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ABSTRACT

Finding an effective latent sentence representation is often a required step in most of the natural
language processing (NLP) research. Most of the time, people are using recurrent neural networks
to extract this latent representation with additional techniques like attention mechanism and teacher
forcing. However, such techniques might weaken the amount of information carried inside the latent
representation because the decoding process is not relying on the latent representation solely, but more
on some external signals. In this essay, we are going to explore how we make use of deconvolution
networks for sentence reconstruction. This can be potentially extended to solve other NLP tasks such
as machine translation and sentiment analysis. From our sentence reconstruction experiment, the
deconvolutional method outperforms a standard RNN method on short sentences.
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1 Introduction

Learning an efficient representation of a sentence or a paragraph is often required in many natural language processing
applications such as machine translation and sentiment analysis. A popular way to learn an effective representation from
a sentence is to use the Encoder - Decoder framework. In a typical setup of the Encoder - Decoder framework, an input
sentence is first converted into either a one-hot encoding vector or a matrix representation of word embeddings. The
matrix representation is most often of dimensionality number of words x word embedding size. The word embedding
can be either learned from the data or imported from some pre-trained libraries like Word2vec, GloVe, etc. An encoder is
then applied to the given one-hot encoding vector or word embedding matrix for a low-dimensional form, and followed
by a decoder to reconstruct the input sequence from the latent representation.

The Encoder - Decoder framework is mostly used in neural machine translation (NMT). A popular choice of the
architecture is to use recurrent neural network (RNN) based methods for both encoders and decoders. To be specific,
researchers use a bi-directional RNN to encode an input sequence of variable-length to a latent representation, and
then decode it to the target output sequence using another RNN. Typically researchers choose long short term memory
networks (LSTM) or gated recurrent networks (GRU) as the recurrent layer. More often those recurrent layers are
equipped with techniques such as soft-attention mechanism and teacher-forcing training. However, those techniques
might reduce the level of information that the latent representation can carry. This is because the decoding process now
requires additional resources or guidance in order to reconstruct the sentence. This might contradict the objective to
look for an effective vector representation that carries sufficient information for the sentence recovery process.

Researchers more often focus on ways to use convolutions for the encoding process than decoding ([4]], [S], [8]], [9]).
Sometimes they might propose a very deep convolution encoding layer to capture information such as [17] using a
29-layer convolution network for text classification. But from our study, with an appropriate decoding process, the
encoding could be a lot smaller to achieve satisfactory results for natural language processing tasks. Today we are going
to examine and explore the deconvolution architecture proposed by [20] with some modification to fit our target data set.
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Deconvolution Deconvolution is also known as Transposed Convolution or Fractionally-strided Convolution. It is
commonly used in computer vision research such as object generation and semantic segmentation ([13])). Figure ]|
shows how researchers use deconvolution networks for semantic segmentation task. For semantic segmentation, it
is useful to decode the latent representation into different domains (like RGB scale) for pixel classification or object
identification. This might be somewhat similar to the target of machine translation trying to reconstruct a sentence
into different language domain given a latent representation learnt from the source language. Deconvolution networks
have been shown to work fine in the semantic segmentation task. Thus, it is interesting for us to explore if it also
has similar performance for languages. In general, a deconvolution layer is used to learn a convolution filter that
can be used to up-sample optimally from the input instead of using any hand-craft upsampling techniques. Most of
the machine learning libraries do have APIs for the deconvolutional operation. In our case, we will use the function
Conv2DTranspose from Keras to develop the deconvolution network for our sentence reconstruction task.
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Figure 1: Illustration Example for Deconvolution Network selected from Noh et. al. [2015]

Sum Product Networks [SPNs] A Sum-Product Network (SPN) [[15] S over random variables X is a rooted weighted
Directed Acyclic Graph (DAG) which consists of two main components: (a) leaves which represent the tractable
distribution over some random variables in X , and (b) alternating set of SUM and PRODUCT nodes. Only the edges
linking a SUM node to its children are associated with non-negative weights. Indeed SPN’s are similar to another model
called Arithmetic Circuits whose edges do not have weights, and leaves only store numerical values. An illustration
example is shown in Figure[2] Under certain conditions, an SPN can represent a valid probability distribution of the
inputs, and can be easily extended to do tractable exact inference [[15]. In [1], it is shown how to apply SPNs on
language models, i.e. to understand the probabilistic distribution among the words. This can be easily extended to solve
different natural processing tasks such as text classification, sentiment analysis, etc.
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Figure 2: Model Architecture for SPN [I layer]
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2 Experiments

2.1 Sentence Reconstruction

2.1.1 Data

We are using the Europarl (v7) corpus from WMT 13. It contains parallel aligned texts for English with 4 different Euro-
pean languages (French, Spanish, German and Czech). For our sentence reconstruction experiment, we focus on the trans-
lation corpus between English and French. The data set is publicly available at http://www.statmt.org/wmt13/translation-
task.html.

The full English-French corpus from Europal contains more than 2 millions pairs of sentences. We extract a small
sample of 50,000 sentences for our experiments. These 50,000 sentences will be further randomly divided into train
and test set with 20% of the data reserved for the test set. In other words, 40,000 sentences are extracted for training
while the rest are used for validating. Table [I]shows the descriptive statistics on sentence length in both languages after
pre-processing. The majority of the sentences in the data set are of length less than 30.

Language | Mean Sentence Length | Median Sentence Length | Mode Sentence Length | Max Sentence Length

English 24.97 22 17 160
French 26.17 23 17 152

Table 1: Training Summary for English Sentence Reconstruction

Two sets of experiment are conducted to study the properties of the deconvolutional (DeConv) method on latent sentence
representation learning. We will compare the performance of deconvolutional method with a baseline bi-directional
LSTM Encoder-Decoder model (BiLSTM).

The first experiment focuses on the reconstruction task for English sentences in the data set. For this experiment, we
will study how those models perform with different sentence lengths and word embedding sizes. In addition, we will
compute the BLEU (Bilingual Evaluation Understudy) score for both models on the test set. We will report the sample
reconstruction from both models for different sentence lengths.

A small experiment is carried to study how a deconvolutional layer performs for the translation task, i.e. translating
a sentence from one language to another. For this experiment, we will not evaluate the models quantitatively like a
typical machine translation study normally does. Instead, we will study its characteristics based on the loss and accuracy
graphs of the training process.

2.1.2 Experiment Setup

Notation Denote e as the number of epochs executed. Denote d as the word embedding size. For the English sentence
reconstruction task, 3 embedding sizes [64, 128, 256] are considered. In the translation experiment, word embedding
size is fixed to be 256. Denote [ as the sentence length. 3 different sentences lengths [10, 20, 30] are examined in both
experiments. Denote w as the word id vector for the input sentence. Each entry of w refers to an integer of the word in

the vocabulary set of a language. It is of size (I x 1). Denote w’ as the reconstructed word id vector.

Data Preprocessing For data cleaning, we removed all the non-printable characters, punctuation, non-alphabetic
characters from the sentences. All the characters left are converted into lower case form. After cleaning, we will build
the vocabulary set for both languages. The vocabulary size for English and French are 21,424, and 31,816 respectively.
We do not put any limit on the vocabulary size for training. An input sentence is first encoded into the corresponding
word id vector [, and then followed by an embedding layer to learn the word embedding from the data set.

Baseline: Bi-directional LSTM (BiLSTM) A standard architecture for the bi-directional LSTM model is used here
as a baseline for comparison. To be specific, it consists a bi-directional LSTM encoder to learn a (2d x 1) latent
representation vector from the input of size (I x d), and a uni-directional LSTM layer to reconstruct the input from the
latent representation. The output of the LSTM decoder is then attached with a softmax dense layer to be converted into
a word id vector w . Dropout layers are applied to the output of the encoder, and the input of the final softmax dense
layer. A Keras model architecture is shown in Figure 3]

Target: Deconvolution Decoder (DeConv) The deconvolutional architecture implemented here is similar to what
[20] proposed for their hotel review reconstruction experiment. Basically, it consists a 3-layer convolutional encoder
and a 3-layer deconvolutional decoder.
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Figure 3: Model Architecture for BILSTM [1=10, d=64]

The convolutional encoder is structured as follows:

e Istlayer: d convolutional filters of size (I/2 x 1) with stride=1;

e 2nd layer: 2d convolutional filters of size (I/2 x 1) with stride=1; Following [[20]’s idea to capture more
high-level features from the input using more filters;

e 3rd layer: 2d convolutional filters of size (2 x 1) with stride=1; The major objective of this layer is to convert
the output for the layer to the target size of latent representation, i.e. (2d x 1);

While the deconvolutional decoder is used to ‘reverse’ the operations made to reconstruct the given input embedding
matrix of size (I X d) from the latent representation of the above encoder. It is structured as follows:

e st layer: 2d deconvolutional filters of size (2 x 1) with stride=1;
e 2nd layer: d deconvolutional filters of size (I/2 x 1) with stride=1;
e 3rd layer: d deconvolutional filters of size (I/2 x 1) with stride=1;

Like the BiILSTM model, the output of the deconvolutional decoder is attached to a final softmax dense layer to

reconstruct the word id vector w’ . Batch Normalization is used in between each convolutional and deconvolutional
layers to help against overfitting problems. An example of model architecture for [ = 10 and d = 64 is given in Figure
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Figure 4: Model Architecture for DeConv [1=10, d=64]
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Other Settings We are using Keras (v2.2.4) to build the above model architectures for training and testing. This
specific version allows us to train the models towards a sparse output without the need to convert into a one-hot encoded
representation first. This saves us a lot of training time and computational resources. All the training is done using
a GPU (K80 12GB) backed jupyter notebook service on Google Colaboratory. The test evaluations are done on a
local machine with a GTX 1060 GPU (6GB). Instead of using the popular Adam optimizer, a RMSProp optimizer
with learning rate of 0.001 is used to train both models. The Adam optimizer was first used in the training. It did
improve the convergence rate of the training, however it also caused unexpected and huge loss increases especially
when training DeConv models [See Figure [5] for details]. All the models are trained for 100 epochs. During the
training process, only the model gave the minimal validation loss is saved locally for test evaluations. In Keras,
sparse_categorical_crossentropy is required for sparse outputs. In our case, the word id vector is indeed a sparse format.
Thus, sparse_categorical_crossentropy is used as the target loss function for training. sparse_categorical_accuracy
is also used here as a metric for evaluating the correctness of reconstruction. Basically it computes the percentage of
tokens that are exactly the same between the input word id vector w and the reconstructed word id vector w'. wand w
are exactly the same if the sparse_categorical_accuracy is equal to 1.

model loss

—— ftrain
test

D 0 40 &0 80 100
epoch

Figure 5: Training & Validation Loss for DeConv model [d = 64, e = 100, 1 = 10] with Adam Optimizer

model loss

1 — train
validation

T T T T T T
0 20 40 60 80 100
epoch

Figure 6: Training & Validation Loss for DeConv model [d=64, e=100, 1=10] with RMSProp Optimizer

2.1.3 Experiment I: English Sentence Reconstruction

Table [2] summarizes the total number of parameters and the training time of all the BILSTM and DeConv models
conducted. Table |3| summarizes the reconstruction performance of each model on the test set of 10,000 English
sentences. All the loss and accuracy graphs are available in Appendix 1. Table []-[6]shows the actual reconstruction (in
text) on a selected sentence from the test set under different sentence length settings.
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Model | Sentence Length | Word Embedding | # Parameters | Training Time
10 64 2,879,152 ~30s/epoch
10 128 5,966,256 ~30s/epoch
10 256 12,828,592 ~35s/epoch
20 64 2,879,152 ~55s/epoch
BiLSTM 20 128 5,966,256 ~55s/epoch
20 256 12,828,592 ~60s/epoch
30 64 2,879,152 ~80s/epoch
30 128 5,966,256 ~80s/epoch
30 256 12,828,592 ~85s/epoch
10 64 2,954,165 ~20s/epoch
10 128 6,263,733 ~20s/epoch
10 256 14,013,365 ~20s/epoch
20 64 3,077,045 ~30s/epoch
DeConv 20 128 6,755,253 ~30s/epoch
20 256 15,979,445 ~40s/epoch
30 64 3,199,925 ~40s/epoch
30 128 7,246,773 ~45s/epoch
30 256 17,945,525 ~50s/epoch

Table 2: Training Summary for English Sentence Reconstruction

Model Performance We summarize what we learn from Tables [2|- [3|and the loss & accuracy graphs.

o Size of model Under the same word embedding size d, the number of parameters for the BILSTM model does
not change with the sentence length while the parameters will increase a little for the DeConv case. This is
because for the BILSTM model, the size of the encoder depends solely on the embedding size and the output
of the decoder depends on the size of the vocabulary. Thus, a change of sentence length will not affect the size
of the BILSTM model. For the DeConv case, the size of the convolutional and deconvolutional filters change
with the sentence length . So it is reasonable to see a small increase in the model parameters.

e Training Time Although the size of the DeConv model is larger than the BiLSTM, it is generally
trained at least 30% faster than BILSTM model in our experiment. This is also consistent with our expec-
tation because convolutional type of operations are executed faster than recurrent operations on a GPU instance.

o Sentence Length Given a fixed word embedding size d, we can easily see that the accuracy of both models
decreases as the sentence length increases according to the training loss graphs and the test evaluation. The
DeConv model generally performs better in terms of accuracy and BLEU score, except when the word
embedding size is equal to 256. The BiLSTM model will perform slightly better than DeConv based on the
test evaluation results in Table 3

e Word Embedding Size Given a fixed sentence length [/, the performance of the BILSTM model improves
with the word embedding size while the performance of DeConv is decreasing with the size of the word
embedding d especially when the word embedding size jumps to 256. First, this might be related to the nature
of recurrent neural networks. It is easier to capture the sequential information from the input. As the word
embedding size increases, there is more information that can be learnt from the sequential structure. Second,
this might be related to the filter design inside the DeConv model. Currently, the DeConv relies heavily on the
number of filters to capture the information on the sentence. Apart from using one filter size (I/2 x 1), we
might try to incorporate different other sizes in one layer to capture the intra-sentence information similar to
what [8] did for their convolutional study of text classification.

e Reconstructed Sentence For a shorter sentence (i.e., 10 words), the reconstructed sentence from both models
are close to the original in terms of semantic meaning. We can see an example in Table[d] However, as the
sentence length increases, the reconstructed sentences seems more unreliable. They are actually far from the
original sentence in terms of semantic meaning. Thus, a high accuracy or BLEU score on the test set does not
really guarantee a good reconstruction. There might be a need to develop an effective metric that can compare
the ’semantic’ meaning between the reconstructed sentence and the original one.
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Model | Sentence Length | Word Embedding | Loss | Accuracy | BLEU
10 64 220 | 69.00% | 37.22
10 128 1.11 | 87.62% | 71.13
10 256 0.64 | 92.76% | 83.10
20 64 325 | 48.78% 9.84
BiLSTM 20 128 205 | 6793% | 30.78
20 256 1.16 | 81.79% | 55.98
30 64 3.13 | 50.35% 5.96
30 128 2.14 | 64.05% | 20.09
30 256 133 | 76.50% | 40.30
10 64 0.56 | 92.78% | 82.78
10 128 0.53 | 94.12% | 85.87
10 256 0.79 | 90.03% | 77.11
20 64 099 | 83.53% | 60.67
DeConv 20 128 1.65 | 73.82% | 42.53
20 256 244 | 60.34% | 22.72
30 64 143 | 7754% | 41.21
30 128 1.62 | 7539% | 36.79
30 256 263 | 58.81% 13.96

Table 3: Testing Summary for English Sentence Reconstruction

Type Sentence
Original we must put safety first and make sure that gmos

BiLSTM (64d) | we must make good responsibility and make sure that
DeConv (64d) | we must put safety first and make sure that supporting
BiLSTM (128d) | we must put first and make sure that obviously
DeConv (128d) | we must put safety first and make sure that gmos
BiLSTM (256d) | we must put safety first and make sure that gmos
DeConv (256d) | we must put safety first and make sure that kosovo

Table 4: Sample Reconstruction for Test Set [Length=10]

Type Sentence
Original we must put safety first and make sure that gmos do not enter the food chain unseen by the back
BiLSTM (64d) | we must take the and to that but not to the of and the people
DeConv (64d) | we must put safety first and they sure that gmos do not participate the food pure roles by the

reduce

BiLSTM (128d)

we must put our work we at sure that do not be the economic growth by the back

DeConv (128d)

we must include proposals first parliament that guarantee that gmos do not enter the food
demographic roles by the past

BiLSTM (256d)

we must put first and also sure that whether do not spent the food chain ultimately by the back

DeConv (256d)

we must good those than the ask made that themselves do not apply the financial programmes
provided that the fear

Table 5: Sample Reconstruction for Test Set [Length=20]
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Type Sentence
Original we must put safety first and make sure that gmos do not enter the food chain unseen by the back
door

BiLSTM (64d) | we must support on of i to that we not to the and by the

DeConv (64d) | we must been considered whether and make sure that gmos do not enter the food donor treatment
the number of

BiLSTM (128d) | we must be an first 1 ask sure that not the food safety on by the back

DeConv (128d) | we must set act by and make whether that birth does not keep the food environment in by the
million storage

BiLSTM (256d) | we must be its first i make sure that us will not improve the food chain safety by the back up
DeConv (256d) | we must admit that what who to how that europe who to across the foreign environment although
at great basis from

Table 6: Sample Reconstruction for Test Set [Length=30]

2.1.4 Experiment II: Machine Translation

From the above experiment, we can see that the deconvolutional method seems to work reasonably well on sentence
reconstruction under certain conditions. The next interesting question is whether or not the deconvolutional method
could be a potential candidate for capturing the change of information between languages. Before running the actual
experiments, we expected to see bad results. This is because the machine translation task is more complicated than
sentence reconstruction in one language. It is about finding an effective mapping between two different language
domains. First of all, this requires more samples to train in order to find a reasonable mapping. Second, it typically
requires additional steps like an attention mechanism to capture intra-word features in order to generate reasonable
results, similar to what Facebook AI Research [[6] did for their convolutional seq2seq model training. The major
objective of this experiment is to discuss if the deconvolutional method is worth exploring in a typical machine
translation study.

In this experiment, we use the same set of data pre-processing techniques and model architectures as for the previous
experiment. One can refer to the above section for details. One of the major differences is the output. The output of
the previous experiment is exactly same as the input, however here it is somewhat related to the input, but in another
language. The vocabulary sizes of English and French sentences in the data set are 21,424 and 31,816 respectively.
As the vocabulary size increases, all the model sizes in this experiment are generally larger than those in the previous
experiments. Another difference is that the word embedding size is fixed to be 256 in this experiment. This is because
the BiLSTM (or seq2seq) model was used in the past for translating sentences. In our last experiment, it performs well
when the embedding size is equal to 256. Thus it is interesting to see if the BiLSTM still works reasonably fine in this
experiment, and see if we still observes similar training patterns as in the sentence reconstruction task for the DeConv
model.

Model Performance We summarize the observations learnt from Table [/|and the corresponding loss & accuracy
graphs. All the training loss and accuracy graphs are available in Appendix II [From English to French] and Appendix
III [From French to English].

e Modal Size & Training Time Similar to the sentence reconstruction task, the model size of BiLSTM
does not change for different sentence lengths in single direction of translation [From English to French
or From French to English]. The model size for DeConv changes with the sentence length as in the
sentence reconstruction task. Both models are subject to the vocabulary size. For translation from English
to French, they all have slightly bigger size since the vocabulary size of French is slightly bigger than
English. Similar to the sentence reconstruction task, DeConv trains faster than BILSTM with the help of a GPU.

e Sentence Length The validation accuracy increases as the sentence length increases for both models.
However, this does not imply that those models are working better in longer sentences. This is because for
longer sentences, it is more likely to have more identical tokens (having more padding indicators, i.e. <pad>)
inside the sentence. This is largely due to the fact that most of the English and French sentences in our data set
are of length way less than 30. Thus, it is more reasonable for us to consider the results for shorter sentences,
in this case it is 10.

e Overfitting Similar to sentence reconstruction, DeConv tends to overfit when the emebdding size increases.
And it becomes more obvious in this experiment. From Figure [T0] we can easily see that the loss starts
increasing after the first few epochs. However, from another perspective, DeConv did capture sufficient
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information in the training to do the translation from English to French or French to English for short sentences
(e.g. see Figure[9). Thus, by developing an appropriate way to solve this overfitting issue, it might be possible
to make DeConv work for short sentence translation. For example, this might be done by incorporating
different filter sizes to capture intra-sentence features in addition to usin more filters, similar to what we found
out in the previous experiment.

Model | Translation Direction | Sentence Length | # Params | Training Time | *Validation Accuracy
10 15,499,336 ~54s/epoch 18.34%
EN to FR 20 15,499,336 ~95s/epoch 22.69%
. 30 15,499,336 | ~136s/epoch 32.86%
BiLSTM 10 15.488.944 | ~43s/epoch 19.78 %
FR to EN 20 15,488,944 ~T6s/epoch 24.71%
30 15,488,944 | ~110s/epoch 35.26%
10 16,684,109 ~40s/epoch 16.69%
EN to FR 20 18,650,189 ~69s/epoch 21.77%
DeConv 30 20,616,269 ~99s/epoch 32.36%
10 16,673,717 ~30s/epoch 18.80%
FR to EN 20 18,639,797 ~50s/epoch 23.97%
30 20,605,877 ~T1s/epoch 34.71%
Table 7: Training Summary for Machine Translation Tasks
acc: Accuracy Over Sparsed Sentence Representation model loss
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Figure 9: Accuracy for DeConv (en to fr), 10L, 256d, 100e Figure 10: Loss for DeConv (en to fr), 10L, 256d, 100e

2.2 Sentiment Analysis
2.2.1 Data

We are using a data set from a public challenge on a data science site called Analytics Vidhya. It can be downloaded
here. The objective of this challenge is to identify the sentiments of selected tweet messages. The training set contains
7,920 tweets while the test set contains 1,953 tweets. Label 0 refers to positive and neutral tweets while 1 refers to
negative tweets. In our study, we select 20% (i.e. 1,584) tweets from the training set to serve as a validation set. Most
of the tweets are of length 10. One fact about this data set is the imbalance of non-negative and negative tweets in the
training set. As we continue using Keras for training, Keras offers a way to set the class weights during training to
handle the imbalance label issue of a data set. Based on what we observe from the training and validation data sets (see
Table [9), the class weights for non-negative and negative tweets are set to be 0.25 and 0.75 respectively. Thus we force
the model to treat negative tweets three times important than non-negative tweets.

Data set | Mean Sentence Length | Median Sentence Length | Mode Sentence Length | Max Sentence Length
Train 10.65 10.0 10 35
Valid 10.85 10.0 10 33
Test 10.54 10.0 10 31

Table 8: Sentence Length Summary for Train, Validation and Test sets

Data set Total | # Non-negative Tweets [label=0] | # Negative Tweets [label=1]
Train 6,336 4700 (74.18%) 1636 (25.82%)
Validation | 1,584 1194 (75.8%) 390 (24.62%)

Table 9: Label Proportion in Train Valid

2.2.2 Pre-processing

In additional to those text pre-processing steps taken in the sentence reconstruction task, common stop words have been
removed from the text. Also, lemmatization is taken to convert the word into root form like a typical text classification
task. These additional steps are done through a Python library called SpaCy, which is commonly used for text cleaning.

2.2.3 Experiment Setup

At first, the DeConv model is applied here to extract the latent representation for further study. However, it turns out
that it might not be appropriate to learn a sufficient latent representation in this case (see Figures [TT]and [I2). One
reason might be the amount of data. The training set here is just about 6,000 sentences. Typically, convolutional type
operations require more samples to train.
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Second, unlike the previous sentence reconstruction task, the tweets in the data set are far from being grammatically
correct sentences. People like to use abbreviations, slang and some newly created words in tweets. This might make
the embedding inaccurate if we try to learn from this data set. Using libraries like Word2vec or GloVe might not
help to solve this issue because those embeddings are typically trained on formal text like news. In this case, we
decided to examine a newly developed embedding concept called ELMo. ELMo was proposed by AllenNLP at
NAACL 2018. It was developed to learn contextualized word embeddings like CoVe (Contextualized Word Vectors)
and BERT (Bidirectional Encoder Representations from Transformers). This implies that the embedding of a word
changes depending on the context surrounding it. In their paper, with the help of the ELMo embedding, they achieve
state-of-the-art results in most of the natural language processing tasks such as 5-class sentiment analysis and named
entity recognition.

In addition, we also try SPNs to learn a classifier for the data set. This is because SPNs can be used to learn the
underlying density of the data set, which might be able to capture the imbalance during training. This might be better
than re-weighting the classes for training. To train SPNs, the python library SPFlow is used. It allows us to easily define
a custom network structure, or execute any structure learning to automatically learn the network architecture.

model loss acc: Accuracy Over Sparsed Sentence Representation

— train 0] — mmain
6.57 validation ’ validation

|
6.0
0.5 9

I~
S
L

5.0

loss
accuracy
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=4
w
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4.0 q

3.5 0.2 4

3.0 1

epoch epoch

Figure 11: Training Loss for DeConv [I=10, d=64, e=100]  Figure 12: Training Accuracy for DeConv [1=10, d=64, e=100]

Notes We are using the pre-trained ELMo embedding available on tensorflow-hub, and then we take the average
of the ELMo embedding for each word as the latent sentence representation. We tried running all structure learning
algorithms of SPFlow to learn an SPN classifier for the average ELMo embedding, however, the training process does
not converges. Only the one on the vector of word ids converges so it will be reported here. But as we expect, the
performance will not be satisfactory because the word id does not carry enough information for the sentence. This
might be related to a tensorflow implementation that causes convergence issues. I will follow up with the authors to
further investigate the problem and fix it.

Here is the list of models trained in this experiment:

e Baseline: LSTM Following the sentiment analysis tutorial provided by Keras on IMDB movie reviews, we
train a single layer LSTM model with hidden vectors of size 32 on top of the input embedding as our baseline
model. Dropout is used to minimize the effect of overfitting. The best model is selected based on the F1 score.
The model is trained for 15 epochs.

e SPN An SPN is trained to learn the joint density of the input word id vector and labels. SPFlow is used to
learn the structure of this SPN. Approximate most probable explanation (MPE) is used to predict the labels of
the test set given the SPN structure.

e 2-layer NN [MLP] A simple 2-layer neural network is trained on the average ELMo vector to map to the

labels. The first dense layer has a size of 64 while the second one has a size of 32. This model is also trained
for 15 epochs. The best model is picked based on the F1 score.
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o Logistic Regression A simple logistic regression model is trained on the average ELMo vector.

2.2.4 Experimental Results

Table [I0] summarizes the evaluation of all our submissions to the challenge. Surprisingly, the simple logistic regression
performs the best among all the trained models. As we expect, the SPN learned does not perform well on the data set
since it is limited to use word id vectors for training. However, we can see that the ELMo does improve on the accuracy
by comparing the results of the LSTM and MLP models. The best accuracy on the public leader board for this data set
is 91.64% on May 9th, 2019.

Model Is ELMo used? | Test Accuracy
LSTM No 84.19%
SPN No 61.82%
Logistics Regression | Yes (avg_elmo) 88.02%
MLP Yes (avg_elmo) 87.25%

Table 10: Summary for Sentiment Identification Task

3 Conclusion & Future Work

There are a few things about the deconvolutional method that we have learnt from the experiments. First of all, it
generally converges faster than a typical recurrent method given the same optimizer and other hyperparameters such as
the number of epochs, word embedding dimensions, etc. However, this makes it tend to overfit easily especially in the
experiment of translating a sentence from one language to another. Our current deconvolutional decoder architecture
is unable to capture information for longer sentences with bigger word embedding size according to the results we
obtained when comparing reconstructed sentences with the input although the baseline BiILSTM model also has similar
problems for longer sentences. BILSTM did benefit from bigger word embedding size while DeConv get worse results
due to the filter design. In general, for shorter sentences (e.g. sentences of 10 words), DeConv outperforms BiLSTM
according to all the quantitative evaluations (accuracy and BLEU score on test set), and qualitative evaluations based
on comparing the reconstructed sentence with the input. Similar to the sentence reconstruction task, DeConv tends to
overfit easily, but its performance is close enough to a standard recurrent seq2seq method. For the task of identifying
sentiments from tweets, we experimented with a few more newly developed concepts like ELMo and SPN although we
are not able to apply the deconvolutional method due to some limitations on the data set. Here are a few things worth
pursing regarding the deconvolutional method:

o Filter design Like [4], [8], [9] did in their text classification research, we could try to integrate different filter
or kernel sizes for the convolutional layer in order to capture intra-sentence information. But we might need to
study how a deconvolutional filter should change in order to decode those combined signals back to the original.

e Attention mechanism Similar to recurrent neural networks, attention can be also implemented into a
convolution method such as what [6] did for their convolutional seq2seq research. We could possibly try to
integrate similar attention mechanisms into our current deconvolutional architecture to see if it can benefit
from such techniques like other networks.

o SPN Autoencoding From [2]] and [19]], we know that it might be possible to integrate an SPN into autoencoder
since SPNs could be better to learn stochastic features of the underlying distribution. With the help of a SPN,
the performance for reconstrcution might be improved.
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APPENDIX I. ACCURACY AND LOSS GRAPHS OF BILSTM & DECONV FOR ENGLISH SEN-
TENCE RECONSTRUCTION
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Figure 13: Accuracy for BiLSTM (en), 10L, 64d, 100e
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Figure 16: Loss for DeConv (en), 10L, 64d, 100e
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Figure 23: Accuracy for DeConv (en), 10L, 256d, 100e
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Figure 29: Accuracy for BILSTM (en), 20L, 128d, 100e
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acc: Accuracy Over Sparsed Sentence Representation

0.7
— frain
validation
0.6
0.5+
0.4 4
0.3+
0.2 W
e
T T T T T T
0 20 40 60 80 100

epoch

acc: Accuracy Over Sparsed Sentence Representation

0.9

0.8

o
b
L

o
o
L

=
w
L

0.4 1

0.3 A

— ftrain
validation

0 20 40 60 80 100
epoch

acc: Accuracy Over Sparsed Sentence Representation

0.8

0.7

o
o
L

o
&
L

o
S
L

0.3 9

0.2

— ftrain "

validation /

T
0 20 40 60 80 100
epoch

18

loss

A PREPRINT - MAY 17, 2019

model loss

6.0

5.5 1

5.0 1

4.5 1

4.0 q

3.5 4

3.0 1

2.5 4

2.0 4

— frain
validation

o
[
=

T
40 60 80 100

Figure 30: Loss for BILSTM (en), 20L, 128d, 100e

model loss

loss

— ftrain
validation

o
[
=

Figure 32: Loss for DeConv (en), 20L, 128d, 100e

model loss
6 E
— ftrain
validation
2\
ad
@
@
=] N
34
2+ ™~
<
| \

o
[
=

Figure 34: Loss for BILSTM (en), 20L, 256d, 100e



accuracy

Figure 35: Accuracy for DeConv (en), 20L, 256d, 100e
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APPENDIX II. ACCURACY AND LOSS GRAPHS OF BILSTM & DECONV FOR ENGLISH TO
FRENCH TRANSLATION
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APPENDIX III. ACCURACY AND LOSS GRAPHS OF BILSTM & DECONYV FOR FRENCH TO
ENGLISH TRANSLATION
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Figure 69: Accuracy for BiLSTM (fr to en), 30L. 256d, g;o 6 70 Loss for BILSTM (fr to en), 30L, 256d, 100e
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Figure 71: Accuracy for DeConv (fr to en), 30L, 256d, 100e Figure 72: Loss for DeConv (fr to en), 30L, 256d, 100e
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