the repetition of this operator converges to a fixed
point in space ZQ.

Based on Proposition 2, the ultimate goal is to estimate quantile values in Equation 3.24
for F−1

Z(s,a) using quantile regression in each training batch. In our implementation, we

uniformly fix ζ̃ = (ζ̃0, ..., ζ̃N) to be consistent with QR-DQN and NC-QR-DQN, which
leads to the same quantile Huber loss as shown in Equations 3.9 and 3.10. However, the
advantage of our method over QR-DQN and NC-QR-DQN is that we can freely enrich
the density of τ̃ to get a better estimation of the quantile function without increasing the
size of the model architecture, while QR-DQN and NC-QR-DQN must enlarge the output
dimension of their models to get more quantile estimates. Since we can freely query quantile
values at any quantile level, quantile level embedding as done in IQN and FQF is no longer
necessary in our method.

Remark: Although one recent method, NDQFN, also learns continuous monotonic
quantile functions, our method is different from NDQFN in three aspects. First, the x-
values of those monotonic knots, i.e., ζ0, ..., ζK , are uniformly fixed in NDQFN, while they
are trainable in our method. Second, by also learning the derivatives at each knot, we get
a smooth interpolation over the entire domain, while NDQFN connects those knots with
line segments, which has limited approximation ability. Third, to get the increments of
y-values of those knots, i.e., q0, ..., qK , NDQFN learns a function taking the quantile level
embeddings, i.e., the embeddings of corresponding ζs, as input, while we do not calculate
increments but use a scale network as discussed in Section 3.3.2.
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Figure 3.3: (a) Windy Gridworld, with wind strength shown along bottom row. The detial
of the domain is described in text. (b) & (c) The quantile functions for value distribution
of the cyan square state and yellow circle state by MC, SPL-DQN (SPL), NC-QR-DQN
(NC-QR), NDQFN, and QR-DQN (QR).

To demonstrate the monotonicity and approximation strength of our method in stochas-
tic environments, we plot the quantile functions learned by SPL-DQN, NC-QR-DQN,
NDQFN, and QR-DQN in a variant of the classic Windy Gridworld domain (Sutton &
Barto, 2018). In Figure 3.3a, the agent starts at the yellow circle state and makes stan-
dard moves in a gridworld to reach the red flag. A reward of −1 is earned at each step.
Some columns are affected by some wind blowing from bottom to top. The orange line
shows the optimal trajectory without stochasticity. We set each state transition to have
probability 0.1 of moving in a random direction without any wind effect, otherwise the tran-
sition is affected by the wind, which pushes the agent northward. All methods here use the
same training settings and similar network architectures as discussed in Appendix A.1.1.
We compute the ground truth value distribution for an optimal policy (learned by pol-
icy iteration) at each state by performing one thousand Monte-Carlo (MC) rollouts and
recording the observed returns as an empirical distribution. Then we transform the em-
pirical distribution to the quantile function as the baseline. Here we show case the learned
quantile functions at cyan square state and yellow circle state (start state) as shown in
Figures 3.3b and 3.3c.

All these four methods eventually learn the optimal policy, however their quantile ap-
proximations are quite different. Without constraints, quantile functions given by QR-DQN
clearly violate the monotonic property, which is known as the quantile crossing issue (Zhou
et al., 2020). Although NC-QR-DQN applies monotonic constraints, the estimated quan-
tile range is biased towards smaller values according to the quantile functions given by MC,
and we observe that the quantile functions learned by NC-QR-DQN are straight lines for
some states, e.g. cyan square state, which means that it fails to learn the value distribution
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Figure 3.4: The learned quantile functions at the green square state. The detail of the
Windy Gridworld is described in text.

in those states, and in turn this leads to a biased estimation for the start state. The reason
for this biased estimation is that in NC-QR-DQN, when rescaling the quantile range in
Equation 3.11, a ReLU function is imposed to the coefficient α to ensure it is non-negative.
However, this often sets α to zero and the quantile distribution will only depend on the
shift parameter β (which leads to a straight line). In this case, the value distribution
cannot be precisely captured. For NDQFN, its quantile approximation at the goal nearing
state (cyan square state) is close to SPL-DQN , but it overestimates the quantile range
at the start state. We also observe the overestimation issue of NDQFN at another state
in the middle of the orange line trajectory as shown in Fig. 3.4. Though still exhibiting
estimation errors, the quantile functions learned by SPL-DQN are often the closest to the
ground truth.

3.4 Experiments

While most previous distributional RL algorithms were evaluated with Atari games from
the Arcade Learning Environment (ALE), it was noted that the ALE is deterministic (Belle-
mare et al., 2017) and therefore questionable as a benchmark to evaluate distributional
algorithms that are designed to capture environment stochasticity when there is none.
However, we note that sticky actions can be used in Atari games to introduce stochas-
ticity in policies (Machado et al., 2018) and this regime was used to evaluate IQN and
FQF (Yang et al., 2019). When the environment is deterministic, value distributions still
arise due to stochastic policies, stochastic approximations and random parameter initial-
ization, but the resulting value distributions tend to be simple and close to deterministic.
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It is also well-known that deterministic environments possess optimal policies that are
open-loop and therefore ignore observations (Machado et al., 2018; Koul et al., 2019). In
practice, it is often desirable to train controllers with simulators in which noise is injected
to increase the robustness of the learned policies in case of discrepancies between the sim-
ulator and the real world. Hence, in this work, we modify several robotics environments
by adding stochasticity, including one discrete environment from OpenAI Gym (Brockman
et al., 2016b) and nine continuous environments from PyBulletGym (Ellenberger, 2018–
2019). We compare our method with QR-DQN, IQN, FQF, NC-QR-DQN, MM-DQN, and
NDQFN. For MM-DQN, we used the unrectified Kernel κα(x, y) = −||x− y||α with α = 1
(parameter taken from Nguyen et al. (2021)) instead of the Gaussian kernel recommended
by the authors when they tested on Atari games since the unrectified kernel gave better
results in the robotics benchmarks used in this thesis. For a fair comparison, we made
sure the same Feature Extractor architecture was used in different models. To simplify
acronyms, we omit -DQN when referring to a method in what follows.

3.4.1 Computing QR Loss in Different Methods

We first briefly summarize how different QR-based distributional RL methods sample quan-
tile values when computing the QR loss. Since the QR loss is computed in a time difference
manner, we will need N current quantile samples {q1i }, i = 1, ..., N and N ′ target quantile
samples {q2i }, i = 1, ..., N ′ corresponding to two quantile level sets {ζ1i }, i = 1, ..., N and
{ζ2i }, i = 1, ..., N ′. Without loss of generalization, we consider N = N ′. Here we discuss
the case with discrete actions, and denote the action space by |A|.

For discrete quantile approximations, including QR-DQN, NC-QR-DQN, IQN, and
FQF, in order to get N quantile samples for each action, the output dimension of the
model is |A| ×N for an input state. For QR-DQN and NC-QR-DQN, {τ 1i } and {τ 2i } are
assumed to be uniformly spaced. For IQN, {ζ1i } and {ζ2i } are independently drawn from a
uniform distribution U([0, 1]). For FQF, {ζ1i } and {ζ2i } are proposed by a quantile fraction
network.

For methods that learn a continuous approximation of the quantile function, including
SPL-DQN and NDQFN, the output (for an input state) consists of knots with shape
|A| × (K + 1) when the domain is divided into K bins. For SPL-DQN, it learns the x, y
values, and derivatives of those knots. A smooth continuous function with closed form is
obtained in each bin. When sampling quantile values to compute the QR loss, SPL-DQN
uniformly fixes {ζ1i } and {ζ2i }, and {q1i } and {q2i } are obtained by querying the closed form
with {ζ1i } and {ζ2i } as inputs. For NDQFN, it only learns the y-values of those knots, and
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Figure 3.5: Performance comparison in stochastic Cartpole. Each curve is averaged over 5
seeds with shaded area indicating standard error.

the x-values of the knots are uniformly spaced. The continuous function is constructed
by connecting neighboring knots with linear functions. When sampling quantile values to
compute the QR loss, NDQFN draws {τ 1i } and {τ 2i } from a uniform distribution U([0, 1])
independently, and {q1i } and {q2i } are obtained by querying the linear functions in each
bin.

3.4.2 Discrete control in Cartpole

We begin our experimental results in a stochastic environment with a discrete action space
modified from Cartpole (Florian, 2007). The system is controlled by a force of +1 or
−1 applied to the cart. A reward of +1 is returned if the pole remains upright. We set
each state transition to have probability 0.05 of moving to a neighboring state to make
the environment stochastic. The QR-based methods use N = 8 quantiles to compute the
QR loss. MM-DQN uses N = M = 8 samples. More training details are provided in
Appendix A.1.2.

As the episode rewards may vary significantly due to stochasticity, to better reflect the
training process, we define the running score as a soft update of episode rewards:

running score = 0.99× running score+ 0.01× episode rewards (3.26)

Figure 3.5 shows the running score curves for stochastic Cartpole. In general, SPL
learns much faster (faster empirical convergence) than its counterparts. As discussed be-
fore, SPL can freely increase the number of quantiles when performing quantile regression
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without enlarging the output dimension of the model. We further increase the number
of quantiles to 24 to compute the QR loss while keeping the number of bins unchanged
(K = 8 and N = 24), yielding the curve labeled ’SPL1’ in Figure 3.5. This curve shows
that approximately minimizing the Wasserstein metric with more quantiles leads to bet-
ter quantile approximations and increases the learning speed and performance of SPL. As
NDQFN also learns continuous quantile functions, we do the same experiment (K = 8
and N = 24) for NDQFN, whose training curve is labeled by ’NDQFN1’ in Figure 3.5(b)
(to make the comparison clear, we show this in another figure). Although its training
performance improves, SPL with N = 24 is still better.

Table 3.1: Noise settings for different environments in PyBulletGym

Environments Noise
InvertedPendulum N (0, 0.02)

InvertedDoublePendulum N (0, 0.01)
InvertedPendulumSwingup N (0, 0.05)

Reacher N (0, 0.01)
Walker2D N (0, 0.005)

HalfCheetah N (0, 0.005)
HalfCheetah1 N (0, 0.008)
HalfCheetah2 N (0, 0.01)

Ant N (0, 0.01)
Hopper N (0, 0.003)

Humanoid N (0, 0.003)

3.4.3 Continuous control in PyBulletGym

PyBulletGym provides RoboSchool1, which is a free port of MuJoCo2. The state of these
environments contains joint information of a robot and an action is a multi-dimensional
continuous vector. We take nine environments from RoBoSchool and make them stochastic
by introducing Gaussian noise N (µ, σ) to both the location and velocity of each part of
the robot, with µ = 0 and σ varying in different environments. We choose a reasonable σ
for each environment such that robots won’t exhibit unrealistic motion. That is, for noise
sensitive environments, such as Walker2D and Humanoid, we use a smaller σ, and for

1https://openai.com/blog/roboschool/
2http://www.mujoco.org
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relatively easy tasks, like InvertedPendulumSwingup, we choose a bigger one. The noise
setting for different environments is shown in Table 3.1 in the appendix.

To evaluate on continuous control tasks, we combine distributional RL with DDPG (Lil-
licrap et al., 2016a) by modifying the critic, as done by Zhang & Yao (2019). Instead of
learning Q, the critic learns the distribution Z directly. To handle continuous actions, the
critic takes state-action pairs as input. As an exception, for the Humanoid environment,
we combine distributional RL with SAC (Haarnoja et al., 2018) due to the fact that DDPG
is not as good as SAC for this environment. To update the actor in DDPG and SAC, the
expectation of Q values is computed as the expectation of quantile samples given by the
distributional critic. We refer to the original papers for hyperparameter settings, which
are discussed in Appendix A.1.3. We also include raw DDPG and SAC as baselines.

Figure 3.6 shows the running score curves given by Equation 3.26 for these stochastic
environments. Generally, the training performance varies among different approaches in
different environments, however, in most cases, the quantile regression based methods who
learn monotonic quantile representations are better than those whose quantile representa-
tions have no monotonicity guarantee, which clarifies that the quantile crossing issue can
distort policy learning as pointed out by Zhou et al. (2020). Especially, for SPL, apart
from Reacher and InvertedPendulumSwingup, it always converges faster and performs bet-
ter during training. For InvertedPendulumSwingup, SPL performs comparably to NC-QR.
Although NDQFN also learns continuous monotonic quantile functions, its performance is
even worse than NC-QR in most cases, because NDQFN queries linear functions for quan-
tile samples when computing QR loss, but the approximation ability of piecewise linear
function is very limited. For methods with no monotonic quantile guarantee, we notice
that although IQN is the best in Reacher, it performs worse in InvertedPendulum and
Humanoid during training.

To further demonstrate the ability of our method to handle uncertainty of the environ-
ment, we slightly increase the noise in HalfCheetah to N (0, 0.008) (labeled by HalfChee-
tah1) and N (0, 0.01) (labeled by HalfCheetah2). The training curves in these two envi-
ronments are shown in Figure 3.7. On average, QR and MM for DDPG behave poorly
in these three HalfCheetah variants. The enhanced randomness of environments degrades
the training performance of SPL, but SPL is generally faster and better than NC-QR and
IQN, thanks to more precise quantile approximations.

During training, Ornstein-Uhlenheck noise OU(µ′, σ′) (Uhlenbeck & Ornstein, 1930) is
utilized when selecting actions to induce exploration in DDPG. At the evaluation stage,
the methods are executed with only exploitation (without action noise). We test the
best models we get after training for each method, and the testing score across different
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Table 3.2: Scaled testing scores across different stochastic environments. Scores are aver-
aged over 4 seeds.

Environments MM QR FQF IQN NDQFN NC-QR SPL
InvertedPendulum 0.911 0.940 0.953 0.970 0.992 0.969 0.999

InvertedDoublePendulum 0.814 0.978 0.975 0.967 0.990 0.993 1.019
InvertedPendulumSwingup 0.461 0.945 0.223 0.944 1.091 1.145 1.179

Reacher -1.501 0.412 -10.546 4.269 3.416 4.241 2.972
Walker2D 0.503 0.661 0.585 1.375 0.776 1.732 3.142

HalfCheetah 0.731 1.084 0.809 2.122 1.039 2.932 3.004
HalfCheetah1 0.763 0.897 0.859 1.764 1.156 2.158 2.633
HalfCheetah2 0.834 0.855 0.773 1.741 1.231 1.812 2.21

Ant 0.871 2.283 0.345 2.403 2.388 3.045 3.321
Hopper 0.689 0.868 0.671 0.960 0.893 1.405 1.609

Humanoid 1.077 1.409 0.035 0.044 1.108 1.558 1.640

environments are shown in Table 3.2. We test all DDPG based agents without Ornstein-
Uhlenheck noise for 0.125 million frames, and SAC based agents for 2.5 thousand episodes.
We treat DDPG and SAC scores as baselines and scale other methods’ scores by them, i.e.

method scaled test score =
method raw test score

DDPG/SAC raw test score
(3.27)

Apart from Reacher, SPL outperforms its counterparts in all other domains. For the
first two environments, although the training performances vary significantly among dif-
ferent methods, the testing scores of their best models are close to each other. For most
remaining environments, the testing scores of SPL and NC-QR are significantly better than
other methods.

Different sampling regimes of SPL and NDQFN

Since both SPL and NDQFN learn continuous quantile function, different sampling strate-
gies can be applied to sample quantiles for QR loss. As discussed in Sec. 3.4.1, in the
original paper of NDQFN, it samples quantile levels {ζi} from U(0, 1) as done in IQN.
While our method SPL fixes quantile level {ζi} as uniformly spaced as done in QR-DQN.
However, NDQFN can also use uniformly spaced quantile levels, and SPL can also use
quantile levels sampled from U(0, 1).
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In Fig. 3.8, we label the learning curve by SPL-rnd to denote the SPL with quantile
levels sampled from U(0, 1), and label the curve by NDQFN-uni to denote the NDQFN
with uniformly spaced quantile levels. In general, there is no clear advantage of on sampling
strategy over the other, e.g., in Reacher, SPL-rnd is better than SPL (which is actually
SPL-uni), but in Ant, SPL (SPL-uni) is better than SPL-rnd. But SPL outperforms
NDQFN in both training regimes. Note that though original SPL does not work well in
the Reacher domain, SPL-rnd instead, achieves a comparable result as the best method,
i.e., IQN, in this domain.

3.5 Summary

Based on previous works in distributional RL, in this chapter, we propose a more gen-
eral and precise approximation for quantile functions using monotonic rational-quadratic
splines. With a monotonic continuous representation of the quantile function, the quantile
value at every quantile level is accessible during training, yielding greater accuracy. In the
windy gridworld domain, the learned value distribution is closer to the ground truth com-
pared with other distributional RL methods. In stochastic robotics domain, our method
leads to higher expected returns. Particularly, comparing with piece-wise linear function
interpolation in NDQFN, our rational quadratic spline parameterization performs better
in most cases.
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Figure 3.6: Performance comparison in stochastic RoboSchool. Each curve is averaged by
7 seeds. The first eight environments are solved with DDPG. The last one is assigned to
SAC.
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Figure 3.7: Performance comparison in two stochastic HalfCheetahs with enhanced ran-
domness.

Figure 3.8: Performance comparison of SPL and NDQFN when trained with uniformly
spaced quantile fractions or random quantile fractions sampled from U([0, 1]) in eight
environments with DDPG as the baseline
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Chapter 4

Optimizing Measure of Variability in
RL: Gini Deviation as an Alternative
to Variance

4.1 Introduction

Although learning a value distribution is discussed in Chapter 3, it remains in the risk-
neutral setting. The demand for avoiding risks in practical applications has inspired
risk-averse reinforcement learning (RARL). For example, we want to avoid collisions in
autonomous driving (Naghshvar et al., 2018), or avoid huge financial losses in portfolio
management (Björk et al., 2014). In these cases, we would like to optimize a risk measure
of the total return instead of maximizing the expectation only.

Many risk measures have been studied for RARL, for instance, exponential utility
functions (Borkar, 2002), value at risk (VaR) (Chow et al., 2017), conditional value at
risk (CVaR) (Chow & Ghavamzadeh, 2014; Greenberg et al., 2022), and variance (Tamar
et al., 2012; La & Ghavamzadeh, 2013). In this chapter, we mainly focus on measures
of variability, where variance is a popular choice, as variance has advantages in inter-
pretability and computation (Markowitz & Todd, 2000; Li & Ng, 2000). Such a paradigm
is referred to as mean-variance RL. Traditional mean-variance RL methods consider the
variance of the total return random variable. Usually, the total return variance is treated
as a constraint to the RL problem, i.e., it is lower than some threshold (Tamar et al.,
2012; La & Ghavamzadeh, 2013; Xie et al., 2018). Recently, Bisi et al. (2020) proposed a
reward-volatility risk measure, which considers the variance of the per-step reward random
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variable. Bisi et al. (2020) shows that the per-step reward variance is an upper bound of
the total return variance and can better capture the short-term risk. Zhang et al. (2021)
further simplifies Bisi et al. (2020)’s method by introducing Fenchel duality.

Directly optimizing total return variance is challenging. It either necessitates double
sampling (Tamar et al., 2012) or calls for other techniques to avoid double sampling for
faster learning (Tamar et al., 2012; La & Ghavamzadeh, 2013; Xie et al., 2018). As for the
reward-volatility risk measure, Bisi et al. (2020) uses a complicated trust region optimiza-
tion due to the modified reward’s policy-dependent issue. Zhang et al. (2021) overcomes
this issue by modifying the reward according to Fenchel duality. However, this reward
modification strategy can possibly hinder policy learning by changing a “good” reward to
a “bad” one, which we discuss in detail in this work.

To overcome the limitations of variance-based risk measures, we propose to use a new
measure of variability: Gini deviation (GD). We first review the background of mean-
variance RL. Particularly, we explain the limitations of both total return variance and
per-step reward variance risk measures. We then introduce GD as a dispersion measure for
random variables and highlight its properties for utilizing it as a measure of variability in
policy gradient methods. Since computing the gradient using the original definition of GD
is challenging, we derive the policy gradient algorithm from its quantile representation to
minimize it. To demonstrate the effectiveness of our method in overcoming the limitations
of variance-based risk measures, we modify several domains (Guarded Maze (Greenberg
et al., 2022), Lunar Lander (Brockman et al., 2016a), Mujoco (Todorov et al., 2012)) where
risk-aversion can be clearly verified. We show that our method can learn risk-averse policy
with high return and low risk in terms of variance and GD, when others fail to learn a
reasonable policy.

4.2 Background: Mean-Variance RL

Mean-variance RL aims to maximize E[G0] and additionally minimize its variance V[G0](Tamar
et al., 2012; La & Ghavamzadeh, 2013; Xie et al., 2018). Generally, there are two ways to
define a variance-based risk. The first one defines the variance based on the Monte Carlo
total return G0. The second defines the variance on the per-step reward R. We review
these methods and their limitations in the following subsections. We will refer to π, πθ
and θ interchangeably throughout this chapter when the context is clear.
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4.2.1 Total Return Variance

Methods proposed by Tamar et al. (2012); La & Ghavamzadeh (2013); Xie et al. (2018)
consider the problem

max
π

E[G0], s.t. V[G0] ≤ ξ (4.1)

where ξ indicates the user’s tolerance of the variance. Using the Lagrangian relaxation
procedure (Bertsekas, 1997), we can transform it to the following unconstrained optimiza-
tion problem: maxπ E[G0] − λV[G0], where λ is a trade-off hyper-parameter. Note that
the mean-variance objective is in general NP-hard (Mannor & Tsitsiklis, 2011) to opti-
mize. The main reason is that although variance satisfies a Bellman equation, it lacks the
monotonicity of dynamic programming (Sobel, 1982).

Double Sampling in total return variance. We first show how to solve uncon-
strained mean-variance RL via vanilla stochastic gradient. Suppose the policy is pa-
rameterized by θ, define J(θ) = Eπ[G0] and M(θ) := Eπ

[
(
∑∞

t=0 γ
tR(St, At))

2
]
, then

V[G0] = M(θ) − J2(θ). The unconstrained mean-variance objective is equivalent to
Jλ(θ) = J(θ)− λ

(
M(θ)− J2(θ)

)
, whose gradient is

∇θJλ(θt) = ∇θJ(θt)− λ∇θ(M(θ)− J2(θ)) (4.2)

= ∇θJ(θt)− λ
(
∇θM(θ)− 2J(θ)∇θJ(θ)

)
(4.3)

The unbiased estimates for ∇θJ(θ) and ∇θM(θ) can be estimated by approximating the
expectations over trajectories by using a single set of trajectories as discussed in Sec-
tion 2.3, i.e., ∇θJ(θ) = Eτ [Rτωτ (θ)] and ∇θM(θ) = Eτ [R2

τωτ (θ)], where Rτ is the return
of trajectory τ and ωτ (θ) =

∑
t∇θ log πθ(at|st). In contrast, computing an unbiased esti-

mate for J(θ)∇θJ(θ) requires two distinct sets of trajectories to estimate J(θ) and ∇θJ(θ)
separately, which is known as double sampling.

Remark. Some work claims that double sampling cannot be implemented without
having access to a generative model of the environment that allows users to sample at least
two next states (Xie et al., 2018). This is, however, not an issue in our setting where we
allow sampling multiple trajectories. As long as we get enough trajectories, estimating
J(θ)∇θJ(θ) is possible.

Still, different methods were proposed to avoid this double sampling for faster learning.
Specifically, Tamar et al. (2012) considers the setting γ = 1 and considers an unconstrained
problem:

max
θ
L1(θ) = E[G0]− λg

(
V[G0]− ξ

)
(4.4)
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where λ > 0 is a tunable hyper-parameter, and penalty function g(x) = (max{0, x})2. This
method produces faster estimates for E[G0] and V[G0] and a slower updating for θ at each
episode, which yields a two-time scale algorithm. La & Ghavamzadeh (2013) considers the
setting γ < 1 and converts Formula 4.1 into an unconstrained saddle-point problem:

max
λ

min
θ
L2(θ, λ) = −E[G0] + λ

(
V[G0]− ξ

)
(4.5)

where λ is the dual variable. This approach uses a perturbation method and a smoothed
function method to compute the gradient of value functions with respect to policy pa-
rameters. Xie et al. (2018) considers the setting γ = 1, and introduces Fenchel duality
x2 = maxy(2xy − y2) to avoid the term J(θ)∇θJ(θ) in the gradient. The original problem
is then transformed into

max
θ,y

L3(θ, y) = 2y
(
E[G0] +

1

2λ

)
− y2 − E[G2

0] (4.6)

where y is the dual variable.

Limitations of Total Return Variance. The presence of the square term R2
τ in the

mean-variance gradient ∇θM(θ) = Eτ [R2
τωτ (θ)](Equation 4.2) makes the gradient estimate

sensitive to the numerical scale of the return, as empirically verified later. This issue is
inherent in all methods that require computing ∇θE[G2

0]. Users can not simply scale the
reward by a small factor to reduce the magnitude of R2

τ , since when scaling reward by a
factor c, E[G0] is scaled by c but V[G0] is scaled by c2. Consequently, scaling the reward
may lead to different optimal policies being obtained.

4.2.2 Per-step Reward Variance

A recent perspective uses per-step reward variance V[R] as a proxy for V[G0]. The proba-
bility mass function of R is

Pr(R = x) =
∑
s,a

dπ(s, a)Ir(s,a)=x (4.7)

where I is the indicator function, and

dπ(s, a) = (1− γ)
∞∑
t=0

γtPr(St = s, At = a|π, P ) (4.8)
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is the normalized discounted state-action distribution. Then we have E[R] = (1− γ)E[G0]

and V[G0] ≤ V[R]
(1−γ)2 (see Lemma 1 of Bisi et al. (2020)). Thus, Bisi et al. (2020) considers

the following objective

Ĵλ(π) = E[R]− λV[R] = E[R− λ(R− E[R])2] (4.9)

This objective can be cast as a risk-neutral problem in the original MDP, but with a new

reward function r̂(s, a) = r(s, a)− λ
(
r(s, a)− (1− γ)E[G0]

)2
. However, this r̂(s, a) is non-

stationary (policy-dependent) due to the occurrence of E[G0], so standard risk-neutral RL
algorithms cannot be directly applied. Instead, this method uses trust region optimiza-
tion (Schulman et al., 2015) to solve.

Zhang et al. (2021) introduces Fenchel duality to Equation 4.9. The transformed ob-
jective is

Ĵλ(π) = E[R]− λE[R2] + λmax
y

(2E[R]y − y2) (4.10)

which equals to

max
π,y

Jλ(π, y) =
∑
s,a

dπ(s, a)
(
r(s, a)− λr(s, a)2 + 2λr(s, a)y

)
− λy2 (4.11)

The dual variable y and policy π are updated iteratively. In each inner loop k, y has
analytical solution yk+1 =

∑
s,a dπk(s, a)r(s, a) = (1− γ)Eπk [G0] since it is quadratic for y.

After y is updated, learning π is a risk-neutral problem in the original MDP, but with a
new modified reward

r̂(s, a) = r(s, a)− λr(s, a)2 + 2λr(s, a)yk+1 (4.12)

Since r̂(s, a) is now stationary, any risk-neutral RL algorithms can be applied for policy
updating.

Limitations of Per-step Reward Variance. 1) V[R] is not an appropriate
surrogate for V[G0] due to fundamentally different implications. Consider a simple
example. Suppose the policy, the transition dynamics and the rewards are all deterministic,
then V[G0] = 0 while V[R] is usually nonzero unless all the per-step rewards are equal.
In this case, shifting a specific step reward by a constant will not affect V[G0] and should
not alter the optimal risk-averse policy. However, such shift can lead to a big difference
for V[R] and may result in an invalid policy as we demonstrated in later example. 2)
Reward modification hinders policy learning. Since the reward modifications in Bisi
et al. (2020) (Equation 4.9) and Zhang et al. (2021) (Equation 4.12) share the same issue,
here we take Equation 4.12 as an example. This modification is likely to convert a positive
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reward to a much smaller or even negative value due to the square term, i.e. −λr(s, a)2. In
addition, at the beginning of the learning phase, when the policy performance is not good,
y is likely to be negative in some environments (since y relates to E[G0]). Thus, the third
term 2λr(s, a)y decreases the reward value even more. This prevents the agent to visit
the good (i.e., rewarding) state even if that state does not contribute any risk. These two
limitations raise a great challenge to subtly choose the value for λ and design the reward
for the environment.

Empirical demonstration of the limitations. Consider a maze problem (a modified
version of Guarded Maze (Greenberg et al., 2022)) in Figure 4.1. Starting from the bottom
left corner, the agent aims to reach the green goal state. The gray color corresponds to
walls. The rewards for all states are deterministic (i.e., −1) except for the red state whose
reward is a categorical distribution with mean −1. The reward for visiting the goal is a
positive constant value. To reach the goal, a risk-neutral agent prefers the path at the
bottom that goes through the red state, but V[G0] will be nonzero. A risk-averse agent
prefers the white path in the figure even though E[G0] is slightly lower, but V[G0] = 0.
Per-step reward variance methods aim to use V[R] as a proxy of V[G0]. For the risk-averse
policy leading to the white path, ideally, increasing the goal reward by a constant will not
effect V[G0], but will make a big difference to V[R]. For instance, when the goal reward
is 10, V[R] = 10. When goal reward is 20, V[R] ≈ 36.4, which is much more risk-averse.
Next, consider the reward modification (Equation 4.12) for the goal reward when it is
20. The square term in Equation 4.12 is −400λ. It is very easy to make the goal reward
negative even for small λ, e.g., 0.1. We do find this reward modification prevents the agent
from reaching the goal in our experiments.

4.3 Gini Deviation as an Alternative of Variance

To avoid the limitations of V[G0] and V[R] we have discussed, in this chapter, we propose
to use Gini deviation as an alternative of variance. Also, since GD has a similar definition
and similar properties as variance, it serves as a more reasonable proxy of V[G0] compared
to V[R].

4.3.1 Gini Deviation: Definition and Properties

GD (Gini, 1912), also known as Gini mean difference or mean absolute difference, is defined
as follows. For a random variable X, let X1 and X2 be two i.i.d. copies of X, i.e., X1 and
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Figure 4.1: A modified Guarded Maze (Greenberg et al., 2022). Red state returns an
uncertain reward (details in text).

X2 are independent and follow the same distribution as X. Then GD is given by

D[X] =
1

2
E[|X1 −X2|] (4.13)

Variance can be defined in a similar way as V[X] = 1
2
E[(X1 −X2)

2].

Given samples {x1i }ni=1 from X1 and {x2j}nj=1 from X2. The unbiased empirical estima-
tions for GD and variance are

D̂[X] =
1

2n2

n∑
i=1

n∑
j=1

|x1i − x2j |

V̂[X] =
1

2n2

n∑
i=1

n∑
j=1

(x1i − x2j)2
(4.14)

Both risk profiles aim to measure the variability of a random variable and share similar
properties (Yitzhaki et al., 2003). For example, they are both location invariant, and can be
presented as a weighted sum of order statistics. Yitzhaki et al. (2003) argues that the GD
is superior to the variance as a measure of variability for distributions far from Gaussian.
We refer readers to this paper for a full overview. Here we highlight two properties of D[X]
to help interpret it. LetM denote the set of real random variables and letMp, p ∈ [1,∞)
denote the set of random variables whose probability measures have finite p-th moment,
then
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• V[X] ≥
√
3 D[X] for all X ∈M2.

• D[cX] = cD[X] for all c > 0 and X ∈M.

The first property is known as Glasser’s inequality Glasser (1962), which shows D[X] is a
lower bound of V[X] if X has finite second moment. The second one is known as positive
homogeneity in coherent measures of variability Furman et al. (2017), and is also clear
from the definition of GD in Equation 4.13. In RL, considering X is the return variable,
this means GD is less sensitive to the reward scale compared to variance, i.e., scaling the
return will scale D[X] linearly, but quadratically for V[X]. We also provide an intuition of
the relation between GD and variance from the perspective of convex order, as shown in
Appendix B.1. Note also that while variance and GD are both measures of variability, GD
is a coherent measure of variability (Furman et al., 2017). Sec. 1.2 provides a discussion
of the properties of coherent measures of variability, while explaining the differences with
coherent measures of risk such as conditional value at risk (CVaR).

4.3.2 Signed Choquet Integral for Gini Deviation

This section introduces the concept of signed Choquet integral, which provides an alterna-
tive definition of GD and makes gradient-based optimization convenient. Note that with
the original definition (Equation 4.13), it can be intractable to compute the gradient w.r.t.
the parameters of a random variable’s density function through its GD.

The Choquet integral (Choquet, 1954) was first used in statistical mechanics and poten-
tial theory and was later applied to decision making as a way of measuring the expected
utility (Grabisch, 1996). The signed Choquet integral belongs to the Choquet integral
family and is defined as:

Definition 1 (Wang et al. (2020), Equation 1) A signed Choquet integral Φh : X →
R, X ∈ L∞ is defined as

Φh(X) =

∫ 0

−∞

(
h
(
Pr(X ≥ x)

)
− h(1)

)
dx+

∫ ∞

0

h
(
Pr(X ≥ x)

)
dx (4.15)

where L∞ is the set of bounded random variables in a probability space, h is the distortion
function and h ∈ H such that H = {h : [0, 1]→ R, h(0) = 0, h is of bounded variation}.
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This integral has become the building block of law-invariant risk measures 1 after the work
of Kusuoka (2001); Grechuk et al. (2009). One reason for why signed Choquet integral is of
interest to the risk research community is that it is not necessarily monotone. Since most
practical measures of variability are not monotone, e.g., variance, standard deviation, or
deviation measures in Rockafellar et al. (2006), it is possible to represent these measures
in terms of Φh by choosing a specific distortion function h.

Lemma 1 (Wang et al. (2020), Section 2.6) Gini deviation is a signed Choquet inte-
gral with a concave h given by h(α) = −α2 + α, α ∈ [0, 1].

This Lemma provides an alternative definition for GD, i.e., D[X] =
∫∞
−∞ h

(
Pr(X ≥

x)
)
dx, h(α) = −α2 + α. However, this integral is still not easy to compute. Here we

turn to its quantile representation for easy calculation.

Lemma 2 (Wang et al. (2020), Lemma 3) Φh(X) has a quantile representation. If

F−1
X is continuous, then Φh(X) =

∫ 0

1
F−1
X (1− α)dh(α), where F−1

X is the quantile function
(inverse CDF) of X.

Combining Lemma 1 and 2, D[X] can be computed alternatively as

D[X] = Φh(X) =

∫ 1

0
F−1
X (1− α)dh(α) =

∫ 1

0
F−1
X (α)(2α− 1)dα (4.16)

With this quantile representation of GD, we can derive a policy gradient method for
our new learning problem in the next section. It should be noted that variance cannot be
directly defined by a Φh-like quantile representation, but as a complicated related represen-
tation: V[X] = suph∈H

{
Φh(X) − 1

4
∥h′∥22

}
, where ∥h′∥22 =

∫ 1

0
(h′(p))2dp if h is continuous,

and ∥h′∥22 :=∞ if it is not continuous (see Example 2.2 of Liu et al. (2020)). Hence, such
representation of the conventional variance measure is not readily usable for optimization.

4.3.3 Discussion on Variance, Standard Deviation, and Gini De-
viation

Variance, standard deviation and Gini deviation all describes the variability of a distribu-
tion. Mathematically, they all correspond to the mean of some difference between every

1Law-invariant property is one of the popular ”financially reasonable” axioms. If a functional returns
the same value for two random variables with the same distribution, then the functional is called law-
invariant.
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pair of points. The main difference is how this difference is computed. Gini deviation uses
L1 distance, standard deviation uses L2 distance and variance uses squared L2 distance.
As a result, Gini deviation is less sensitive to outliers because L1 distance is less sensitive
than L2 distance to outliers. As reveled in Sec. 4.2, using variance (squared L2 distance)
causes the stability issue.

To intuitively interpret the limitations of variance and standard deviation, we give some
examples. When a random variable follows a Gaussian distribution, variance or standard
deviation is the best choice to describe the variability or dispersion of the random variable,
since variance is a parameter of the Gaussian distribution. However, when the underlying
distribution is far from Gaussian, e.g., Pareto distribution, multimodal distribution, then
variance or standard deviation potentially leads to misleading interpretations of the data’s
variability. For example, variance or standard deviation is sensitive to the extreme values
in Pareto distribution due to L2 distance. For multimodal distribution, variance is not
sufficient since data are concentrated around several peaks. In the context of RL, the total
return distribution is generally not Gaussian and very likely to contain extreme values or
being multimodal, thus Gini deviation is preferred over variance and standard deviation.

Here we give an analysis of using standard deviation for policy gradients. By tak-
ing the square root of variance, standard deviation gets rid of the square and is positive
homogeneous. Readers may wonder if using standard deviation may stabilize the policy
gradient. First, similar to Gini deviation, standard deviation can also be defined using
signed Choquet integral

STD[X] = sup
h∈H′

∫ 1

0

F−1
X (1− α)dh(α) (4.17)

where H′ = {h ∈ H, h(1) = 0,
∫ 1

0
(h′(t))2dt < 1, h is concave}. It is not convenient to

take gradient due to the supreme over a function space. Second, directly taking gradient
for standard deviation is still possible by using the gradient of variance (since STD[X] =√

V[X])

∇STD[X] =
1

2
√

V[X]
∇V[X] (4.18)

Using the notation in Sec. 4.2.1, the gradient of STD[G0] is (via Monte Carlo sampling)

Eτ [
R2
τω(θ)

2
√

V[Rτ ]
]− Eτ [

Rτ√
V[Rτ ]

] · Eτ [Rτω(θ)] (4.19)

where ω(θ) includes the gradient of sum of log π. Note that this gradient can be potentially
unbounded since

√
V[Rτ ] can be very small or be zero. For example, in the maze domain
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in Sec. 4.5.1, the return of the risk-averse path has zero variance, then the gradient of
standard deviation causes a division by zero error in this domain.

We give a comparison of Gini deviation and standard deviation in the lunarlander
domain in Fig. 4.7.

4.4 Policy Gradient for Mean-Gini Deviation

In this section, we consider a new learning problem by replacing the variance with GD.
Specifically, we consider the following objective

max
π

E[G0]− λD[G0] (4.20)

where λ is the trade-off parameter. To maximize this objective, we may update the policy
towards the gradient ascent direction. Computing the gradient for the first term has been
widely studied in risk-neutral RL Sutton & Barto (2018). Computing the gradient for the
second term may be difficult at the first glance from its original definition, however, it
becomes possible via its quantile representation (Equation 4.16).

4.4.1 Gini Deviation Gradient Formula

We first give a general gradient calculation in Proposition 3 for GD of a random variable
Z, whose distribution function is parameterized by θ. This is the main contribution of this
chapter. In RL, we can interpret θ as the policy parameters, and Z as the return under
that policy, i.e., G0. Denote the Probability Density Function (PDF) of Z as fZ(z; θ).
Given a confidence level α ∈ (0, 1), the α-level quantile of Z is denoted as qα(Z; θ), and
given by

qα(Z; θ) = F−1
Zθ

(α) = inf
{
z : Pr(Zθ ≤ z) ≥ α

}
(4.21)

For technical convenience, we make the following assumptions, which are also realistic in
RL.

Assumption 1 Z is a continuous random variable, and bounded in range [−b, b] for all θ.

Assumption 2 ∂
∂θi
qα(Z; θ) exists and is bounded for all θ, where θi is the i-th element of

θ.
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Assumption 3 ∂fZ(z;θ)
∂θi

/fZ(z; θ) exists and is bounded for all θ, z. θi is the i-th element of
θ.

Since Z is continuous, the second assumption is satisfied whenever ∂
∂θi
fZ(z; θ) is bounded.

These assumptions are common in likelihood-ratio methods, e.g., see Tamar et al. (2015).
Relaxing these assumptions is possible but would complicate the presentation.

Proposition 3 Let Assumptions 1, 2, 3 hold. Then

∇θD[Zθ] = −Ez∼Zθ

[
∇θ log fZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
)
dt
]

(4.22)

Proof. By Equation 4.16, the gradient of D[Zθ] = Φh(Zθ) (h(α) = −α2 + α, α ∈ [0, 1]) is

∇θD[Zθ] = ∇θΦh(Zθ) =

∫ 1

0

(2α− 1)∇θF
−1
Zθ

(α)dα =

∫ 1

0

(2α− 1)∇θqα(Z; θ)dα. (4.23)

This requires to calculate the gradient for any α-level quantile of Zθ, i.e., ∇θqα(Z; θ). Based

on the assumptions and the definition of the α-level quantile, we have
∫ qα(Z;θ)
−b fZ(z; θ)dz =

α. Taking a derivative and using the Leibniz rule we obtain

0 = ∇θ

∫ qα(Z;θ)

−b
fZ(z; θ)dz =

∫ qα(Z;θ)

−b
∇θfZ(z; θ)dz +∇θqα(Z; θ)fZ

(
qα(Z; θ); θ

)
(4.24)

Rearranging the term, we get

∇θqα(Z; θ) = −
∫ qα(Z;θ)

−b
∇θfZ(z; θ)dz ·

[
fZ

(
qα(Z; θ); θ

)]−1
(4.25)

Plugging back to Equation 4.23 gives us an intermediate version of ∇θD[Zθ].

∇θD[Zθ] = −
∫ 1

0

(2α− 1)

∫ qα(Z;θ)

−b
∇θfZ(z; θ)dz ·

[
fZ

(
qα(Z; θ); θ

)]−1
dα (4.26)

To make the integral over α clearer, we rewrite qα(Z; θ) as F
−1
Zθ

(α), where FZθ
is the CDF.

∇θD[Zθ] = −
∫ 1

0

(2α− 1)

∫ F−1
Zθ

(α)

−b
∇θfZ(z; θ)dz

1

fZ(F
−1
Zθ

(α); θ)
dα
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Switching the integral order, we get

∇θD[Zθ] = −
∫ b

−b

∫ 1

FZθ
(z)

(2α− 1)∇θfZ(z; θ)
1

fZ(F
−1
Zθ

(α); θ)
dαdz

= −
∫ b

−b
∇θfZ(z; θ)

∫ 1

FZθ
(z)

(2α− 1)
1

fZ(F
−1
Zθ

(α); θ)
dαdz

(4.27)

Denote t = F−1
Zθ

(α), then α = FZθ
(t). Here, we further change the inner integral from

dα to dFZθ
(t), i.e., dα = dFZθ

(t) = fZ(t; θ)dt. The integral range for t is now from
F−1
Zθ

(FZθ
(z)) = z to F−1

Zθ
(1) = b.

∇θD[Zθ] = −
∫ b

−b
∇θfZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
) 1

fZ(t; θ)
dFZθ

(t) dz

= −
∫ b

−b
∇θfZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
)
dt dz

(4.28)

Applying ∇θ log(x) =
1
x
∇θx to ∇θfZ(z; θ), we have

∇θD[Zθ] = −
∫ b

−b
fZ(z; θ)∇θ log fZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
)
dt dz

= −Ez∼Zθ

[
∇θ log fZ(z; θ)

∫ b

z

(
2FZθ

(t)− 1
)
dt
] (4.29)

4.4.2 Gini Deviation Policy Gradient via Sampling

In a typical application, Z in Section 4.4.1 would correspond to the performance of a
system, e.g., the total return G0 in RL. Note that in order to compute Equation 4.22, one
needs access to ∇θ log fZ(z; θ): the sensitivity of the system performance to the parameters
θ. Usually, the system performance is a complicated function and calculating its probability
distribution is intractable. However, in RL, the performance is a function of trajectories.
The sensitivity of the trajectory distribution is often easy to compute. This naturally
suggests a sampling based algorithm for gradient estimation.

Now consider Equation 4.22 in the context of RL, i.e., Z = G0 and θ is the policy
parameter.

∇θD[G0] = −Eg∼G0

[
∇θ log fG0(g; θ)

∫ b

g

(
2FG0(t)− 1

)
dt
]

(4.30)
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To sample from the total return variable G0, we need to sample a trajectory τ from the
environment by executing πθ and then compute its corresponding return Rτ := r1 + γr2 +
...+ γT−1rT , where rt is the per-step reward at time t, and T is the trajectory length. The
probability of the sampled return can be calculated as

fG0(Rτ ; θ) = µ0(s0)
T−1∏
t=0

[πθ(at|st)p(rt+1|st, at)] (4.31)

The gradient of its log-likelihood is the same as that of

P (τ |θ) = µ0(s0)
T−1∏
t=0

[πθ(at|st)p(st+1|st, at)] (4.32)

since the difference in transition probability does not alter the policy gradient. It is well
known that ∇θ logP (τ |θ) =

∑T−1
t=0 ∇θ log πθ(at|st).

For the integral part of Equation 4.30, it requires the knowledge of the CDF of G0. In
practice, this means we should obtain the full value distribution of G0, which is usually not
easy. One common approach to acquire an empirical CDF or quantile function (inverse
CDF) is to get the quantile samples of a distribution and then apply some reparameter-
ization mechanism. For instance, reparameterization is widely used in distributional RL
for quantile function estimation. The quantile function has been parameterized as a step
function (Dabney et al., 2018b,a), a piece-wise linear function (Zhou et al., 2021), or other
higher order spline functions (Luo et al., 2022). In this chapter, we use the step function
parameterization given its simplicity. To do so, suppose we have n trajectory samples
{τi}ni=1 from the environment and their corresponding returns {Rτi}ni=1, the returns are
sorted in ascending order such that Rτ1 ≤ Rτ2 ≤ ... ≤ Rτn , then each Rτi is regarded as a
quantile value of G0 corresponding to the quantile level ζi =

1
2
( i−1
n

+ i
n
), i.e., we assume

qζi(G0; θ) = Rτi . This strategy is also common in distributional RL, e.g., see Dabney et al.
(2018b); Yue et al. (2020). The largest return Rτn is regarded as the upper bound b in
Equation 4.30.

Thus, given ordered trajectory samples {τi}ni=1, an empirical estimation for GD policy
gradient is

− 1

n− 1

n−1∑
i=1

ηi

T−1∑
t=0

∇θ log πθ(ai,t|si,t), where ηi =
n−1∑
j=i

2j

n

(
Rτj+1

−Rτj

)
−
(
Rτn −Rτi

)
(4.33)

We give an example here to show how to estimate the integral of CDF in Eq. 4.30. The
CDF function FG0 is parameterized by a step function given its quantiles {Rτi}ni=1, which
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Figure 4.2: An example of parameterizing (inverse) CDF given six quantiles. The function
is highlighted in the bold line of orange color.

satisfy Rτ1 ≤ Rτ2 ≤ ... ≤ Rτn . An example of the step function is shown in Figure 4.2.
With this parameterization, the integral over CDF can be regarded as the area below the
step function. Thus, for each τi, the integral over CDF is approximated as (Rτn is treated
as b) ∫ Rτn

Rτi

2FG0(t)dt ≈
n−1∑
j=i

2× j

n

(
Rτj+1

−Rτj

)
(4.34)

which yields the estimation in Eq. 4.33.

The sampled trajectories can be used to estimate the gradient for E[G0] in the mean-
time, e.g., the well known vanilla policy gradient (VPG), which is more often used as
REINFORCE with baseline as in Eq. 2.18. Apart from VPG, another choice to maximize
E[G0] is using PPO (Schulman et al., 2017).

4.4.3 Incorporating Importance Sampling

For on-policy policy gradient, samples are abandoned once the policy is updated, which is
expensive for our gradient calculation since we are required to sample n trajectories each
time. To improve the sample efficiency to a certain degree, we incorporate importance
sampling (IS) to reuse samples for multiple updates in each loop. For each τi, the IS
ratio is ρi =

∏T−1
t=0 πθ(ai,t|si,t)/πθ̂(ai,t|si,t), where θ̂ is the old policy parameter when {τi}ni=1
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are sampled. Suppose the policy gradient for maximizing E[G0] is REINFORCE baseline.
With IS, the empirical mean-GD policy gradient is

1

n

n∑
i=1

ρi

T−1∑
t=0

∇θ log πθ(ai,t|si,t)(gi,t − V (si,t)) +
λ

n− 1

n−1∑
i=1

ρiηi

T−1∑
t=0

∇θ log πθ(ai,t|si,t) (4.35)

where gi,t is the sum of rewards-to-go as defined above. V (si,t) is the value function. The
first part can also be replaced by PPO-Clip policy gradient. Then we have

1

n

n∑
i=1

T−1∑
t=0

∇θmin
(πθ(ai,t|si,t)
πθ̂(ai,t|si,t)

Ai,t, f(ϵ, Ai,t)
)
+

λ

n− 1

n−1∑
i=1

ρiηi

T−1∑
t=0

∇θ log πθ(ai,t|si,t) (4.36)

where Ai,t is the advantage estimate, and f() is the clip function in PPO with ϵ being the

clip range, i.e. f(ϵ, Ai,t) = clip(
πθ(ai,t|si,t)
πθ̂(ai,t|si,t)

, 1− ϵ, 1 + ϵ)Ai,t.

The extreme IS values ρi will introduce high variance to the policy gradient. To stabilize
learning, one strategy is that in each training loop, we only select τi whose ρi lies in
[1− δ, 1 + δ], where δ controls the range. The updating is terminated if the chosen sample
size is lower than some threshold, e.g., β · n, β ∈ (0, 1). Another strategy is to directly
clip ρi by a constant value ζ, i.e., ρi = min(ρi, ζ), e.g., see Bottou et al. (2013). In our
experiments, we use the first strategy for Equation 4.35, and the second for Equation 4.36.
We leave other techniques for variance reduction of IS for future study. The full algorithm
that combines GD with REINFORCE and PPO is summaried in Algo 1 and 2.

4.5 Experiments

Our experiments were designed to serve two main purposes. First, we investigate whether
the GD policy gradient approach could successfully discover risk-averse policies in scenarios
where variance-based methods tend to fail. To accomplish this, we manipulated reward
choices to assess the ability of the GD policy gradient to navigate risk-averse behavior.
Second, we sought to verify the effectiveness of our algorithm in identifying risk-averse
policies that have practical significance in both discrete and continuous domains. We aimed
to demonstrate its ability to generate meaningful risk-averse policies that are applicable
and valuable in practical settings.

Baselines. We compare our method with the original mean-variance policy gradient
(Equation 4.2, denoted as MVO), Tamar’s method (Tamar et al., 2012) (denoted as Tamar),
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MVP (Xie et al., 2018), and MVPI (Zhang et al., 2021). Specifically, MVO requires multiple
trajectories to compute J(θ)∇θJ(θ). We use n

2
trajectories to estimate J(θ) and another

n
2
to estimate ∇θJ(θ), where n is the sample size. MVPI is a general framework for policy

iteration whose inner risk-neutral RL solver is not specified. For the environment with
discrete actions, we build MVPI on top of Q-Learning or DQN (Mnih et al., 2015). For
continuous action environments, MVPI is built on top of TD3 (Fujimoto et al., 2018) as
in Zhang et al. (2021). We use REINFORCE to represent the REINFORCE with baseline
method. We use MG as a shorthand of mean-GD to represent our method. In each domain,
we ensure each method’s policy or value nets have the same neural network architecture.

For policy updating, MVO and MG collect n episodes before updating the policy. In
contrast, Tamar and MVP update the policy after each episode. Non-tabular MVPI up-
dates the policy at each environment step. In hyperparameter search, we use the parameter
search range in MVPI (Zhang et al., 2021) as a reference, making reasonable refinements
to find an optimal parameter setting. Please refer to Appendix B.2 for any missing imple-
mentation details.

4.5.1 Tabular case: Maze Problem

This domain is a modified Guarded Maze (Greenberg et al., 2022) that was previously
described in Section 4.2.2. The original Guarded Maze is asymmetric with two openings
to reach the top path (in contrast to a single opening for the bottom path). In addition,
paths via the top tend to be longer than paths via the bottom. We modified the maze to be
more symmetric in order to reduce preferences arising from certain exploration strategies
that might be biased towards shorter paths or greater openings, which may confound
risk aversion. Every movement before reaching the goal receives a reward of −1 except
moving to the red state, where the reward is sampled from {−15,−1, 13} with probability
{0.4, 0.2, 0.4} (mean is −1) respectively. The maximum episode length is 100. MVO and
MG collect n = 50 episodes before updating the policy. Agents are tested for 10 episodes
per evaluation.

The failure of variance-based baselines under simple reward manipulation.
We first set the goal reward to 20. Here, we report the optimal risk-aversion rate achieved
during training. Specifically, we measure the percentage of episodes that obtained the
optimal risk-averse path, represented by the white color path in Figure 4.1, out of all
completed episodes up to the current stage of training.

Notice that MVO performs well in this domain when using double sampling to estimate
its gradient. Then we increase the goal reward to 40. This manipulation does not affect the
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Figure 4.3: (a) Policy evaluation return and (b,c) optimal risk-aversion rate v.s. training
episodes in Maze. Curves are averaged over 10 seeds with shaded regions indicating stan-
dard errors. For optimal risk-aversion rate, higher is better.

return variance of the optimal risk-averse policy, since the reward is deterministic. However,
the performances of MVO, Tamar, MVP all decrease, since they are more sensitive to the
numerical scale of the return (due to the E[G2

0] term introduced by variance). MVPI is a
policy iteration method in this problem, whose learning curve is not intuitive to show. It
finds the optimal risk-averse path when the goal reward is 20, but it fails when the goal
reward is 40. An analysis for MVPI is given in Sec. 4.5.1. We compare the sensitivity of
different methods with respect to λ in Fig. 4.4.

Analysis for MVPI in Maze (MVPI-Q-Learning)

MVPI-Q-Learning finds the optimal risk-averse path when goal reward is 20 but fails when
goal reward is 40. Since it is not intuitive to report the learning curve for a policy iteration
method where its reward is modified in each iteration, we give an analysis here.

The value of dual variable y in Equation 4.12 is (1− γ)E[G0] given the current policy.
Recall that the maximum episode length is 100. At the beginning, when the Q function
is randomly initialized (i.e., it is a random policy), E[G0] =

∑99
t=0 0.999

t(−1) ≈ −95.2.
Thus y = (1 − 0.999) × (−95.2) = −0.0952, the goal reward after modification is rgoal =
20 − 0.2 × 202 + 2 × 0.2 × 20 × y ≈ −60.7. For the red state, its original reward is
sampled from {−15,−1, 13}. After the reward modification, it becomes sampling from
{−59.4,−1.16,−21.2}. Thus the expected reward of the red state is now rred = 0.4 ×
(−59.4)+ 0.2× (−1.16)+ 0.4× (−21.2) = −32.472. Given the maximum episode length is
100, the optimal policy is still the white path in Figure 4.1. (Because the expected return
for the white path is

∑9
t=0 0.999

t(−1) + 0.99910(−60.7) ≈ −70. The expected return for
a random walk is

∑99
t=0 0.999

t(−1) ≈ −95.2. The expected return for the shortest path
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Figure 4.4: Policy evaluation return and optimal risk-aversion rate v.s. training episodes in
Maze (goal reward is 20) for MVO, Tamar, MVP, and MG with different λ. The reasonable
λ range varies in different methods. Curves are averaged over 10 seeds with shaded regions
indicating standard errors.
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Figure 4.5: Divide the ground of LunarLander into left and right parts by the middle (red)
line. If landing in the right area, an additional noisy reward is given.

going through the red state is even lower than the white path since the reward of the red
state after modification is pretty negative: −32.472.)

However, when goal reward is 40, after modification, the goal reward becomes rgoal =
40− 0.2× 402 + 2× 0.2× 40× y ≈ −281.5. In this case, the optimal policy has to avoid
the goal state since it leads to a even lower return.

Remark. Scaling rewards by a small factor is not an appropriate approach to make
algorithms less sensitive to the numerical scale for both total return variance and per-step
reward variance, since it changes the original mean-variance objective in both cases.

4.5.2 Discrete control: LunarLander

This domain is taken from OpenAI Gym Box2D environments Brockman et al. (2016a).
We refer readers to its official documents for the full description. Originally, the agent is
awarded 100 if it comes to rest. We divide the ground into two parts by the middle line of
the landing pad, as shown in Figure 4.5 in Appendix. If the agent lands in the right area,
an additional noisy reward sampled from N (0, 1) times 90 is given. A risk-averse agent
should learn to land at the left side as much as possible. We include REINFORCE as a
baseline to demonstrate the risk-aversion of our algorithm. REINFORCE, MVO and MG
collect n = 30 episodes before updating their policies. Agents are tested for 10 episodes
per evaluation.

We report the rate at which different methods land on the left in Figure 4.6(b) (we
omit the failed methods), i.e, the percentage of episodes successfully landing on the left
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Figure 4.6: (a) Policy evaluation return and (b) left-landing rate (i.e., risk-averse landing
rate) v.s. training episodes in LunarLander. Curves are averaged over 10 seeds with shaded
regions indicating standard errors. For landing left rate, higher is better.

per evaluation. MVO, Tamar, and MVP do not learn reasonable policies in this domain
according to their performances in Figure 4.6(a). MVP learns to land in the middle of
the learning phase, but soon after fails to land. Since successfully landing results in a
large return (success reward is 100), the return square term (E[G2

0]) introduced by variance
makes MVP unstable. MVPI also fails to land since V[R] is sensitive to the numerical scale
of rewards. In this domain, the success reward is much larger than other reward values.
Furthermore, reward modification in MVPI turns large success rewards into negative values,
which prevents the agent from landing on the ground. MG achieves a comparable return
with REINFORCE, but clearly learns a risk-averse policy by landing more on the left.

The additional results on replacing variance by standard deviation is shown in Fig. 4.7.
where the mean-standard deviation objective is labeled by MSTD. Regarding the perfor-
mance (i.e., evaluation return), MSTD is much better than MVO in Fig. 4.6. However,
MSTD still fails to learn a risk averse behavior in this domain.

4.5.3 Continuous control: Mujoco

Mujoco Todorov et al. (2012) is a collection of robotics environments with continuous states
and actions in OpenAI Gym Brockman et al. (2016a). Here, we selected three domains
(InvertedPendulum, HalfCheetah, and Swimmer) that are conveniently modifiable, where
we are free to modify the rewards to construct risky regions in the environment (Through
empirical testing, risk-neutral learning failed when similar noise was introduced to other
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Figure 4.7: (a) Policy evaluation return and (b) left-landing rate (i.e., risk-averse landing
rate) v.s. training episodes in LunarLander. MSTD means mean-standard deviation ob-
jective. Curves are averaged over 10 seeds with shaded regions indicating standard errors.
For landing left rate, higher is better.

Mujoco domains. Consequently, identifying the cause for the failure of risk-averse algo-
rithms on other domains became challenging). Motivated by and following Malik et al.
(2021); Liu et al. (2023), we define a risky region based on the X-position. For instance, if
X-position > 0.01 in InvertedPendulum, X-position < −3 in HalfCheetah, and X-position
> 0.5 in Swimmer, an additional noisy reward sampled from N (0, 1) times 10 is given. Lo-
cation information (i.e., X-position) is appended to the agent’s observation. A risk-averse
agent should reduce the time it visits the noisy region in an episode. To ensure that agents
move both forward and backward with equal preference in terms of expected reward in the
environments, we define the distance-based reward as the difference in distance between
the current and previous states from the origin, regardless of the sign of the X-position. We
also include the risk-neutral algorithms as baselines to highlight the risk-aversion degree
of different methods.

All the risk-averse policy gradient algorithms still use VPG to maximize the expected
return in InvertedPendlulum (thus the risk-neutral baseline is REINFORCE). Using VPG
is also how these methods are originally derived. However, VPG is not good at more
complex Mujoco domains, e.g., see OpenAI’s benchmark 2. In HalfCheetah and Swimmer,
we combine those algorithms with PPO-style policy gradient to maximize the expected
return. Minimizing the risk term remains the same as their original forms. MVPI is an
off-policy time-difference method in Mujoco. We train it with 1e6 steps instead of as many

2https://spinningup.openai.com/en/latest/spinningup/bench.html
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Figure 4.8: (a,c,e) Policy evaluation return and (b,d,f) location visiting rate v.s. training
episodes in Mujoco of episode-based methods. Curves are averaged over 10 seeds with
shaded regions indicating standard errors. For location visiting rate, lower is better.

episodes as other methods. MVO and MG sample n = 30 episodes in InvertedPendulum
and n = 10 in HalfCheetah and Swimmer before updating policies. Agents are tested for
20 episodes per evaluation. The percentage of time steps visiting the noisy region in an
episode is shown in Figure 4.8(b,d,f). Compared with other return variance methods, MG
achieves a higher return while maintaining a lower visiting rate. Comparing MVPI and
TD3 against episode-based algorithms like MG is not straightforward within the same figure
due to the difference in parameter update frequency. MVPI and TD3 update parameters
at each environment time step. We shown their learning curves in Figure 4.9. MVPI also
learns risk-averse policies in all three domains according to its learning curves.

We further design two domains using HalfCheetah and Swimmer (marked as HalfChee-
tah1 and Swimmer1 in the figure’s caption). The randomness of the noisy reward linearly
decreases when agent’s forward distance grows. To encourage the agent to move forward,
only the forward reward is positive. The additional noisy reward is sampled from N (0, 1)
times 10 times 1 − X

20
if X-position > 0. To maximize the expected return and minimize

risk, the agent has to move forward as far as possible. The results are shown in Fig-
ures 4.10,4.11. In these two cases, only MG shows a clear tendency of moving forward,
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Figure 4.9: (a,c,e) Policy evaluation return and (b,d,f) location visiting rate v.s. training
episodes in Mujoco of TD3 and MVPI. Curves are averaged over 10 seeds with shaded
regions indicating standard errors. For location visiting rate, lower is better.

which suggests our method is less sensitive to reward choices compared with methods using
V[R].

The return variance and GD during learning in the above environments are also reported
in Appendix B.2. In general, when other return variance based methods can find the risk-
averse policy, MG maintains a lower or comparable return randomness when measured by
both variance and GD. When other methods fail to learn a reasonably good risk-averse
policy, MG consistently finds a notably higher return and lower risk policy compared
with risk-neutral methods. MVPI has the advantage to achieve low return randomness
in location based risky domains, since minimizing V[R] naturally avoids the agent from
visiting the noisy region. But it fails in distance-based risky domains.

4.6 Summary

This chapter proposes to use a new risk measure, Gini deviation, as a substitute for variance
in mean-variance RL. It is motivated to overcome the limitations of the existing total
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Figure 4.10: The distance agents covered in HalfCheetah1. Curves are averaged over 10
seeds with shaded regions indicating standard errors.

Figure 4.11: The distance agents covered in Swimmer1. Curves are averaged over 10 seeds
with shaded regions indicating standard errors.
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return variance and per-step reward variance methods, e.g., sensitivity to numerical scale
and hindering of policy learning. A gradient formula is presented and a sampling-based
policy gradient estimator is proposed to minimize such risk. We empirically show that our
method can succeed when the variance-based methods will fail to learn a risk-averse or
a reasonable policy. This new risk measure may inspire a new line of research in RARL.
First, one may study the practical impact of using GD and variance risk measures. Second,
hybrid risk measures may be adopted in real-world applications to leverage the advantages
of various risk measures.
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Algorithm 1 Mean-Gini Deviation Policy Gradient (with REINFORCE baseline)

Input: Iterations numberK, sample size n, inner update numberM , policy learning rate
αθ, value learning rate αϕ, importance sampling range δ, inner termination parameter
β, trade-off parameter λ.
Initialize policy πθ parameter θ, value Vϕ parameter ϕ.
for k = 1 to K do
Sample n trajectories {τi}ni=1 by πθ, compute return {R(τi)}ni=1

Compute rewards-to-go for each state in τi: gi,t
for m = 1 to M do
Compute importance sampling ratio for each trajectory {ρi}ni=1

Select D = {τs} whose ρs ∈ [1− δ, 1 + δ]
Sort trajectories such that R(τ1) ≤ ... ≤ R(τ|D|)
if |D| < n · β then
break

end if
mean grad = 0, gini grad = 0
for i = 1 to |D| do
mean grad += ρi ·

∑T−1
0 ∇θ log πθ(ai,t|si,t)(gi,t − V ϕ(si,t))

Update Vϕ by mean-squared error 1
T

∑T−1
t=0 (Vϕ(si,t)− gi,t)2 with learning rate αϕ

end for
for i = 1 to |D| − 1 do
gini grad += −ρi · ηi

∑T−1
t=0 ∇θ log πθ(ai,t|si,t), where

ηi =
∑|D|−1

j=i
2j
|D|(Rj+1 −Rj)− (R|D| −Ri)

end for
Update πθ by

(
1
|D| mean grad - λ

|D|−1
gini grad

)
with learning rate αθ (Equation 4.35)

end for
end for
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Algorithm 2 Mean-Gini Deviation Policy Gradient (with PPO)

Input: Iterations number K, sample size n, inner update number M , policy learning
rate αθ, value learning rate αϕ, importance sampling clip bound ζ, trade-off parameter
λ.
Initialize policy πθ parameter θ, value Vϕ parameter ϕ.
for k = 1 to K do
Sample n trajectories {τi}ni=1 by πθ, compute return {R(τi)}ni=1

Compute rewards-to-go for each state in τi: gi,t
Compute advantages for each state-action in τi: A(si,t, ai,t) based on current Vϕ
for m = 1 to M do
Compute importance sampling ratio for each trajectory {ρi}ni=1, and ρi = min(ρi, b)

Sort trajectories such that R(τ1) ≤ ... ≤ R(τn)
mean grad = 0, gini grad = 0
for i = 1 to n do
mean grad += PPO-Clip actor grad
Update Vϕ by mean-squared error 1

T

∑T−1
t=0 (Vϕ(si,t)− gi,t)2 with learning rate αϕ

end for
for i = 1 to n− 1 do
gini grad += −ρi · ηi

∑T−1
t=0 ∇θ log πθ(ai,t|si,t), where

ηi =
∑n−1

j=i
2j
n
(Rj+1 −Rj)− (Rn −Ri)

end for
Update πθ by

(
1
nT

mean grad - λ
(n−1)T

gini grad
)
with learning rate αθ (Equa-

tion 4.36)
end for

end for
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Chapter 5

Optimizing CVaR in RL: A Simple
Mixture Policy Parameterization for
Improving Sample Efficiency

5.1 Introduction

We discussed how to optimize a measure of variability in Chapter 4. In this chapter,
we consider another type of risk measure called tail risk measures (Liu & Wang, 2021).
Intuitively, tail risk measures only consider the tail of a distribution, and the well known
tail risk measures include Value at Risk (VaR) (Chow et al., 2018; Jung et al., 2022), and
Conditional VaR (CVaR) (Tamar et al., 2015; Lim & Malik, 2022). CVaR is more often
preferred than VaR because it is coherent (Delbaen & Biagini, 2000) and it considers the
expectation of the tail. Thus in this chapter, we focus on optimizing CVaR in RL.

In the context of RL, CVaR emphasizes the worst case outcome of a policy’s return.
Intuitively, CVaR measures the expected return below a specific quantile level α, termed
the risk level. Among the existing CVaR algorithms in RL (Tamar et al., 2015; Chow
et al., 2018; Tang et al., 2019; Yang et al., 2021; Ying et al., 2022), policy gradient (PG) is
a common choice. CVaR-PG samples a batch of N trajectories and maximizes the mean
return of the αN trajectories with worst returns (Tamar et al., 2015). This approach suffers
from sample inefficiency due to two major facts (Greenberg et al., 2022): 1) 1−α portion of
sampled trajectories are discarded; 2) gradients vanish when the tail of the return quantile
function is overly flat, which is discussed later in Sec. 5.3.1. Another line of research on
optimizing CVaR is based on distributional RL (Bellemare et al., 2017), e.g., Dabney et al.
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(2018a); Tang et al. (2019); Keramati et al. (2020). However, due to the time-inconsistency
of the risk, the objectives of some approaches differ from maximizing the α-CVaR of the
total return, while the behavior of some others are not well-understood yet (Lim & Malik,
2022).

In this chapter, we focus on the policy gradient approach and propose a simple mixture
policy parameterization to improve sample efficiency. Our key insight is that in many
real-world risk-sensitive domains, the agent may only need to perform risk-averse actions
in a subset of states, e.g., related to risky regions, and behave akin to a risk-neutral
agent in other states. We give an example in Sec. 5.3.3. This motivates representing
a risk-averse policy via integrating a risk-neutral policy and an adjustable component.
With this parameterization, all collected trajectories can be used to update the policy
under the mixture framework, and gradient vanishing is counteracted by stimulating higher
returns with the help of its risk-neutral component, thus lifting the tail and preventing
flatness of the quantile function. To demonstrate the effectiveness of our method in learning
risk-averse policies, we modify several domains (Maze (Greenberg et al., 2022), Lunar
Lander(Brockman et al., 2016a), Mujoco (Todorov et al., 2012)) where risk-aversion can
be clearly verified. We empirically show that our method can learn a risk-averse policy
when others fail to learn a reasonable policy.

To the best of our knowledge, a generally applicable approach to improve the sample
efficiency of CVaR-PG algorithms remains unclear. The most recent work to improve
sample effiency of CVaR policy gradient is by Greenberg et al. (2022). Their idea is to
modify the environment dynamics such that the sample trajectories correspond to the tail
return trajectories in the original unmodified environment. In this case, more trajectories
can be used for policy update and thus sample efficiency is improved. However, this method
cannot be applied easily to every domain since modifying the environment dynamics is
usually domain specific. We compare with this method in one domain from their paper
in Sec. 5.4.4. In summary, our work in this chapter provides 1) insights into a novel
perspective in scenarios where risk-averse behaviors are required only in a subset of states;
2) a simple mixture policy parameterization to address sample inefficiency. Notably, our
algorithm, in certain Mujoco domains, advances the state-of-the-art in CVaR optimization.
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5.2 Background: CVaR Optimization in RL

5.2.1 Problem Formulation

Let Z be a bounded random variable with cumulative distribution function FZ(z) = P(Z ≤
z). Denote the α-quantile as qα(Z) = min{z|FZ(z) ≥ α}, α ∈ (0, 1]. The CVaR at
confidence level α is given by (Rockafellar et al., 2000)

CVaRα(Z) =
1

α

∫ α

0

qβ(Z)dβ (5.1)

When α → 1, CVaRα(Z) becomes E[Z]. If Z has a continuous distribution, CVaRα(Z)
is more intuitively expressed as CVaRα(Z) = E[Z|Z ≤ qα(Z)]. Thus, CVaRα(Z) can be
interpreted as the expected value of the α-portion of the left tail of the distribution of Z.
Another way to define CVaRα(Z) is (Rockafellar et al., 2000)

CVaRα(Z) = max
k∈R

k − 1

α
E[(k − Z)+] (5.2)

where (x)+ = max{x, 0}, and the maximum is always attained at k = qα(Z) as a by
product.

In this chapter, we consider the problem of maximizing the CVaR of total return Gπ
0

given a confidence level α (we consider small α in practice) (Tamar et al., 2015), i.e.,

max
π

CVaRα(G
π
0 ) (5.3)

Remark. Some works optimize the CVaR term plus the mean term or treat CVaR as a
constraint (Chow et al., 2018; Yang et al., 2021; Ying et al., 2022), which differ from the
problem in Eq. 5.3. In addition, the risk defined on the total return (Eq. 5.3) is known
as the static risk. Another line of research on CVaR works on dynamic risk (Ruszczyński,
2010; Huang et al., 2021; Du et al., 2023), where risk is recursively computed at each time
step. This chapter focuses on the static risk. The comparison between static and dynamic
CVaR is discussed, e.g., in Lim & Malik (2022).

5.2.2 CVaR Policy Gradient (CVaR-PG)

The most straightfoward way to solve Eq. 5.3 is policy gradient. Let π be parameterized
by θ. Under some mild assumptions, the gradient of Eq. 5.3 w.r.t. θ can be estimated by
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sampling trajectories {τi}Ni=1 from the environment using πθ (Tamar et al., 2015).

∇θCVaRα(G
πθ
0 ) ≃ 1

αN

N∑
i=1

I{Rτi≤q̂α}(Rτi − q̂α)
T−1∑
t=0

∇θ log πθ(ai,t|si,t) (5.4)

where Rτ represents the total return of trajectory τ , q̂α is the empirical α-quantile estimated
from {Rτi}Ni=1, and T is the maximum trajectory length. This gradient is derived from
Eq. 5.1, and we briefly show how it is derived.

We briefly show how this gradient is derived. Following the same notations and as-
sumptions in Sec. 4.4.1, we consider computing a general case for ∇θCVaRα(Z) where the
density function of Z is determined by parameter θ denoted by fZ(z; θ). Z is continuous
and bounded in [−b, b]. qα(Z; θ) is the α-level quantile. By definition

CVaRα(Zθ) =
1

α

∫ qα(Z;θ)

−b
fZ(z; θ)zdz (5.5)

Taking a derivative and using the Leibniz rule

∇θCVaRα(Zθ) =
1

α

∫ qα(Z;θ)

−b
∇θfZ(z; θ)zdz +

1

α
fZ

(
qα(Z; θ); θ

)
qα(Z; θ) (5.6)

Plugging the gradient for quantile in Eq. 4.24 to Eq. 5.6, we obtain

∇θCVaRα(Zθ) =
1

α

∫ qα(Z;θ)

−b
∇θfZ(z; θ)

(
z − qα(Z; θ)

)
dz (5.7)

Now consider the case in RL, i.e, Zθ is G0. Using Monte Carlo sampling, sampling
return from G0 corresponds to sampling trajectories {τi}Ni=1 from the environment using πθ
and computing the trajectories’ return {Rτi}Ni=1. As analyzed in Sec. 4.4.2, ∇θfG0(Rτi ; θ)
is estimated by

∑T−1
t=0 ∇θ log πθ(ai,t|si,t) of τi. Under the assumption of continuous random,

the number of trajectories whose return is smaller than the α quantile is αN . Combining
the calculation together yields the estimation in Eq. 5.4.

Note that computing policy gradient from Eq. 5.2 is also feasible and results in a similar
update as Eq. 5.4, e.g., see Algo. 1 in Chow et al. (2018). Here the variable k and the
density parameter θ are updated separately. When k is fixed, the gradient for updating θ
is similar to Eq. 5.4.
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5.2.3 Distributional RL with CVaR

Distributional RL (Bellemare et al., 2017) is recently used for CVaR optimization. Since
it directly learns a value distribution, the risk metric is easy to compute. Denote the
return random variable at the state-action pair (s, a) as Zπ(s, a) =

∑∞
t=0 γ

tR(St, At), where
S0 = s, A0 = a, St+1 ∼ P (·|St, At), and At ∼ π(·|St). Then the distributional Bellman

equation is given by Zπ(s, a)
D
= R + γZπ(S ′, A′), with S ′ ∼ P (·|s, a), A′ ∼ π(·|S ′), and

X
D
= Y indicates that random variables X and Y follow the same distribution. The well

known Q-value can be extracted by Qπ(s, a) = E[Zπ(s, a)].

Dabney et al. (2018a); Keramati et al. (2020) propose to select actions according to

Zπ(s, a)
D
= R + γZπ(S ′, A′), A′ = argmax

a′
CVaRα(Z

π(S ′, a′)) (5.8)

This strategy is simple and intuitive. It always selects actions leading to the largest α-CVaR
at the current step and is termed as ”Markov action selection strategy” by Lim & Malik
(2022). Within the framework of actor critic, a similar way is applied by updating the
actor towards the α-CVaR of the critic, e.g., see Tang et al. (2019). However, Lim & Malik
(2022) showed this strategy converges to neither static nor dynamic optimal CVaR policies
by counterexamples, e.g., see Proposition 1 in Lim & Malik (2022). This is also expected
in general since risk measures generally can not be optimized via dynamic programming.
Thus, it is not consistent with the problem in Eq. 5.3.

Bäuerle & Ott (2011) simplified Eq. 5.2 by avoiding optimizing k and fixing it to
some constant k0, resulting in the problem maxπ−E[(k0 − Gπ

0 )
+]. This problem can be

modeled by an augmented MDP with new state s̃ = (s, k) ∈ S × R, where k is a moving
variable keeping track of the accumulated rewards so far. The new state transition is
P̂ (s′, k′|s, k, a) = P (s′|s, a)I{k′ = k−r(s,a)

γ
}. There is no reward in the new MDP unless

the terminal state, given by −k+. Lim & Malik (2022) incorporated this perspective with
distributional RL by introducing the tracking variable, and proposed a new action selection
strategy as

Zπ(s, a)
D
= R + γZπ(S ′, A′), A′ = argmax

a′
E[−(k −R

γ
− Zπ(S ′, a′))+] (5.9)

where k is the tracking variable at (s, a), and is set to α-CVaR for the initial state. Lim &
Malik (2022) showed that the optimal CVaR policy is a fixed point of Eq. 5.9 if it exists
and it is unique. However, when π is not CVaR optimal, its behavior is generally unknown.
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5.2.4 Other CVaR RL Algorithms

There are several other CVaR algorithms in the context of MDPs, where full knowledge
of the MDP is required. Thus, they are not applicable to RL problems where transition
dynamics are unknown. These works are less relevant to ours and hence we only provide
a brief review here. Based on the theory of CVaR decomposition (Pflug & Pichler, 2016),
a dynamic programming approach is developed by decomposing the CVaR via its risk
envelope (Chow et al., 2015). This approach returns the optimal α-CVaR value for any
α ∈ (0, 1]. Recently, Hau et al. (2023) pointed out this method has some flaws in the
control setting, and provided counter examples.

5.3 Mixture Parameterization Policies

In this section, we examine the difficulties inherent in classical CVaR-PG methods. This
examination sets the stage for our proposed solution: a mixture parameterization approach.

5.3.1 Challenges of CVar-PG: low-efficiency gradient estimation

The classical CVaR-PG (Eq. 5.4) faces two significant challenges that undermine its sample
efficiency and practical applicability.

Firstly, to emphasize the tail outcomes, a small value of α is chosen. Consequently, only
an α-fraction of the trajectories contribute to the gradient estimation in Eq. 5.4, leading
to the discarding of the majority of trajectories and resulting in low sample efficiency.

Secondly, as identified by Greenberg et al. (2022), a small α also introduces a gradient
vanishing issue. This occurs because the term I{R(τi)≤q̂α}(R(τi)− q̂α) can equal zero for any
τi satisfying R(τi) ≤ q̂α, i.e., R(τi) = q̂α for those trajectories τi selected by the indicator
function. This issue arises when the left tail of the quantile function is notably flat, meaning
that all quantile values below the α-quantile are identical. Such a scenario is particularly
likely in environments with a discrete rewards distribution, a fact that is often overlooked
when assuming continuous rewards. For illustration, we present the empirical quantile
function of Gπ

0 obtained through Monte Carlo sampling in Fig. 5.1(c), during the initial
training phase with a random policy in a maze environment (detailed in Sec. 5.3.3 and
shown in Fig. 5.1(a)). In this scenario, if the agent neither reaches the goal nor enters the
red state, the resulting trajectories will yield identical low returns, leading to a markedly
flat left tail of the quantile function for Gπ

0 .
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To tackle gradient vanishing, Greenberg et al. (2022) proposed curriculum learning
by starting from an α close to 1 (risk-neutral) and gradually decreasing α to its target
value. To further improve sample efficiency, Greenberg et al. (2022) proposed a sampling
method based on cross-entropy to sample high-risk scenarios from the environment. The
algorithm is then focused on learning high-risk parts of the environment and thus improving
sample efficiency. However, this sampling strategy requires knowledge of the environment
dynamics and the ability to control the parameters of the dynamics in ways that are domain
specific, which is not realistic for many RL domains.

5.3.2 Mixture with Risk-neutral Policy

To address the aforementioned challenges, our key observation is that many real-world
risk-sensitive applications exhibit a pattern wherein only a subset of states requires risk-
averse behavior. In the remaining portion of the state space, the agent can behave akin
to a risk-neutral agent. For example, in scenarios with minimal or no other cars on a
highway, a driver may simply need to follow the road without slowing down or braking,
as long as the vehicle remains under the speed limit. This observation leads us to propose
representing the policy as a mixture of a risk-neutral policy and an adjustable component,
i.e.,

π(a|s) = w(s)π′(a|s) + (1− w(s))πn(a|s) (5.10)

where w(s) ∈ [0, 1] is the mixture component weight. πn is the risk neutral policy, and
π′ is the adjustable policy. At different phases of a task, the agent self-selects the most
suitable policies to execute to ensure the overall policy π is risk averse.

It is evident that the proposed parameterization effectively addresses the challenges
outlined earlier. Firstly, it allows for the use of all trajectories collected so far to update the
risk-neutral policy within the mixture framework. Secondly, the risk-neutral component
encourages the agent to venture into areas of high reward, potentially avoiding the flat
tail of the return distribution, and hence mitigates the issue of vanishing gradients. We
illustrate the advantages in the following example.

5.3.3 A Motivating Maze Example

Consider a maze domain in Fig. 5.1(a), which is originally from Greenberg et al. (2022)
and slightly modified by Luo et al. (2023). Starting from the bottom left corner, the goal
of the agent is to reach the green goal state. The gray color marks the walls. The per-
step reward is deterministic (i.e., -1) except for the red state, whose reward distribution
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Figure 5.1: (a) A maze domain with green goal state. The red state returns an uncertain
reward (details in Sec. 5.3.3). Triangle pointers indicate the risk-neutral actions (not unique
for the second state). (b) Value of w of Eq. 5.10 for each state after the mixture policy is
updated by CVaR-PG. (c) The empirical quantile function of the total return in maze at
an early training stage, if the initial policy is a random and mixture policy.

is −1 + N (0, 1) × 30. The reward for visiting the goal is a positive constant value (i.e.,
10). Thus, the shortest path going through the red state towards the goal is the optimal
risk-neutral path, while the longer path (shown in white color) is α-CVaR optimal if α is
small, though its expected return is slightly lower.

In this domain, suppose we are given the optimal risk neutral policy for each state
(which is actually easy to get, e.g., via Q-learning or value iteration (Sutton & Barto,
2018), or even by observing the shortest path), it is easy to see most actions along the
white (i.e., risk-averse) path are the same as the risk-neutral policy except the initial state.
This means the risk-averse agent only needs to adjust the actions at that state and then
follow the optimal risk-neutral policy afterwards. We validate this idea by visualizing the
value of w(s) of Eq. 5.10 in Fig. 5.1(b), after the mixture policy is trained by CVaR-PG.
The value of w(s) represents the probability of choosing π′ at each state. Here the risk
neutral policy πn is pre-computed and provided as the softmax of the optimal Q-values (we
use temperatures to make the entropy of πn small). Thus, π′ and w are the components
that need to be learned by CVaR-PG. As shown in the figure, the probability of choosing
π′ is only high in the surroundings of the starting state, and the probability of choosing
πn significantly increases after the agent moves far away from the beginning. Also, the
empirical quantile function of Gπ

0 obtained by this mixture policy at the initial training
phase is shown in Fig. 5.1(c). Compared with the randomly initialized policy, the flat tail
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is eliminated, thereby preventing gradient vanishing.

Remark. This concept, where risk-averse behavior is required only in a subset of
states, extends to various fields. For example, in portfolio management, such behavior is
crucial only in particular market trends (Ji et al., 2019; Yu et al., 2023), and in healthcare,
it is essential only with specific health indicator warnings (Mulligan et al., 2023).

Policy gradient of the mixture policy in tabular case. We show how to compute
∇ log π(a|s) in the above maze case. For our mixture policy, the policy parameter θ consists
of two parts θ = (θ1, θ2), where θ1 is for the adjustive policy π′

θ1
, and θ2 is for the weight

w. In tabular case, π′
θ1

is usually represented by a softmax over state-action feature ϱ(s, a)
times policy parameter, i.e.,

π′
θ1
(a|s) =

exp
(
ϱ(s, a) · θ1

)∑
b exp

(
ϱ(s, b) · θ1

) (5.11)

with
∇θ1 log πθ(a|s) = ϱ(s, a)− Eb∼πθ(·|s)ϱ(s, b) (5.12)

We represent w(s) = σ(ϱ(s, a) · θ2), where σ(·) is the sigmoid function. Thus

πθ(a|s) = σ(ϱ(s, a) · θ2)π′
θ1
(a|s) +

(
1− σ(ϱ(s, a) · θ2)

)
πn(a|s) (5.13)

The derivative of the logarithm is

∇θ1 log πθ(a|s) =
1

πθ(a|s)
σ(ϱ(s, a) · θ2)π′

θ1
(a|s)∇θ1 log π

′
θ1
(a|s) (5.14)

∇θ2 log πθ(a|s) =
1

πθ(a|s)
(π′

θ1
(a|s)− πn(a|s))σ(ϱ(s, a) · θ2)

(
1− σ(ϱ(s, a) · θ2)

)
ϱ(s, a)

(5.15)

5.3.4 Offline RL Risk Neutral Learning

This section explores the process of acquiring a risk-neutral policy under the function
approximation setting. A natural question is that if we can pre-train a risk neutral policy
for mixture as done in the above maze (Sec. 5.3.3), since risk neutral learning is in general
faster and more sample efficient than risk averse learning. However, we discovered that
incorporating a pre-trained deep risk-neutral policy into the mixture policy frequently
leads to a suboptimal risk-averse policy. We elaborate this finding using the LunarLander
domain which is previously described in Sec. 4.5.2. In this domain, an additional noisy
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Figure 5.2: (a) The total successful landing rate (y-axsis) of pre-trained risk-neutral policy.
(b) The left landing (i.e., risk-averse) (y-axsis) rate of Mix by incorporating this pre-trained
risk-neutral policy. Curves are averaged over 10 seeds with shaded regions indicating
standard errors.

reward is provided if agent lands on the right ground. Thus, a risk averse agent should
land on the left ground as much as possible. Similar as the risk-neutral policy in maze,
we represent the risk-neutral policy by the softmax of Q-values with temperature. The
Q-values are learned by DQN (Mnih et al., 2013). To validate the pre-trained risk-neutral
policy performs well, we show its total successful landing rate in Fig. 5.2(a). The whole
training process for mixture policy is as follows. The first 3k episodes are used to update the
risk-neutral policy only (i.e., update DQN), with the remaining part of the mixture policy
unchanged. After the first 3k episodes, the risk-neutral policy is fixed, and the remaining
part of the mixture policy begins to update. However, as indicated by the left landing rate
in Fig. 5.2(b), mixture policy leads to a suboptimal risk-averse policy. One possible reason
may be when training the deep risk-neutral RL algorithm, the data distribution tends to
concentrate on those states in the optimal (or near optimal) trajectories. Thus, the learned
value or policy function approximator may not generalize well around the risk-averse path.

To update the risk neutral policy along with the risk averse learning, observing that the
update of CVaR-PG typically involves collecting substantial trajectories, these trajectories
naturally constitute an empirical MDP to which an offline RL algorithm can be applied
to extract a risk-neutral policy. The field of offline RL has seen rapid advancements in
recent years, offering promising solutions for solving the empirical MDP formed from the
collected trajectories.
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Offline RL attempts to learn an optimal policy from a pre-gathered offline dataset
D = {(s, a, s′, r)}ni=1, where the learning algorithm is restricted to learning from the sam-
ples contained within D without any additional interaction with the real environment.
One key challenge in offline RL is to not overestimate the action values outside of the
dataset (Fujimoto et al., 2019). To address this challenge, there are generally two strate-
gies. The first approach aims to keep the learned policy closely aligned with the dataset’s
policy by applying some KL constraint, ensuring the learned policy remains within the
dataset’s support (Peng et al., 2020; Brandfonbrener et al., 2021; Fujimoto & Gu, 2021).
The second strategy involves directly optimizing the policy using the samples available in
the dataset (Fujimoto et al., 2019; Kostrikov et al., 2022; Xiao et al., 2023).

In our research, we utilize ImplicitQ-Learning (IQL) (Kostrikov et al., 2022) for learning
risk-neutral policies, chosen for its proven reliability and empirical validation.

IQL possesses a Q estimator Qϕ(s, a), a value estimator Vψ(s), and a policy πnϑ(a|s).
Q-function is updated via minimizing

LQ(ϕ) = E(s,a,s′)∼D[(r(s, a) + γVψ(s
′)−Qϕ(s, a))

2] (5.16)

Value function is updated via expectile regression to avoid overestimation (Qϕ̂ is the
target function)

LV (ψ) = E(s,a)∼D[L
η
2(Qϕ̂(s, a)− Vψ(s))], Lη2(u) = |η − I{u<0}|u2 (5.17)

Policy is updated by advantage-weighted regression (Peters & Schaal, 2007) with tem-
perature β

Lπn(ϑ) = E(s,a)∼D[exp(β(Qϕ(s, a)− Vψ(s))) log πnϑ(a|s)] (5.18)

All the trajectories are stored in a replay buffer for IQL update to learn πn. In practice,
we can perform this update after enough transition data are collected. The overall process
of training the mixture policy is described in Algo. 3.
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Algorithm 3 Mixture policy for CVaR-PG

Input: risk level α, trajectories sampled per batch N , training steps M , IQL update
frequency C
Initialize: policy πθ = wθ2π

′
θ1
+ (1−wθ2)πnϑ where θ = (θ1, θ2), buffer B, Q-function Qϕ

(target Qϕ̂), value function Vψ
for m in 1 :M do
{τi}Ni=1 ← run episodes(πθ, N) Sample trajectories
Store {τi}Ni=1 to B
Update θ via CVaR-PG(πθ, {τi}Ni=1, α) CVaR PG, i.e., Eq. 5.4
if m % C == 0 then
Sample D = {(s, a, r, s′)} ∼ B Risk-neutral, e.g., IQL updates
Update Qϕ via Eq. 5.16
Update Vψ via Eq. 5.17
Update πnϑ via Eq. 5.18

end if
end for

5.3.5 Related Work: Mixture Policy

Due to its two-layered structure, a mixture policy is also called a hierarchical policy (Daniel
et al., 2012). Though the idea of mixture policy is not new, it is mainly applied in risk-
neutral settings. Osa et al. (2023) constructed a mixture of deterministic policies for offline
RL tasks and showed it can mitigate the issue of critic error accumulation in offline RL.
Wulfmeier et al. (2020) and Seyde et al. (2022) utilized mixture policy to capture the
diverse motivations of the robots such that the skill learned by each sub-policy can be
transferred. Akrour et al. (2021) adopted a mixture policy to enhance the interpretability
of decision making. A mixture policy is also used for option discovery (Zhang & Whiteson,
2019; Wulfmeier et al., 2021). The similar mixture structure also appears in value (critic)
function learning, for instance, mixture critic is utilized for distributional RL (Choi et al.,
2019; Kuznetsov et al., 2020).

5.4 Experiments

We modify several domains such that the risk-averse behavior is clear to identify to evaluate
the algorithms. We include REINFORCE with baseline method, as a risk-neutral baseline.
In more complex domains, we use SAC (Haarnoja et al., 2018) instead.

79



Baselines. We compare our method with CVaR-PG in Eq. 5.4 (Tamar et al., 2015),
distributional RL with Markov action selection strategy in Eq. 5.8 (denoted as DRL-mkv),
and Lim’s action selection strategy in Eq. 5.9 (Lim & Malik, 2022) (denoted as DRL-lim).
In continuous action domains, we adapt DRL-mkv and DRL-lim by DPG (Silver et al.,
2014) as done in Tang et al. (2019), we give a summary for this adaption below. We use
MIX to represent our method. Pre-computed πn in maze is provided to MIX as described
in Sec 5.3.3 since it is easy to get. In other domains, πn is learned by IQL during training.
Please refer to Appendix C.1 for any missing implementation details.

DRL-mkv and DRL-lim in continuous domain. The idea is to replace the Q value
in Eq. 2.20 (i.e., the risk neutral policy gradient) by the quantities we aim to optimize,
e.g., CVaR.

For DRL-mkv, the actor is updated via

∇θJα(θ) = Es,a∼πθ [∇θ log πθ(a|s)CVaRα(Z
π(s, a))] (5.19)

for DRL-lim, the actor is updated via

∇θJα(θ) = Es,k,a∼πθ
[
∇θ − log π(a|s)E[(k − Zπ(s, a))+]

]
(5.20)

where k is the tracking variable at state s.

Quantile regression in DRL-mkv and DRL-lim. Both DRL-mkv and DRL-lim
are built on top of distributional RL (Bellemare et al., 2017). The most commonly used ap-
proach to update distributional value function (critic) is quantile regression (Dabney et al.,
2018b,a; Zhou et al., 2020, 2021; Luo et al., 2022). We also adopt quantile regression in our
implementation. As discussed in Chapter 3, Zhou et al. (2020) pointed out some previous
quantile regression based work, e.g., QR-DQN (Dabney et al., 2018b), IQN (Dabney et al.,
2018a) suffered from the quantile crossing issue, i.e., the predicted quantile values do not
satisfy the monotonicity of the quantile function. This is shown to hinder policy learning
and exploration (Zhou et al., 2020). The monotonicity of the quantile is also important in
DRL-mkv and DRL-lim to make sure the estimated quantities, e.g. α-CVaR, are correct.
We follow the approach in Yue et al. (2020) by sorting the predicted quantile values to
make them non decreasing.

Remark. The method in Greenberg et al. (2022) is CVaR-PG with curriculum learn-
ing and a special trajectory sampling strategy, which is orthogonal to our approach. The
idea of this sampling strategy is that by changing some parameters of the environment,
the sampled trajectories correspond to the tail return trajectories in the original environ-
ment. The parameters are updated based on the idea of cross entropy (De Boer et al.,
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Figure 5.3: (a) Policy return (y-axsis) and (b) Risk-aversion (long path) rate (y-axsis)
v.s. training episodes in Maze. Curves are averaged over 10 seeds with shaded regions
indicating standard errors..

2005). Thus this method requires to control the environment dynamics, and may not be
straightforwardly applicable to most domains discussed here. We compare with it in one
domain from Greenberg et al. (2022) in Sec. 5.4.4.

5.4.1 Tabular case: Maze Problem

This domain is modified from Greenberg et al. (2022) that was previously described in
Sec. 5.3.3. The maximum episode length is 100. CVaR α = 0.1. REINFORCE, CVaR-PG,
and MIX collect N = 50 episodes before updating the policy. Here we report the rate of
choosing the long path during training in Fig. 5.3(b). Since the policy is non-deterministic,
the length of the sampled risk-averse path may not be exactly 11 (the length of the white
path in Fig. 5.1(a)). Here we treat a path as risk-averse if it goes towards the top, reaches
the goal, and the path length does not exceed 14.

CVaR-PG fails to learn a reasonable policy even in this simple domain due to gradient
vanishing as discussed in Sec. 5.3.1. By initializing MIX with a risk neutral policy, it
achieves a relatively high return at the early learning phase, thus potentially avoids gradient
vanishing.
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5.4.2 Discrete control: LunarLander

Figure 5.4: (a,c) Policy return (y-axis), and (b,d) Left-landing rate (i.e., risk-averse landing
rate) (y-axis) v.s. training episodes or steps in LunarLander. Curves are averaged over 10
seeds with shaded regions indicating standard errors. For the landing left rate, higher is
better.

This domain is taken from OpenAI Gym (Brockman et al., 2016a). We refer readers
to its official documents for a full description. The goal of the agent is to land on the
ground without crashing. We split the ground into left and right parts by the middle line
of the landing pad, as shown in Fig. 4.5 in Chapter 4. If landing on the right, an additional
noisy reward sampled from N (0, 1) times 100 is given. A risk-averse agent should learn to
land on the left as much as possible. We set CVaR α = 0.1. REINFORCE, CVaR-PG,
and MIX collect N = 30 episodes before updating the policy. DRL-mkv and DRL-lim are
off-policy methods and update policies at each environment step. We train them for 2e6
steps instead of as many episodes as other methods.

We report the left-landing rate of different methods in Fig. 5.4(b) and (d). Comparing
DRL-mkv and DRL-lim against episode-based algorithms is not straightforward within
the same figure due to the difference in parameter update frequency. Thus we show them
separately. MIX achieves a comparable return with REINFORCE at the end, but shows
a clear risk-aversion by landing more on the left. DRL-mkv and DRL-lim can not learn a
reasonable policy given the small CVaR α. As mentioned in Section 5.2.3, they optimize
a different objective than CVaR that is not well understood.

Investigating the IQL behavior. The parameterization of mixtures naturally raises
the question whether IQL alone is sufficient to identify a risk-averse policy. As a result,
we also report the landing rate of the risk neural component πn of MIX learned by IQL
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Figure 5.5: Total landing rate and left landing rate of IQL (y-axsis) in MIX during training.
Curves are averaged over 10 seeds with shaded regions indicating standard errors.

during training in Fig. 5.5 to indicate IQL along does not achieve risk-aversion. Also, the
left landing rate (i.e., risk averse rate) is roughly the half of the total landing rate, which
means IQL does not show a clear preference of laning at left or right in this domain.

5.4.3 Continuous control: Mujoco

Mujoco (Todorov et al., 2012) is a collection of robotics environments with continuous states
and actions in OpenAI Gym (Brockman et al., 2016a). Here, we select three domains,
namely InvertedPendulum, HalfCheetah, and Ant. Inspired by Malik et al. (2021); Liu
et al. (2023), we define the risky region based on the X-position. Specifically, if X-position
> 0.04 in InvertedPendulum, X-position < −3 in HalfCheetah and Ant, a zero-mean
Gaussian noise is added to the reward (N (0, 1)× 10 in InvertedPendulum, N (0, 1)× 50 in
HalfCheetah and Ant). To further ensure that agents move both forward and backward
with equal preference in terms of expected reward in HalfCheetah and Ant, we define the
distance-based reward as the difference in distance between the current and previous states
from the origin, regardless of the sign of the X-position. This means the distance reward
is positive only when agents are moving away from the origin.

Consequently, in InvertedPendulum, a risk-averse agent aims to keep the pendulum
balanced while staying out of the noisy region. In HalfCheetah and Ant, a risk-averse
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Figure 5.6: (a, c) Policy return (y-axsis) in InvertedPendulum, (b, d) visiting non-noisy
region rate (y-axis) in InvertedPendulum, (e, g) Final X-position (y-axsis) in HalfCheetah,
(f, h) Final X-position in Ant (y-axsis) v.s. training episodes for steps in Mujoco. Curves
are averaged over 10 seeds with shaded regions indicating standard errors. For the location
visiting rate, higher is better.
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agent should learn to move toward the opposite direction of the noisy region. We optimize
CVaR α = 0.2. REINFORCE still serves as the risk neutral baseline in InvertedPendulum.
In HalfCheetah and Ant, we use SAC (Haarnoja et al., 2018) instead, since the vanilla
policy gradient is not good at more complex domains. REINFORCE, CVaR-PG, and MIX
collect N = 30 episodes before updating the policy in InvertedPendulum, and N = 15 in
HalfCheetah and Ant. DRL-mkv, DRL-lim, and SAC are trained for 1e6 steps.

We report the total return and X< 0.04 rate in InvertedPendulum, which are sufficient
to reflect the risk-averse behavior of the agent, since the reward is 1 as long as the pendulum
is balanced. In HalfCheetah and Ant, we report the final X-position in Fig. 5.6, as the
return can not reflect which direction the agent is moving in the two domains. CVaR-PG
achieves a risk-averse policy in InvertedPendulum, i.e., high return and high rate of staying
in the non-noisy region. But it fails to learn a reasonable policy in HalfCheetah and Ant,
i.e., the final X-position is always close to the origin. MIX learns risk-averse policy by
moving away from the noisy region in all three domains. DRL-mkv and DRL-lim generally
do not work well in all three domains since they optimize a different objective than CVaR
that is not well understood (see Sec 5.2.3).

5.4.4 Driving Game

Since the method by Greenberg et al. (2022) modifies the environment dynamic and it
is unclear how it can be applied to the domains described above, we choose a domain
from Greenberg et al. (2022) for comparison. In this driving game, there are two cars.
The agent’s car has to follow the ego car for 30 seconds as closely as possible without
colliding. Every 1.5 seconds, the leader chooses a random action: drive straight, accelerate,
decelerate, change lane, or brake hard, with probabilities p0 = (0.35, 0.3, 0.248, 0.1, 0.002).
We refer reader to Sec. 5.2 of Greenberg et al. (2022) for more details. The state dimension
is 5. The action dimension is 5.

The method proposed in Greenberg et al. (2022) is named CeSoR, which includes a
curriculum learning scheduler to adjust CVaR α during learning, i.e., starting from a large
value for α and gradually decreasing to its target value; and a trajectory generator which
controls the environment dynamic. In this domain, it controls the behavior of the leader
car, i.e., can modify the action probability p0.

We directly use the code provided by Greenberg et al. (2022) to produce the results
for CeSoR. CeSoR is orthogonal to MIX, and these two can be combined. We combine
MIX with curriculum learning (denoted as MIX+SoR, SoR means soft risk to represent
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Figure 5.7: (a) The expected return (y-axsis), and (b) the 0.05-CVaR of the return (y-
axsis) achieved by CVaR-PG, CeSoR, MIX, MIX+SoR, and MIX+CeSoR in driving game.
Curves are averaged over 10 seeds with shaded regions indicating standard errors.

curriculum learning in Greenberg et al. (2022)), and combine MIX with CeSoR (denoted
as MIX+CeSoR) in this domain.

We report the mean return and the 0.05-CVaR of the return in Fig. 5.7. For both
the mean and tail of the return, CeSoR, MIX, and MIX variants are better than CVaR-
PG. CeSoR is slightly better than MIX, since CeSoR possesses the environment dynamic
information while MIX does not. MIX with curriculum learning, i.e., MIX+SoR, learns
faster than MIX at the early training stage than MIX, though the final mean return is the
same as MIX. MIX+CeSoR is better than MIX and MIX+SoR with respect to the mean
and tail of the return, and is comparable to CeSoR. CeSoR learns faster and achieves
the highest risk averse rewards among all techniques, however it requires access to the
environment dynamics and the ability to change the parameters of the dynamics in a way
that is domain specific. In contrast, MIX and MIX+SoR do not need dynamics information
and therefore can be applied directly to any domain.

Remark. Our mixture policy method differs from the curriculum learning idea in Green-
berg et al. (2022). Tough the CVaR α starts from a large value in curriculum learning,
where the objective is close to a risk-neutral problem, it is an on-policy policy gradient
method, i.e., the trajectories used to update the policy is generated by the current policy (if
no importance sampling is assumed). In contrast, the risk-neutral component of our mix-
ture policy is trained by an off-policy (offline) algorithm, in this case, all the encountered
trajectories can be stored in the replay buffer for policy update.
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5.5 Summary

This chapter proposes a mixture policy framework for CVaR-PG. Though the idea of
mixture policy is not new, it is mainly applied in risk-neutral settings. In our approach,
the policy is a mixture of a risk neutral policy with an adjustable policy. It is motivated
to overcome the sample inefficiency of the original CVaR-PG, caused by the waste of most
sampled trajectories and gradient vanishing in some domains. The method is based on the
insight that in many applications the risk averse behavior is only required in a subset of
state space. This perspective covers many real world fields, e.g., driving cars, healthcare,
fiance. We empirically show that our method can succeed when others fail to learn a
risk-averse or a reasonable policy by mitigating the sample efficiency issue.
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Chapter 6

Conclusion

The thesis studies the problem of learning policies under uncertainty and risk, e.g., how
to efficiently learn a quantile function for a return distribution; how to stabilize policy
gradient for measures of variability; how to improve the sample efficiency of the CVaR
policy gradient.

We provided some answers for these questions. For distributional RL, we propose
a new learning framework, monotonic spline DQN, to learn quantile functions for value
distributions. The quantile function is parameterized by monotonic splines which provide
a continuous smooth monotonic interpolation. This method offers much more flexibility in
terms of quantile learning and sampling compared with existing methods. For optimizing
measures of variability, we provide a thorough analysis to reveal the potential issues of using
variance or standard deviation as the measure function. These issues are not discussed
before in the literature. We propose to use another measure of variability, Gini deviation, as
an alternative to stabilize the policy gradient. For optimizing CVaR, the sample efficiency
of the original policy gradient is low due to its mathematical nature and the potential of
gradient vanishing. We propose a simple mixture policy approach by mixing a risk neutral
component to improve the sample efficiency and tackle the gradient vanishing problem.

6.1 Limitations

6.1.1 Monotonic spline DQN

First, similar to previous work in distributional RL, the output dimension of the neural
network is much larger than the original DQN (since N quantile values are associated with
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an action), thus it may not scale as well as non-distributional RL techniques.

Second, there is a computational cost associated with representing the value distribu-
tion. Since our approach requires to estimate the derivatives of the knots, it generally
requires more parameters compared with NDQFN (piece-wise linear) if the number of bins
are the same. It also requires more parameters comparing with QR-DQN and NC-QR-
DQN where the quantile levels are fixed and only quantile values need to be learned. More
training parameters usually require more training time. Thus there is a trade off between
the learning cost and the performance.

Third, this method is value-based, thus it is limited to RL techniques that include a
value function. When a value function is hard to incorporate, e.g., Gini deviation policy
gradient (Chapter 4), CVaR policy gradient (Chapter 5), distributional RL is not straight-
foward to apply.

6.1.2 Mean-Gini deviation policy gradient

First, similar to all on-policy policy gradient algorithms, new trajectories need to be sam-
pled under the current policy every time the policy is updated. Thus the sample efficiency
is not high. One way to improve sample efficiency is by incorporating importance sampling
for off-policy updates as done in Sec. 4.4.3. However, this may introduce high variance to
the policy gradient, and the proposed methods, e.g., selecting small importance sampling
ratio or clipping importance sampling may introduce bias.

Second, our approach requires to sample multiple trajectories for one update. The up-
date frequency is lower than those mean-variance methods that can do per-episode update,
and the off-policy reward based mean-variance methods that can do per environment step
update.

6.1.3 Mixture policy for CVaR optimization

First, we pinpointed a class of risk-averse RL problems characterized by requiring risk-
averse behavior in a subset of states, suitable for our mixture approach. Though this
category intuitively covers a broad range of scenarios, situations that do not fit this frame-
work remain unexplored and may not be suitable for our approach.

Second, our method can be potentially integrated with other techniques aimed at en-
hancing sample efficiency of CVaR policy gradient, e.g., Greenberg et al. (2022), given its
versatile nature. However, exploring such hybrid methodologies falls outside the scope of
our current research.
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6.2 Discussion of Dynamic Risk Measure

Distributional RL learns the full value distribution. Thus, the risk profile is easy to be
extracted, which seems to indicate distributional RL is a good candidate to accelerate
risk-sensitive RL. Generally, distributional RL methods are value-based and heavily rely
on the distributional Bellman equation. The value distribution estimates are updated via a
time difference manner. The methods discussed in Chapter 3 are all risk-neutral methods,
i.e., the goal is to maximize the expected total return. Tough some methods explored
the possibility to combine distributional RL with risk-sensitive RL by updating a policy
towards some risk measures of the value distribution (see Sec. 5.2.4), those approaches
are not consistent with the objective of optimizing the risk measures of the total return.
Those approaches may empirically achieve risk-sensitive behaviors in some cases but the
performance depends on carefully setting the risk preference (Dabney et al., 2018a). The
main barrier of combining distributional RL and risk-sensitive RL together lies in the fact
that the risk measures defined on total return rarely have a Bellman equation in control
settings in contrast to risk-neutral RL. There are Bellman equations of risk measures for
policy evaluation, e.g., variance (Tamar et al., 2012), CVaR (Chow et al., 2015), but those
equations can not be applied to control settings since dynamic programming cannot be
used.

To obtain a Bellman equation for risk measures in control settings, the dynamic risk
measures come to rescue. Dynamic risk measures, as briefly mentioned in Sec. 5.2.1, are
defined recursively at each time step. For a MDP M and a static risk measure ρ, the
dynamic risk measure ρπ∞(M) is defined as

ρπ∞(M) = R(s0, π(s0)) + ρ
(
γR(s1, π(s1)) + ρ

(
γ2R(s2, π(s2)) + ...

))
(6.1)

where (s0, s1, ...) indicates random trajectories drawn from the MDP M by policy π. Define
the risk-sensitive value function under policy π as V π(s) = ρπ∞(M |s0 = s), the risk-sensitive
Bellman equation (Ruszczyński, 2010) is

V π(s) = R(s, π(s)) + γ min
ξ∈Uρ(P (·|s,a))

∑
s′

P (s′|s, π(a))ξ(s′)V π(s′) (6.2)

where Uρ(P (·|s, a)) is the risk envelope of risk measure ρ. When ρ = CVaRα, the risk
envelope is given by

UCVaRα(P (·|s, a)) = {ξ : ξ(ω) ∈ [0,
1

α
],
∑
ω

ξ(ω)P (ω|s, a) = 1} (6.3)
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Likewise, the optimal risk-sensitive value V ∗(s) = maxπ ρ
π
∞(M |s0 = s) is the unique

solution to the risk-sensitive Bellman optimality equation

V ∗(s) = max
a

{
R(s, a) + γ min

ξ∈Uρ(P (·|s,a))

∑
s′

P (s′|s, a)ξ(s′)V ∗(s′)
}

(6.4)

We can view the dynamic risk measure as the expected value in a MDP where the transition
dynamics at each step are modified within the risk-envelope.

Note that the above Bellman equation requires the environment transition dynamics to
be known to users and the risk measure ρ can be expressed via its risk envelope. The ben-
efit of using dynamic risk measures is that we can use Bellman’s equation to do temporal
difference updates instead of on-policy policy gradient, which improves sample efficiency.
The drawback is that the dynamic risk measure is hard to interpret. When risk is re-
cursively defined at each step, the overall meaning of the risk is unclear. This may be
problematic in real world applications when the meaning of the risk should be clear.

6.3 Future Research Directions

Among the many possible future directions, we prioritize pursuing the following directions.

First, it is natural to investigate how to combine distributional RL with risk-sensitive
RL if we wish the optimization procedure to be consistent with the risk-sensitive objective.
As discussed before, when the static risk is defined on the total return G0, there is no Bell-
man optimality equation for static risk measures in general, thus combining distributional
RL with static risk is not straightfoward. When the risk measure is dynamic, though a
Bellman optimality equation exists, the value function for dynamic risk can not be di-
rectly extracted from the value distribution in distributional RL. These two facts make
this problem challenging but also meaningful.

Second, though new algorithms are developed for optimizing static measures of vari-
ability, e.g., Gini deviation, and static tail risk measure, e.g., CVaR, and achieved better
empirical performance than existing methods, the sample efficiency is still not high espe-
cially compared with off-policy risk-neutral methods. As a result, one potential avenue
for future work is to further enhance the sample efficiency of our algorithms. This can be
achieved by more effectively utilizing off-policy data or by adapting the algorithm to be
compatible with online, incremental learning.

Third, there is significance to study the connection between different risk measures
and the effect of hybrid risk measures in RL. Based on the literature review, different risk

91



measures are studied separately in different RL papers, and therefore it is not clear what
is the relation among these risk measures nor when should we prefer one risk measure over
another are unclear. Also, hybrid risk measures, i.e., combining different risk measures,
may be adopted in real-world applications to leverage the advantages of individual risk
measures.

Last, offline risk-averse RL is an interesting and challenging future direction. In real
world applications, it is usually easy to collect data from the real domains and the offline
RL techniques can be applied. Different from online RL, offline RL leans a policy only
from a fixed dataset, which makes Monte Carlo based risk-averse policy gradient hard to
be directly applied. There exists some research work on this topic when the risk measure
is CVaR, e.g., Urṕı et al. (2021); Rigter et al. (2023). Urṕı et al. (2021) updates a policy
according to Eq. 5.19, which is not consistent with optimizing either static or dynamic risk.
Rigter et al. (2023) uses dynamic CVaR (Eq. 6.1) and is model-based. How to optimize
static risk or risk measures other than CVaR are still open questions.
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Appendix A

Supplementary for Chapter 3

A.1 Experiment Details

A.1.1 Windy Gridworld

Training hyperparameters We train SPL-DQN with NC-QR-DQN, NDQFN, and QR-
DQN in the stochastic Windy Gridworld. The common parameter settings are summarized
in Table A.1. The model inputs are the coordinates of the state. The ϵ-greedy parameter
decreases by a half every two thousand episodes. To make the results comparable, we use
the same Feature Extractor for the methods. For SPL-DQN and NDQFN, the number of
bins is K = 30.

Additional results To further demonstrate the approximation ability of SPL com-
pared with NDQFN, we train SPL and NDQFN with 10 random seeds in windy gridworld,
and check the quantile functions learnt by these two methods for the states on the orange
line trajectory (apart from the goal state). There are 15 states on the trajectory times 10
seeds, which yield 150 quantile functions. For each state, we can use the shortest path to
determine an upper bound on the return for that state. Whenever a quantile function goes
above that upper bound, we have a clear overestimation. For NDQFN, 36.7% (55/150) of
the quantile functions yield an overestimation. In contrast, for SPL, only 4% (6/150) of
the quantile functions yield an overestimation.
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Table A.1: Common hyperparameters for SPL-DQN, NC-QR-DQN, NDQFN, and QR-
DQN.

Hyperparameter Value
Optimizer Adam

Learning rate 0.001
Batch size 50

Discount factor (γ) 1
Initial ϵ-greedy 0.3
Minimal ϵ-greedy 0.01
Training episodes 30000

Sampling quantiles number 30
Feature Extractor hidden size [20, 40, 80]

A.1.2 Cartpole

Training hyperparameters We train SPL-DQN with QR-DQN, IQN, FQF, NC-QR-
DQN, MM-DQN, and NDQFN in the stochastic Cartpole. The common parameter settings
are summarized in Table A.2. The model input is a vector of length 4, which contains the
cart position, the cart velocity, the pole angle, and the pole angular velocity. The ϵ-greedy
parameter decreases by 0.00005 every time step. To make the results comparable, we use
the same Feature Extractor for the methods.

Specifically, for SPL-DQN and NDQFN, the number of bins is K = 8. For FQF,
it contains a quantile fraction proposal network, whose learning rate is 2.5e−9, and the
optimizer is RMSProp (Yang et al., 2019).

A.1.3 PyBulletGym

Training hyperparameters Hyperparameters for DDPG and DDPG based models are
summarized in Table A.3. The critic also uses an L2 weight decay of 10−2. The soft target
update coefficient is 0.001. Ornstein-Uhlenheck noise (OU(µ′, σ′)) (Uhlenbeck & Ornstein,
1930) is combined with actions for exploration in DDPG, where we use µ′ = 0 and σ′ = 0.1.

Hyperparameters for SAC and SAC based models are summarized in Table A.4. The
soft target update coefficient is 0.005.

For the critic implemented by SPL-DQN and NDQFN, the number of bins is K = 32.
For the critic implemented by FQF, the learning rate for quantile fraction network is 2.5e−9,
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Table A.2: Common hyperparameters across SPL-DQN, QR-DQN, IQN, FQF, NC-QR-
DQN, MM-DQN, and NDQFN

Hyperparameter Value
Optimizer Adam

Learning rate 0.001
Batch size 32

Discount factor (γ) 0.99
Initial ϵ-greedy 0.3
Minimal ϵ-greedy 0.1
Training episodes 800

Sampling quantiles number (QR based methods) 8
Samples number (MM-DQN) 8
Feature Extractor hidden size [128, 128]

and the corresponding optimizer is RMSProp.

A.2 DDPG and SAC with distributional critic

We summarize the algorithm when using distributional critic for DDPG and SAC in this
section. For FQF critic, it has to update the quantile fraction proposal network separately,
so it is individually described. Similarly, for MM critic, it uses moment matching instead
of quantile regression, and it is individually described as well. For SAC based methods,
readers can refer to the original paper for how to compute gradient for policy and state
value.
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Table A.3: Hyperparameters for DDPG and DDPG based methods

Hyperparameter Value
Optimizer Adam

Actor learning rate 10−4

Critic learning rate 10−3

Batch size 64
Discount factor (γ) 0.99
Training frames one million

Sampling quantiles number 32
Actor hidden size [400, 300]

Critic’s Feature Extractor hidden size [400, 300]

Table A.4: Hyperparameters for SAC and SAC based methods

Hyperparameter Value
Optimizer Adam

Actor learning rate 3× 10−3

Critic learning rate 3× 10−3

Entropy learning rate 3× 10−3

Batch size 64
Discount factor (γ) 0.99
Training frames three million

Sampling quantiles number 32
Actor hidden size [256, 256]

Critic’s Feature Extractor hidden size [256, 256]
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Algorithm 4 DDPG with QR-based distributional critic (apart from FQF)

Require: Initialize critic network Z(s, a|ψ) with weights ψ; Initialize actor network µ(s|θ)
with weights θ; Initialize target network Z ′ and µ′ with weights ψ′ ← ψ, θ′ ← θ;
Initialize reply buffer D

1: for each episode do
2: Initialize random process OU for action exploration
3: for each time step t do
4: at ∼ µ(st|θ) +OU t
5: st+1 ∼ p(st+1|st, at)
6: D ← D ∪ {(st, at, r(st, at), st+1)}
7: Sample minibatch of N transitions (si, ai, ri, si+1) from D
8: Choose current quantile levels {ζ} according to critic’s strategy
9: Compute corresponding current quantiles {qi} ← Z(si, ai|ψ)
10: Choose target quantile levels {ζ̄} according to critic’s strategy
11: Compute corresponding target quantiles {q̄i+1} ← ri + γZ ′(si+1, µ

′(si+1|θ′)|ψ′)
12: Update critic by minimizing QR loss
13: Compute expectation of quantiles Qs,a ← E[Z(s, a|ψ)]
14: Update actor by
15: ∇θJ ≈ 1

N

∑
i∇aQs,a|s=si,a=µ(si)∇θµ(s|µ)|si

16: Update target networks
17: ψ′ ← σψ + (1− σ)ψ′

18: θ′ ← σθ + (1− σ)θ′
19: end for
20: end for
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Algorithm 5 DDPG with QR-based distributional critic (FQF)

Require: Initialize critic value network Z(s, a|ψ) with weights ψ; Initialize actor network
µ(s|θ) with weights θ; Initialize target network Z ′ and µ′ with weights ψ′ ← ψ, θ′ ← θ;
Initialize reply buffer D
Initialize critic fraction proposal network P (s, a|ω) with weights ω and its target
P ′(s, a|ω′) with weights ω′

1: for each episode do
2: Initialize random process OU for action exploration
3: for each time step t do
4: at ∼ µ(st|θ) +OU t
5: st+1 ∼ p(st+1|st, at)
6: D ← D ∪ {(st, at, r(st, at), st+1)}
7: Sample minibatch of N transitions (si, ai, ri, si+1) from D
8: Compute current quantile levels {ζ} ← P (si, ai|ω)
9: Compute corresponding current quantiles {qi} ← Z(si, ai|ψ)
10: Choose target quantile levels {ζ̄} ← P (si+1, µ

′(si+1|θ′)|ω)
11: Compute corresponding target quantiles {q̄i+1} ← ri + γZ ′(si+1, µ

′(si+1|θ′)|ψ′)
12: Update critic fraction proposal network by
13: ∂ω

∂τi
= 2Z[τi]− Z[τ̂i]− Z[τ̂i−1], τ̂ = τi+τi+1

2

14: Update critic value network by minimizing QR loss
15: Compute expectation of quantiles Qs,a ← E[Z(s, a|ψ)]
16: Update actor by
17: ∇θJ ≈ 1

N

∑
i∇aQs,a|s=si,a=µ(si)∇θµ(s|µ)|si

18: Update target networks
19: ψ′ ← σψ + (1− σ)ψ′

20: θ′ ← σθ + (1− σ)θ′
21: ω′ ← σω + (1− σ)ω′

22: end for
23: end for

114



Algorithm 6 DDPG with MM distributional critic

Require: Initialize critic network Z(s, a|ψ) with weights ψ; Initialize actor network µ(s|θ)
with weights θ; Initialize target network Z ′ and µ′ with weights ψ′ ← ψ, θ′ ← θ;
Initialize reply buffer D

1: for each episode do
2: Initialize random process OU for action exploration
3: for each time step t do
4: at ∼ µ(st|θ) +OU t
5: st+1 ∼ p(st+1|st, at)
6: D ← D ∪ {(st, at, r(st, at), st+1)}
7: Sample minibatch of N transitions (si, ai, ri, si+1) from D
8: Compute current Q samples {qi} ← Z(si, ai|ψ)
9: Compute target Q samples {q̄i+1} ← ri + γZ ′(si+1, µ

′(si+1|θ′)|ψ′)
10: Update critic by minimizing MMD loss
11: Compute expectation of Q values Qs,a ← E[Z(s, a|ψ)]
12: Update actor by
13: ∇θJ ≈ 1

N

∑
i∇aQs,a|s=si,a=µ(si)∇θµ(s|µ)|si

14: Update target networks
15: ψ′ ← σψ + (1− σ)ψ′

16: θ′ ← σθ + (1− σ)θ′
17: end for
18: end for
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Algorithm 7 SAC with QR-based distributional critic (apart from FQF)

Require: The learning rates λπ, λZ , and λV for functions πθ, Zw, and Vψ; Initialize
parameters θ, w, ψ, ψ̄; Initialize reply buffer D

1: for each iteration do
2: for each time step t do
3: at ∼ πθ(st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each gradient update step do
8: Choose current and target quantile fractions according to critic’s strategy
9: Compute current and target quantile values (for computing JZ)
10: ψ ← ψ − λV∇ψJV (ψ)
11: wi ← wi − λZ∇wi

JZ(wi) for i ∈ {1, 2} (JZ is QR loss)
12: θ ← θ − λπ∇θJπ(θ)
13: ψ̄ ← σψ + (1− σ)ψ̄
14: end for
15: end for
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Algorithm 8 SAC with QR-based distributional critic (FQF)

Require: The learning rates λπ, λZ , and λV for functions πθ, Zw, and Vψ; Initialize
parameters θ, w, ψ, ψ̄; Initialize reply buffer D; The learning rate λP for fraction
proposal network Pϕ; Initialize parameter ϕ

1: for each iteration do
2: for each time step t do
3: at ∼ πθ(st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each gradient update step do
8: Compute current and target quantile fractions using Pϕ
9: Compute current and target quantile values (for computing JZ)
10: ψ ← ψ − λV∇ψJV (ψ)
11: ϕ← ϕ− λϕ∇ϕJP (ϕ) (JP is quantile fraction loss)
12: wi ← wi − λZ∇wi

JZ(wi) for i ∈ {1, 2} (JZ is QR loss)
13: θ ← θ − λπ∇θJπ(θ)
14: ψ̄ ← σψ + (1− σ)ψ̄
15: end for
16: end for
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Algorithm 9 SAC with QR-based distributional critic (MM)

Require: The learning rates λπ, λZ , and λV for functions πθ, Zw, and Vψ; Initialize
parameters θ, w, ψ, ψ̄; Initialize reply buffer D

1: for each iteration do
2: for each time step t do
3: at ∼ πθ(st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each gradient update step do
8: Compute current and target Q value samples (for computing JZ)
9: ψ ← ψ − λV∇ψJV (ψ)
10: wi ← wi − λZ∇wi

JZ(wi) for i ∈ {1, 2} (JZ is MMD loss)
11: θ ← θ − λπ∇θJπ(θ)
12: ψ̄ ← σψ + (1− σ)ψ̄
13: end for
14: end for
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Appendix B

Supplementary for Chapter 4

B.1 Convex Order, Gini Deviation, and Variance

Convex order describes dominance in terms of variability and is widely used in actuarial
science.

Definition 2 (Gupta & Aziz (2010)) Consider two random variables X and Y , X is
called convex order smaller than Y , succinctly X ≤cx Y , if E[ψ(X)] ≤ E[ψ(Y )], for all
convex function ψ(), assuming that both expectations exist.

In convex order X ≤cx Y , Y is also called a mean-preserving spread of X (Rothschild
& Stiglitz, 1978), which intuitively means that Y is more spread-out (and hence more
random) than X. Thus, it is often desirable for a measure of variability to be monotone
with respect to convex order (Furman et al., 2017). Both variance and GD, as a measure
of variability, are consistent with convex order, i.e.,

• If X ≤cx Y , then V[X] ≤ V[Y ] for all X, Y ∈M

• If X ≤cx Y , then D[X] ≤ D[Y ] for all X, Y ∈M

Proof. It is immediate that X ≤cx Y implies E[X] = E[Y ]. If we take convex function
ψ(x) = x2, we can get the order of variance V[X] ≤ V[Y ]. For the proof of GD, please refer
to the following Lemma. Recall that GD can be expressed in the form of signed Choquet
integral with a concave function h.
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Lemma 3 (Wang et al. (2020),Theorem 2) Convex order consistency of a signed Cho-
quet integral is equivalent to its distortion function h being concave, i.e., X ≤cx Y if and
only if the signed Choquet integral Φh(X) ≤ Φh(Y ) for all concave functions h ∈ H.

B.2 Experiments Details

B.2.1 General Descriptions of Different Methods

Among the methods compared in this thesis, Tamar (Tamar et al., 2012) and MVP (Xie
et al., 2018) are on-policy policy gradient methods. MVO and MG are policy gradient
methods, but sample n trajectories and use IS to update. Non-tabular MVPI (Zhang
et al., 2021) is an off-policy time-difference method.

Policy gradeint methods. MVO, Tamar, MVP, are originally derived based on
VPG. Since VPG is known to have a poor performance in Mujoco, we also combined these
mean-variance methods with PPO. Thus these mean-variance methods and our mean-GD
method have different instantiation to maximize the expected return in different domains:

• With VPG: in Maze, LunarLander, InvertedPendulum.

• With PPO: in HalfCheetah, Swimmer.

When the risk-neutral policy gradient is VPG, for MVO and MG, it is REINFORCE
with baseline; for Tamar and MVP, we strictly follow their papers to implement the algo-
rithm, where no value function is used. MVO and MG collect n trajectories and use the IS
strategy in Algorithm 1 to update policies. Tamar and MVP do not need IS, and update
policies at the end of each episode.

When the risk-neutral policy gradient is PPO, we augment PPO with the variance or
GD policy gradient from the original methods. MVO and MG collect n trajectories and
use the IS strategy in Algorithm 2 to compute the gradient for the risk term. Tamar and
MVP still update policies once at the end of each episode.

MVPI. We implemented three versions of MVPI in different domains:

• Tabular: in Maze, MVPI is a policy iteration method (Algorithm 1 in Zhang et al.
(2021)).

• With DQN: in LunarLander, since this environment has discrete action space.
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Table B.1: Model components in different methods

Policy func Value func Additional training variables
MVO-VPG

√ √

MVO-PPO
√ √

Tamar-VPG
√

× J,V (mean,variance)
Tamar-PPO

√ √
J,V (mean,variance)

MVP-VPG
√

× y (dual variable)
MVP-PPO

√ √
y (dual variable)

MG-VPG
√ √

MG-PPO
√ √

MVPI-Q-Learning ×
√

MVPI-DQN ×
√

MVPI-TD3
√ √

• With TD3: in InvertedPendulum, HalfCheetah, Swimmer, since these environments
have continuous action space.

We summarize the components required in different methods in Table B.1.

B.2.2 Modified Guarded Maze Problem

The maze consists of a 6× 6 grid. The agent can visit every free cell without a wall. The
agent can take four actions (up, down, left, right). The maximum episode length is 100.

Policy function. For methods requiring a policy function, i.e., MVO, Tamar, MVP,
MG, the policy is represented as

πθ(a|s) =
eϱ(s,a)·θ∑
b e

ϱ(s,b)·θ (B.1)

where ϕ(s, a) is the state-action feature vector. Here we use one-hot encoding to represent
ϕ(s, a). Thus, the dimension of ϕ(s, a) is 6× 6× 4. The derivative of the logarithm is

∇θ log πθ(a|s) = ϱ(s, a)− Eb∼πθ(·|s)ϱ(s, b) (B.2)

Value function. For methods requiring a value function, i.e., REINFORCE baseline
used in MVO and MG, and Q-learning in MVPI, the value function is represented as
Vω(s) = ϱ(s) · ω or Qω(s, a) = ϱ(s, a) · ω. Similarly, ϱ(s) is a one-hot encoding.
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Optimizer. The policy and value loss are optimized by stochastic gradient descent
(SGD).

Learning Parameters

We set discount factor γ = 0.999.

MVO: policy learning rate is 1e-5 ∈{5e-5, 1e-5, 5e-6}, value function learning rate
is 100 times policy learning rate. λ = 1.0 ∈{0.6, 0.8, 1.0, 1.2}. Sample size n = 50.
Maximum inner update number M = 10. IS ratio range δ = 0.5. Inner termination ratio
β = 0.6.

Tamar: policy learning rate is 1e-5 ∈{5e-5, 1e-5, 5e-6}, J, V learning rate is 100 times
policy learning rate. Threshold b = 50 ∈{10, 50, 100}, λ = 0.1 ∈{0.1, 0.2, 0.4}.

MVP: policy learning rate is 1e-5∈{5e-5, 1e-5, 5e-6}, y learning rate is the same.
λ = 0.1 ∈{0.1, 0.2, 0.4}.

MG: policy learning rate is 1e-4∈{5e-4, 1e-4, 5e-5}, value function learning rate is 100
times policy learning rate. λ = 1.2 ∈{0.8, 1.0, 1.2}. Sample size n = 50. Maximum inner
update number M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

MVPI: Q function learning rate 5e-3∈{5e-3, 1e-3, 5e-4}, λ = 0.2 ∈{0.2, 0.4, 0.6}.

Return Variance and Gini Deviation in Maze

We report the return’s variance and GD during learning for different methods, as shown in
Figure B.1 and B.2. Tamar Tamar et al. (2012) is unable to reach the goal in both settings.
MVO fails to reach the goal when the return magnitude increases. MVP Xie et al. (2018)’s
optimal risk-aversion rate is much lower than MG. MG can learn a risk averse policy in
both settings with lower variance and GD, which suggests it is less sensitive to the return
numerical scale.

B.2.3 LunarLander Discrete

The agent’s goal is to land the lander on the ground without crashing. The state dimension
is 8. The action dimension is 4. The detailed reward information is available at this
webpage 1. We divide the whole ground into left and right parts by the middle line of the

1https://www.gymlibrary.dev/environments/box2d/lunar lander/
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Figure B.1: Expected return, return variance and Gini deviation of different methods in
Maze when goal reward is 20. Curves are averaged over 10 seeds with shaded regions
indicating standard errors.

Figure B.2: Expected return, return variance and Gini deviation of different methods in
Maze when goal reward is 40. Curves are averaged over 10 seeds with shaded regions
indicating standard errors.
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landing pad as shown in Figure 4.5. If the agent lands in the right part, an additional noisy
reward signal sampled from N (0, 1) times 90 is given. We set the maximum episode length
to 1000. Note that the original reward for successfully landing is 100, thus the numerical
scale of both return and reward is relatively large in this domain.

Policy function. The policy is a categorical distribution in REINFORCE, MVO,
Tamar, MVP and MG, modeled as a neural network with two hidden layers. The hidden
size is 128. Activation is ReLU. Softmax function is applied to the output to generate
categorical probabilities.

Value function. The value function in REINFORCE, MVO, MG, and Q function in
MVPI-DQN is a neural network with two hidden layers. The hidden size is 128. Activation
is ReLU.

Optimizer. The optimizer for policy and value functions is Adam.

Learning Parameters

Discount factor is γ = 0.999

REINFORCE (with baseline): the policy learning rate is 7e-4 ∈ {7e-4, 3e-4, 7e-5},
value function learning rate is 10 times policy learning rate.

MVO: policy learning rate is 7e-5 ∈ {7e-4, 3e-4, 7e-5}, value function learning rate is
10 times policy learning rate. λ = 0.4 ∈ {0.4, 0.6, 0.8}. Sample size n = 30. Maximum
inner update number M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

Tamar: policy learning rate is 7e-5 ∈ {7e-4, 3e-4, 7e-5}. J, V learning rate is 100 times
the policy learning rate. Threshold b = 50 ∈ {10,50,100}. λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MVP: policy learning rate is 7e-5 ∈ {7e-4, 3e-4, 7e-5}. y learning rate is the same.
λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MG: policy learning rate is 7e-4 ∈ {7e-4, 3e-4, 7e-5}, value function learning rate is 10
times policy learning rate. λ = 0.6 ∈ {0.4, 0.6, 0.8}. Sample size n = 30. Maximum inner
update number M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

MVPI: Q function learning rate is 7e-4 ∈ {7e-4, 3e-4, 7e-5}, λ = 0.2 ∈ {0.2, 0.4, 0.6}.
Batch size is 64.

Return Variance and Gini Deviation in LunarLander

The return’s variance and GD of different methods during training is shown in Figure B.3.
All the risk-averse methods, apart from ours, fail to learn a reasonable policy in this domain.
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Figure B.3: Return variance and Gini deviation of different methods in LunarLander.
Curves are averaged over 10 seeds with shaded regions indicating standard errors.

Our method achieves a comparable return, but with lower variance and GD compared with
risk-neutral method.

B.2.4 InvertedPendulum

(The description of the Mujoco environments can be found at this webpage 2.)

The agent’s goal is to balance a pole on a cart. The state dimension is 4 (X-position
is already contained). The action dimension is 1. At each step, the environment provides
a reward of 1. If the agent reaches the region X-coordinate > 0.01, an additional noisy
reward signal sampled from N (0, 1) times 10 is given. To avoid the initial random speed
forcing the agent to the X-coordinate > 0.01 region, we decrease the initial randomness for
the speed from U(−0.01, 0.01) to U(−0.0005, 0.0005), where U() represents the uniform
distribution. The game ends if angle between the pole and the cart is greater than 0.2
radian or a maximum episode length 500 is reached.

Policy function. The policy is a normal distribution in REINFORCE, and VPG based
methods (MVO, Tamar, MVP, and MG), modeled as a neural network with two hidden
layers. The hidden size is 128. Activation is ReLU. Tanh is applied to the output to scale
it to (−1, 1). The output times the maximum absolute value of the action serves as the
mean of the normal distribution. The logarithm of standard deviation is an independent
trainable parameter.

The policy is a deterministic function in TD3 and MVPI, modeled as a neural network
with two hidden layers. The hidden size is 128. Activation is ReLU. Tanh is applied to the

2https://www.gymlibrary.dev/environments/mujoco/

125



output to scale it to (−1, 1). The output times the maximum absolute value of the action
is the true action executed in the environment.

Value function. The value function in REINFORCE, VPG based MVO, VPG based
MG, TD3, and MVPI is a neural network with two hidden layers. The hidden size is 128.
Activation is ReLU.

Optimizer. Optimizer for both policy and value function is Adam.

Learning Parameters

Discount factor γ = 0.999.

REINFORCE (with baseline): policy learning rate is 1e-4 ∈ {1e-4, 5e-5, 5e-4}, value
function learning rate is 10 times policy learning rate.

MVO: policy learning rate is 1e-5 ∈ {1e-4, 5e-5, 1e-5}, value function learning rate is
10 times policy learning rate. λ = 0.6 ∈ {0.2, 0.4, 0.6}. Sample size n = 30. Maximum
inner update number M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

Tamar: policy learning rate is 1e-5 ∈ {1e-4, 5e-5, 1e-5}. J, V learning rate is 100 times
policy learning rate. Threshold b = 50 ∈ {10,50,100}. λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MVP: policy learning rate is 1e-5 ∈ {1e-4, 5e-4, 1e-5}. y learning rate is the same.
λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MG: policy learning rate is 1e-4 ∈ {1e-4, 5e-5, 1e-4}, value function learning rate is 10
times policy learning rate. λ = 1.0 ∈ {0.6, 1.0, 1.4}. Sample size n = 30. Maximum inner
update number M = 10. IS ratio range δ = 0.5. Inner termination ratio β = 0.6.

MVPI: Policy and value function learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, λ = 0.2 ∈
{0.2, 0.4, 0.6}. Batch size is 256.

TD3: Policy and value function learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}. Batch size is
256.

Return Variance and Gini Deviation in InvertedPendulum

The return variance and GD of different methods are shown in Figure B.4 and B.5.
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Figure B.4: Return variance and Gini deviation of policy gradient methods in InvertedPen-
dulum. Curves are averaged over 10 seeds with shaded regions indicating standard errors.
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Figure B.5: Return variance and Gini deviation of TD3 and MVPI in InvertedPendulum.
Curves are averaged over 10 seeds with shaded regions indicating standard errors.
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B.2.5 HalfCheetah

The agent controls a robot with two legs. The state dimension is 18 (add X-position). The
action dimension is 6. The reward is determined by the speed between the current and
the previous time step and a penalty over the magnitude of the input action (Originally,
only speed toward right is positive, we make the speed positive in both direction so that
agent is free to move left or right). If the agent reaches the region X-coordinate < −3,
an additional noisy reward signal sampled from N (0, 1) times 10 is given. The game ends
when a maximum episode length 500 is reached.

Policy function. The policy is a normal distribution in PPO, and PPO based methods
(MVO, Tamar, MVP, and MG). The architecture is the same as in InvertedPendulum.
Hidden size is 256.

The policy of TD3 and MVPI is the same as in InvertedPendulum. Hidden size is 256.

Value function. The value function in PPO, PPO based methods (MVO, Tamar,
MVP, and MG), TD3 and MVPI is a neural network with two hidden layers. The hidden
size is 256. Activation is ReLU.

Optimizer. Optimizer for policy and value is Adam.

Learning Parameters

Discount factor is γ = 0.99.

Common parameters of PPO and PPO based methods. GAE parameter: 0.95,
Entropy coef: 0.01, Critic coef: 0.5, Clip ϵ: 0.2, Grad norm: 0.5.

PPO. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the
same. Inner update number M = 5.

MVO. policy learning rate 7e-5 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the
same. Sample size n = 10. Inner update number 5.

Tamar. policy learning rate 7e-5 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate
is the same. J, V learning rate is 100 times policy learning rate. Threshold b = 50 ∈
{10,50,100}. λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MVP. policy learning rate 7e-5 ∈ {3e-4, 7e-5, 1e-5}, value function and y learning rate
is the same. λ = 0.2 ∈ {0.2, 0.4, 0.6}.

MG. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the
same. Sample size n = 10. Inner update number M = 5.
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Figure B.6: Return variance and Gini deviation of on-policy methods in HalfCheetah.
Curves are averaged over 10 seeds with shaded regions indicating standard errors

TD3. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is the
same. Batch size is 256.

MVPI. policy learning rate 3e-4 ∈ {3e-4, 7e-5, 1e-5}, value function learning rate is
the same. λ = 0.2 ∈ {0.2, 0.4, 0.6}. Batch size is 256.

Return Variance and Gini Deviation in HalfCheetah

See Figures B.6 and B.7.

0 20 40 60 80 100
Steps(10k)

0

10000

20000

30000

40000

50000

60000

70000

80000

HalfCheetah, Return Variance

TD3
MVPI

0 20 40 60 80 100
Steps(10k)

0

20

40

60

80

100

120

140

HalfCheetah, Return Gini Deviation

TD3
MVPI

Figure B.7: Return variance and Gini deviation of off-policy methods in HalfCheetah.
Curves are averaged over 10 seeds with shaded regions indicating standard errors
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Figure B.8: Return variance and Gini deviation of on-policy methods in Swimmer. Curves
are averaged over 10 seeds with shaded regions indicating standard errors

B.2.6 Swimmer

The agent controls a robot with two rotors (connecting three segments) and learns how
to move. The state dimension is 10 (add XY-positions). The action dimension is 2. The
reward is determined by the speed between the current and the previous time step and
a penalty over the magnitude of the input action (Originally, only speed toward right is
positive, we make the speed positive in both direction so that agent is free to move left or
right). If agent reaches the region X-coordinate > 0.5, an additional noisy reward signal
sampled from N (0, 1) times 10 is given. The game ends when a maximum episode length
500 is reached.

The neural network architectures and learning parameters are the same as in HalfChee-
tah.

Return Variance and Gini Deviation in Swimmer

See Figures B.8 and B.9.
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Figure B.9: Return variance and Gini deviation of off-policy methods in Swimmer. Curves
are averaged over 10 seeds with shaded regions indicating standard errors
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Appendix C

Supplementary for Chapter 5

C.1 Experiments Details

C.1.1 The Maze Problem

The maze consists of a 6× 6 grid. The initial state of the agent is fixed at the bottom left
corner. The action space is four (up, down, left, right). The maximum episode length is
100.

Policy function. For CVaR-PG, the policy is represented as

πθ(a|s) =
eϱ(s,a)·θ∑
b e

ϱ(s,b)·θ (C.1)

where ϱ(s, a) is the state-action feature vector, basically a one-hot encoding in our imple-
mentation. Thus, the dimension of ϱ(s, a) is 6 × 6 × 4. The derivative of the logarithm
is

∇θ log πθ(a|s) = ϱ(s, a)− Eb∼πθ(·|s)ϱ(s, b) (C.2)

For our mixture policy, the policy parameter θ consists of two parts θ = (θ1, θ2), where
θ1 is for the adjustive policy π′

θ1
, and θ2 is for the weight w.

πθ(a|s) = σ(ζ(s, a) · θ2)π′
θ1
(a|s) +

(
1− σ(ζ(s, a) · θ2)

)
πn(a|s) (C.3)
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where σ(·) is the sigmoid function. The derivative of the logarithm is

∇θ1 log πθ(a|s) =
1

πθ(a|s)
σ(ζ(s, a) · θ2)π′

θ1
(a|s)∇θ1 log π

′
θ1
(a|s) (C.4)

∇θ2 log πθ(a|s) =
1

πθ(a|s)
(π′

θ1
(a|s)− πn(a|s))σ(ζ(s, a) · θ2)

(
1− σ(ζ(s, a) · θ2)

)
ζ(s, a)

(C.5)

Value function. The value function of REINFORCE baseline is represented as Vυ(s) =
ζ(s) · υ. Similarly, ζ(s) is a one-hot encoding.

Learning Parameters

Discount factor γ = 0.999. Optimizer is stochastic gradient descent (SGD).

REINFORCE: Policy learning rate is 1e-2∈ {1e-2, 1e-3, 1e-4}. Value learning rate is
10 times policy learning rate.

CVaR-PG: Learning rate is 1e-2∈ {1e-1, 1e-2, 1e-3, 1e-4}.

MIX: Learning rate is 1e-2∈ {1e-2, 1e-3, 1e-4}.

C.1.2 LunarLander Discrete

The goal is to land the agent on the ground without crashing. The state dimension is 8.
The action dimension is 4. The detailed reward information is available at this webpage 1.
Here, we split the ground into left and right parts by the middle line of the landing pad
as shown in Figure 4.5. If the agent lands on the right part of the ground, an additional
noisy reward signal N (0, 1)× 100 is given. The maximum episode length is 500.

Policy function. The policy is a categorical distribution in REINFORCE and CVaR-
PG, modeled as a neutral network. Hidden layer: 2. Hidden size: 128. Activation: ReLU.
Softmax function is applied to the output to generate categorical probabilities.

The policy of MIX is a weighted summation of π′ and πn with weight w. π′ and w are
modeled as a neutral network with two output heads. πn is a separate neutral network.
Both of them have: Hidden layer: 2. Hidden size: 128. Activation: ReLU.

1https://www.gymlibrary.dev/environments/box2d/lunar lander/

133



Value function. For value function in REINFORCE baseline, Q and V function in
IQL of MIX. Hidden layer: 2. Hidden size: 128. Activation: ReLU.

For distributional value function in DRL-mkv and DRL-lim. Hidden layer: 2. Hidden
size: 128. Activation: ReLU. Quantile size (i.e., final layer output size): 80.

Learning Parameters

Discount factor γ = 0.999. Optimizer is Adam.

REINFORCE: Policy learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4}. Value learning
rate is 10 times policy learning rate.

CVaR-PG: Learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4}.

MIX: Learning rate for π′ and w is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4}. Learning rate for IQL
part (including policy and value functions) is 1e-4∈ {3e-4, 1e-4}. IQL update frequency
C = 50, by sampling 2e5 transitions from buffer. η = 0.8 in Eq. 5.17. β = 1 in Eq. 5.18.

DRL-mkv: Learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.

DRL-lim: Learning rate is 1e-4∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.

C.1.3 InvertedPendulum

The description of the Mujoco environments can be found at this webpage 2.

The goal is to balance a inverted pendulum on a cart. The state dimension is 4 (X-
position is already contained in the observation). The action dimension is 1. Per step
reward is 1. If the agent reaches the region X-position ¿ 0.04, and additional noisy reward
sampled from N (0, 1) times 10 is given. The game ends if angle between the pendulum
and the cart is greater than 0.2 radian or a maximum episode length 300 is reached.

Policy function. The policy is a normal distribution in REINFORCE and CVaR-PG,
modeled as a neutral network. Hidden layer: 2. Hidden size: 128. Activation: ReLU.
Tanh is applied to the last layer. The logarithm of standard deviation is an independent
trainable parameter.

For MIX, π′ and w is a neutral network with two output heads. One for the mean of the
normal distribution π′, one for w. The logarithm of standard deviation is an independent

2https://www.gymlibrary.dev/environments/mujoco/
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trainable parameter. πn is a separate neutral network as above. Both of them have:
Hidden layer: 2. Hidden size: 128. Activation: ReLU. Tanh is applied to the output of
the distribution layer.

Value function. For value function in REINFORCE baseline, Q and V function in
IQL of MIX. Hidden layer: 2. Hidden size: 128. Activation: ReLU.

For distributional value function in DRL-mkv and DRL-lim. Hidden layer: 2. Hidden
size: 128. Activation: ReLU. Quantile size (i.e., final layer output size): 80.

Learning Parameters

Discount factor γ = 0.999. Optimizer is Adam.

REINFORCE: Policy learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}. Value learning rate is
10 times policy learning rate.

CVaR-PG: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
MIX: Learning rate for π′ and w is 3e-4∈ {7e-4, 3e-4, 1e-4}. Learning rate for IQL

part (including policy and value functions) is 1e-4∈ {3e-4, 1e-4}. IQL update frequency
C = 50, by sampling 1e5 transitions from buffer. η = 0.9 in Eq. 5.17. β = 2 in Eq. 5.18.

DRL-mkv: Learning rate is 7e-4∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.
DRL-lim: Learning rate is 1e-3∈ {1e-3, 7e-4, 3e-4, 1e-4, 7e-5}.

C.1.4 HalfCheetah

The agent controls a robot with two legs. The state dimension is 18 (add X-position).
The action dimension is 6. One part of the reward is determined by the distance covered
between the current and the previous time step. Originally, it is positive only when the
agent moves toward the forward (right) direction. To encourage the agent to freely move
forward (left) and backward (right), we modify this part of the reward to make it positive
as long as the agent is moving far from the origin. If the agent reaches the region X-position
<-3, an additional noisy reward sampled from N (0, 1) times 50 is given. The game ends
when a maximum episode length 500 is reached.

Policy function. Hidden size: 256. Others are the same as the case in InvertedPen-
dulum.

Value function. Hidden size: 256. Others are the same as the case in InvertedPen-
dulum.
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Learning Parameters

Discount factor γ = 0.99. Optimizer is Adam.

SAC: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
CVaR-PG: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
MIX: Learning rate for π′ and w is 3e-4∈ {7e-4, 3e-4, 1e-4}. Learning rate for IQL

part (including policy and value functions) is the same. IQL update frequency C = 30, by
sampling 2e5 transitions from buffer. η = 0.8 in Eq. 5.17. β = 2 in Eq. 5.18.

DRL-mkv: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4, 7e-5}.
DRL-lim: Learning rate is 1e-4∈ {7e-4, 3e-4, 1e-4, 7e-5}.

C.1.5 Ant

The agent controls a robot with four legs attached to it with each leg having two links. The
state dimension is 113 (add X-position). The action dimension is 8. Similar to HalfCheetah,
we modify the reward to make the distance based reward positive as long as the agent is
moving far from the origin. If the agent reaches the region X-position <-3, an additional
noisy reward sampled from N (0, 1) times 50 is given. The game ends when a maximum
episode length 500 is reached.

Policy function. Hidden size: 256. Others are the same as the case in InvertedPen-
dulum.

Value function. Hidden size: 256. Others are the same as the case in InvertedPen-
dulum.

Learning Parameters

Discount factor γ = 0.99. Optimizer is Adam.

SAC: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
CVaR-PG: Learning rate is 3e-4∈ {7e-4, 3e-4, 1e-4}.
MIX: Learning rate for π′ and w is 3e-4∈ {7e-4, 3e-4, 1e-4}. Learning rate for IQL

part (including policy and value functions) is the same. IQL update frequency C = 30, by
sampling 2e5 transitions from buffer. η = 0.8 in Eq. 5.17. β = 2 in Eq. 5.18.

DRL-mkv: Learning rate is 7e-5∈ {7e-4, 3e-4, 1e-4, 7e-5}.
DRL-lim: Learning rate is 7e-5∈ {7e-4, 3e-4, 1e-4, 7e-5}.
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C.1.6 Driving Game

The goal of this game is to control the agent’s car to follow the leader car without col-
liding. The state dimension is 5. The action dimension is 5. We refer reader to Sec. 5.2
of (Greenberg et al., 2022) for more details.

Policy function. Policy of CeSoR and CVaR-PG: Hidden size: 32. Hidden layer: 2.
Activation: Tanh.

Policy of MIX: Hidden size: 32. Activation: Tanh. Others are the same as the case in
InvertedPendulum.

Value function. Q and V of IQL: Hidden size: 32. Others are the same as the case
in InvertedPendulum.

Learning Parameters

CVaR α = 0.05. Update policy after gathering N = 80 trajectories. The starting value for
CVaR α is 0.8.

CVaR-PG: Learning rate 1e-2∈ {2e-2, 1e-2, 5e-3}.

CeSoR: Learning rate 1e-2∈ {2e-2, 1e-2, 5e-3}.

MIX: Learning rate for π′ and w is 1e-2∈ {2e-2, 1e-2, 5e-3}. Learning rate for IQL part
(including policy and value function) is 5e-3. IQL update frequency C = 50, by sample
2e4 transitions from buffer. η = 0.8 in Eq. 5.17. β = 2 in Eq. 5.18.

MIX+SoR: Learning parameters are the same as MIX.

MIX+CeSoR: Learning parameters are the same as MIX.
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