
Bayesian Federated Learning in
Predictive Space

by

Mohsin Hasan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Mohsin Hasan 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Some sections of Chapter 2 and Chapter 3 were adapted from a paper submitted to AIS-
TATS 2023, for which I was the first author. For that work, I collaborated with another
student, Zehao Zhang, who aided in running some experiments reported in Chapter 3.
For the work in this thesis, I collaborated with my supervisor Pascal Poupart, and other
researchers: Guojun Zhang, Xi Chen, and Kaiyang Guo, who all provided feedback and
discussions. All equations, proofs, algorithms and text in this thesis (and the AISTATS
2023 paper mentioned earlier) were developed and written by myself.

iii

Abstract

Federated Learning (FL) involves training a model over a dataset distributed among
clients, with the constraint that each client’s data is private. This paradigm is useful in
settings where different entities own different training points, such as when training on
data stored on multiple edge devices. Within this setting, small and noisy datasets are
common, which highlights the need for well-calibrated models which are able to represent
the uncertainty in their predictions. Alongside this, two other important goals for a prac-
tical FL algorithm are 1) that it has low communication costs, operating over only a few
rounds of communication, and 2) that it achieves good performance when client datasets
are distributed differently from each other (are heterogeneous). Among existing FL tech-
niques, the closest to achieving such goals include Bayesian FL methods which collect
parameter samples from local posteriors, and aggregate them to approximate the global
posterior. These provide uncertainty estimates, more naturally handle data heterogeneity
owing to their Bayesian nature, and can operate in a single round of communication. Of
these techniques, many make inaccurate approximations to the high-dimensional posterior
over parameters which in turn negatively effects their uncertainty estimates. A Bayesian
technique known as the “Bayesian Committee Machine” (BCM), originally introduced out-
side the FL context, remedies some of these issues by aggregating the Bayesian posteriors
in the lower dimensional predictive space instead.

The BCM, in its original form, is impractical for FL due to requiring a large ensemble
for inference. We first argue that it is well-suited for heterogeneous FL, then propose a
modification to the BCM algorithm, involving distillation, to make it practical for FL. We
demonstrate that this modified method outperforms other techniques as heterogeneity in-
creases. We then demonstrate theoretical issues with the calibration of the BCM, namely
that it is systematically overconfident. We remedy this by proposing β-Predictive Bayes,
a Bayesian FL algorithm which performs a modified aggregation of the local predictive
posteriors, using a tunable parameter β. β is tuned to improve the global model’s calibra-
tion, before it is distilled. We empirically evaluate this method on a number of regression
and classification datasets to demonstrate that it generally better calibrated than other
baselines, over a range of heterogeneous data partitions.

iv

Acknowledgements

I’d like to thank my supervisor Pascal Poupart for his constant support, advice, under-
standing and patience throughout my entire Masters degree.

I’d also like to thank my collaborators: Zehao Zhang, Guojun Zhang, Xi Chen, Mahdi
Karami, Kaiyang Guo, Ahmad Rashid and Haolin Yu for useful ideas, and providing regular
feedback and discussions concerning my work.

I’d like to thank my committee members Yaoliang Yu, and Hongyang Zhang for useful
advice and feedback regarding my work.

I’d like to thank all my cousins for visiting me from the States and cheering me on
through my presentation.

I’d like to thank my parents and siblings for supporting me and putting up with me as
I dealt with the challenges of my degree and with COVID, I wouldn’t have been able to
do anything without them.

v

Dedication

This is dedicated to my parents.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Outline . 3

2 Background 5

2.1 Bayesian Learning . 5

2.1.1 Approximate Bayesian Learning . 7

2.2 Federated Learning . 10

2.2.1 Related Works - Bayesian Federated Learning 12

vii

2.2.2 Related Works - One-Shot Federated Learning 14

2.2.3 Knowledge Distillation . 15

2.2.4 Evaluating Model Calibration . 15

3 The Distilled BCM Algorithm for Federated Learning 17

3.1 Bayesian Committee Machine . 17

3.1.1 Aggregation for Classification . 19

3.1.2 Aggregation for Regression . 19

3.2 Applying the BCM to Federated Learning 22

3.3 Experiments . 24

3.3.1 Classification Datasets . 25

3.3.2 Regression Datasets . 26

3.3.3 Models . 26

3.3.4 Baselines . 26

3.3.5 Training Details . 27

3.3.6 Classification Results . 27

3.3.7 Regression Results . 28

4 Calibrating the BCM: β-Predictive Bayes 29

4.1 Analyzing the Calibration of the BCM . 29

4.1.1 Analyzing the Predictive Mixture Model 33

4.1.2 Heuristic Argument for Classification 36

4.2 Calibrating the Aggregated Model . 37

4.3 Experiments . 39

4.3.1 Classification Results . 39

4.3.2 Regression Results . 40

5 Conclusion 44

5.1 Limitations and Future Work . 44

viii

References 46

APPENDICES 53

A Gaussian Regression Formula 54

B Additional Experiments and Hyperparameters for D BCM 57

B.1 Additional Experimental Details . 57

B.1.1 Hardware, Software, and Randomization Details 57

B.2 Hyperparameter Tuning . 57

B.2.1 Heterogeneous Classification Dataset Construction 59

B.3 Additional Experiments . 59

B.3.1 Classification Experiments . 59

ix

List of Figures

3.1 Test accuracies on the classification datasets with increasing data hetero-
geneity (tested with parameter settings of h={0.0, 0.3, 0.6, 0.9}). SR =
single round method, MR= multi-round method. Averages and standard
error over 10 seeds are reported. 25

4.1 Negative log likelihoods on the classification datasets with increasing data
heterogeneity (tested with parameter settings of h={0.0, 0.3, 0.6, 0.9}).
Averages and standard error over 5 seeds are reported. The omitted values
(eg. for FedPA on EMNIST) denote results where the negative log likelihood
diverged. 41

4.2 Expected Calibration Errors on the classification datasets with increasing
data heterogeneity (tested with parameter settings of h={0.0, 0.3, 0.6, 0.9}).
Averages and standard error over 5 seeds are reported. 42

x

List of Tables

3.1 Average test accuracies (± standard error) on classification datasets for
h = 0.3, based on 10 seeds. Higher is better. The best technique among
single round methods is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%,
↑ / ↓ : higher/lower accuracy with p < 5% (relative to D BCM) (according
to the Wilcoxon signed-rank test). 21

3.2 Average test mean squared error (± standard error) on regression datasets,
based on 10 seeds. Lower is better. Multi-round methods are written
above the line, while methods run for a single round of communication
are written below. The best technique over 1 round is bolded. ⇑ / ⇓ :
higher/lower mean squared error with p < 1%, ↑ / ↓ : lower/higher mean
squared error with p < 5% (relative to D BCM) (according to the Wilcoxon
signed-rank test). 22

4.1 Summary of Predictive Variance Analysis 37

4.2 Average negative log likelihood (± standard error) on regression datasets,
based on 5 seeds. Lower is better. 43

B.1 The hyperparameters tuned, their possible values in the grid search, and the
algorithms each hyperparameter applies to. 61

B.2 The tuned values of hyperparameters for the classification datasets in the
homogeneous case h = 0 . 62

B.3 The tuned values of hyperparameters for the classification datasets, in the
heterogeneous case h > 0 . 63

B.4 The tuned values of hyperparameters for the regression datasets 64

xi

B.5 Average test accuracies (± standard error) on classification datasets for
h = 0.0, based on 10 seeds. Higher is better. The best technique among
single round methods is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%,
↑ / ↓ : higher/lower accuracy with p < 5% (relative to D BCM) (according
to the Wilcoxon signed-rank test). 65

B.6 Average test accuracies (± standard error) on classification datasets for
h = 0.6, based on 10 seeds. Higher is better. The best technique among
single round methods is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%,
↑ / ↓ : higher/lower accuracy with p < 5% (relative to D BCM) (according
to the Wilcoxon signed-rank test). 65

B.7 Average test accuracies (± standard error) on classification datasets for
h = 0.9, based on 10 seeds. Higher is better. The best technique among
single round methods is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%,
↑ / ↓ : higher/lower accuracy with p < 5% (relative to D BCM) (according
to the Wilcoxon signed-rank test). 66

xii

Chapter 1

Introduction

Federated learning (FL) is a machine learning paradigm which trains a statistical model
using decentralized data stored on client devices, with the constraint that client data is
kept private (ie. not shared directly) [40]. FL has found use in smartphone applications,
as well as many fields, such as healthcare, and finance due to the abundance of use-cases
where sensitive training data is owned by separate entities [66].

The workflow of a typical FL algorithm involves the local training of models on each
client, followed by the communication and aggregation of these into a single global model
on a central server. Many FL techniques alternate between these two steps until some
notion of convergence is reached [40].

For the purpose of this work, we are concerned with the design of FL algorithms with
three key metrics in mind:

1. Communication Cost: the transmission of models between clients and servers can
be expensive, especially when each model has many parameters. This is the case, for
instance, when training neural networks. Cost effective FL techniques therefore aim
to maximize the amount of local training at each client, while reducing the rounds
of communication.

2. Performance with Heterogeneous Data: clients may have different data distri-
butions from each other. This causes the local client models to differ, which presents
issues when aggregating them into a global model [65]. In particular, when client
data is heterogeneous, global models tend to perform poorly on the data of any one
client.

1

3. Calibration: Clients may have data with too few training points, or too much
variance. Therefore, a valuable goal in FL is to produce models that are well cali-
brated, or in other words: make probabilistic predictions with accurate uncertainty
estimates.

Many techniques frame FL as a distributed optimization problem. For such methods,
there is typically a trade-off between achieving a low communication cost, and good perfor-
mance on heterogeneous data. In particular, they deal with heterogeneous data by having
more frequent communication between clients to “synchronize” the models, which has the
downside of increasing communication costs [40, 60]. These methods also don’t have any
systematic way of calibrating the global model.

Another branch of FL techniques instead take a Bayesian perspective on learning the
model. They approximate the Bayesian posterior distribution of each client model, and
aggregate them into the global Bayesian posterior [1, 46]. This allows the training of
more effective global models on heterogeneous data by leveraging client uncertainty during
aggregation [1]. Certain Bayesian FL methods also demonstrate how to aggregate local
posteriors in only a single round of communication [46]. Furthermore, these methods
explicitly represent and adjust the uncertainty in model parameters, which, in principle,
means they are well-calibrated.

The issue with these methods is that, since the Bayesian posterior is a distribution over
model parameters, it is a complex object that is expensive to represent and manipulate.
Techniques therefore require some sort of approximation to the posterior. Many methods
work with crude approximations to the client posterior (as eg. a multivariate Gaussian) [1,
46], which can incur heavy approximation error, resulting in poor calibration and accuracy.

Another Bayesian method, the “Bayesian Committee Machine” (BCM), originating
in Gaussian process literature, instead aggregates the distribution over model predictions
(referred to as the Bayesian predictive posterior) rather than the posterior over param-
eters [56]. The former can be approximated more closely since it is a lower dimensional
distribution. The trade-off is that these methods instead need to rely on an approxi-
mate aggregation technique, which biases the global model (particularly in its calibration).
These methods are also expensive for FL due to needing to predict using an ensemble
over Bayesian models (each of which is in and of itself an ensemble model over posterior
samples) at inference.

This thesis therefore aims to investigate practical algorithms for Bayesian FL which
operate in a single round of communication, perform well on heterogeneous data, and
provide accurate uncertainty estimates.

2

1.1 Contributions

The primary contributions of this work are:

• We argue that the BCM algorithm is well suited for the heterogeneous data setting
in FL. We adapt this algorithm by distilling the ensemble model at a central server.
We empirically demonstrate that this algorithm outperforms other FL algorithms on
datasets with high heterogeneity, with respect to accuracy, despite only operating in
a single round of communication.

• We propose a novel algorithm for Bayesian FL, called β-Predictive Bayes. This
method, operating in a single round of communication, combines the Bayesian pos-
terior over model predictions to construct an ensemble model using a tunable param-
eter β. β is trained to adjust the ensemble’s calibration, before it is distilled into a
single model for use at clients. The fact that the method operates over model predic-
tions rather than model parameters lets the method enjoy better approximations to
client posterior predictions. On the other hand, the fact the method uses a tunable
parameter in its aggregation allows it to adjust for the systematic bias in aggregation
techniques such as in the BCM. This lets it attain better calibration performance.
The distillation step allows the global model to be used cheaply at inference.

• An empirical evaluation of β-Predictive Bayes on multiple regression and classifica-
tion datasets, using partitions simulating varying levels of data heterogeneity. The
proposed technique is competitive with or outperforms other baselines with respect
to both accuracy and calibration, particularly as data heterogeneity increases.

1.2 Thesis Outline

This thesis is split into 5 chapters. The main content of the thesis is summarized below.

• Chapter 2 presents a primer on Bayesian inference, Federated Learning, as well as
other tools used throughout the work such as Knowledge Distillation.

• Chapter 3 discusses the BCM as a starting point. The chapter argues that the
assumptions underlying the BCM aggregation formula are natural in heterogeneous
FL settings, and proposes a method for practically using it in FL. It then evaluates
the accuracy of the adapted BCM method on multiple datasets, with varying levels
of data heterogeneity.

3

• Chapter 4 analyzes calibration issues with the BCM method, and proposes a novel
aggregation technique to correct them. The new algorithm (β-Predictive Bayes)
is demonstrated to be better calibrated on multiple regression and classification
datasets, even as data heterogeneity increases.

4

Chapter 2

Background

We begin with a brief summary of Bayesian learning, and Federated learning, since both
topics are needed to understand the content of this work.

In what follows, we focus the discussion on a supervised learning problem, and denote
the dataset as D = {(x1, y1), ..., (xN , yN)} = (X,y).

2.1 Bayesian Learning

Bayesian learning is a method for constructing a statistical model given a dataset. Its
main feature, in contrast with traditional (optimization-based) learning, is that it takes
into account uncertainty over parameters [4].

Suppose we have data D, and model parameters θ ∈ Θ. The model is such that, given
the parameters θ, it maps an input x into a distribution over outputs y. That is, the
model outputs fθ(x) = p(y|x, θ).

For example, in a regression problem where the goal is to estimate a function given
noisy observations, y = f(x) + ϵ, ϵ ∼ N (0, σ2

o), a possible model is fθ(x) = p(y|x, θ) =
N (θ⊤mx, θ

2
s). Here the overall model parameters are θ = [θm, θs]

⊤, consisting of components
which influence the mean of the prediction (θm) and a scalar which captures its standard
deviation (θs). For classification, fθ(x) = p(y|x, θ) would correspond to the distribution
over class labels.

A Bayesian approach operates by setting a model space prior p(θ), a distribution
over the model parameters. The prior encapsulates beliefs about the parameters before
observing data.

5

For instance, in the regression example, if we expect the coefficients θm and observation
noise θs to be small, one choice of prior may be a Gaussian centered at 0, and with a small
variance ie. p(θ) = N (0, 1).

Upon processing the dataset, this prior is updated to themodel space posterior. The
posterior is expressed as the conditional distribution of the parameters, given the data, ie.
p(θ|D). The update from the prior to the posterior is done using Bayes’ rule:

p(θ|D) = p(D|θ)p(θ)
p(D)

(2.1)

The term p(D|θ) is referred to as the likelihood, and is viewed as a function of θ. It
captures how likely the observed data is to be generated by the model given that model
parameters are set to θ. Assuming we have independent and identically distributed samples
(i.i.d.) for the dataset D, we can factor the likelihood into p(D|θ) =

∏
p((yi, xi)|θ). If we

further assume that we are not modelling the distribution over inputs x, and are only
interested in the distribution over y given an input x (as is done in supervised learning),
we may write:

p(D|θ) =
∏

(xi,yi)∈D

p(yi|xi, θ) (2.2)

The term in the denominator, referred to as the marginal likelihood is the normal-
ization constant needed to make the sure the posterior integrates to 1. In other words:

p(D) =
∫

p(D|θ)p(θ)dθ (2.3)

Since p(D) is only a constant, we can still distinguish more likely settings of the param-
eters, or do interesting operations on the posterior, without it. For this reason, in Bayesian
inference it is common to write the posterior update as p(θ|D) ∝ p(D|θ)p(θ), and ignore
the p(D) term.

This posterior is used to make predictions. To do so, we are interested in the distribu-
tion p(y|x,D), referred to as the (Bayesian) predictive posterior. We can obtain this
distribution using the sum and product rule of probability:

6

p(y|x,D) =
∫

p(y|x, θ)p(θ|D)dθ (2.4)

= Eθ∼p(θ|D)[p(y|x, θ)] (2.5)

The above equation is said to marginalize out the parameters θ. For a well-chosen
prior and model, p(y|x,D) may be a well-calibrated distribution. In other words, the
uncertainty in the distribution p(y|x,D) will accurately reflect the noise present in the
data (aleatoric uncertainty), and the uncertainty the model may have due to seeing too
little data (epistemic uncertainty).

2.1.1 Approximate Bayesian Learning

The primary challenge in Bayesian learning is how the posterior is used to compute pre-
dictions according to equation 2.4. In some cases, such as linear regression, where we set
the prior to be a Gaussian distribution and use a Gaussian model (similar to the example),
the posterior can be analytically computed using 2.1. It will be a Gaussian with some
data-dependent mean µ(D) and covariance Σ(D) [4]. In this case, the posterior can be
stored using this mean and covariance. The integral in equation 2.4 can then be carried
out analytically on some given test-point x, to return a Gaussian (over y).

In more complicated settings, such as if the model fθ(x) = p(y|x, θ) is a neural network,
the integral 2.4 can no longer be computed in closed-form (even if the prior is a simple
distribution such as a Gaussian). In this case, the posterior is said to be intractable.

Since we can no longer exactly work with the posterior, we need to make some approx-
imations, which moves us into the area known as “Approximate Bayesian learning”. Here,
there are two broad classes of methods of dealing with intractable posteriors. Both make
use of the fact that, although the posterior may not be integrated, we can still evaluate
the un-normalized posterior at some θ using p(θ|D) ∝ p(D|θ)p(θ).

Variational Methods

Variational methods [55], construct simple distribution over the model parameters θ, de-
noted qw(θ) with distribution parameters w. For instance, qw(θ) may be a Gaussian, where
w are the mean and covariance of the Gaussian. qw is chosen to be easy to sample exactly
from, and evaluate the density of. The parameters w are tuned to minimize some notion of

7

distance between the distribution qw(θ) and the posterior p(θ|D). One such example is the
Kullback-Leibler (KL) divergence between qw(θ) and p(θ|D). This objective is commonly
used because it can be manipulated into a form that may be evaluated even if the posterior
is intractable:

w∗ = argmin
w

KL(qw||p)

= argmin
w

∫
qw(θ) log

qw(θ)

p(θ|D)
dθ

= argmin
w

∫
qw(θ) log

qw(θ)

p(θ|D)
dθ

= argmin
w
−
∫

qw(θ) log
p(θ|D)
qw(θ)

dθ

= argmin
w
−
∫

qw(θ) log
p(θ)p(D|θ)

qw(θ)
dθ +

∫
qw(θ) log p(D)dθ

= argmin
w
−
∫

qw(θ) log
p(θ)p(D|θ)

qw(θ)
dθ + log p(D)

= argmin
w
−
∫

qw(θ) log
p(θ)p(D|θ)

qw(θ)
dθ (2.6)

We can constrain the distribution qw(θ) so that we can evaluate the integral in the
last line (by sampling qw(θ)). The p(θ)p(D|θ) term can also be evaluated analytically by
iterating over the dataset. Thus, the last line gives an objective (also known as the negative
Evidence Lower Bound (ELBo)), which may be minimized to obtain an approximation for
the posterior.

Once qw∗(θ) is obtained, we may sample from it to compute the expectation required
for predictions 2.4.

It is worth noting that variational methods give an often biased approximation of the
posterior, since the true posterior may not lie in the family of distributions of the form qw

Markov Chain Monte Carlo Sampling

Another set of techniques for working with intractable posteriors is to obtain samples from
the posterior, S = {θ1, ..., θM} ∼ p(θ|D) through a method called Markov Chain Monte
Carlo (MCMC), and use them to approximate 2.4 as:

8

p(y|x,D) =
∫

p(y|x, θ)p(θ|D)dθ

≈ 1

M

∑
j

p(y|x, θj) (2.7)

MCMC works by starting from a setting of the parameters θ0, and iteratively updating
parameters according to a transition kernel T (θ′|θ) [45]:

θi+1 ∼ T (θ′|θi) (2.8)

The iterates θ1, ..., θm move through parameter space, and are thought of as samples
from the posterior. The transition kernel is designed so that it can easily be sampled from,
and so that the chain of iterates spends time in each region proportional to its posterior
probability. The transition kernel needs to obey certain conditions which allows the chain
to asymptotically converge to the true samples (in the sense that expectations estimated
using them will converge to their true values) [54].

Common and efficient MCMC methods make use of the gradient of the log-posterior,
∇θ log p(θ|D) in their transition kernel. For instance, the un-adjusted Langevin algorithm
(ULA) is a common MCMC technique with the transition kernel [?]:

θt+1 ∼ N (h∇ log p(θ|D), 2h) (2.9)

Where h is the step-size, a hyperparameter. The parameter updates can equivalently
be written:

θi+1 = θi + h∇ log p(θ|D) +
√
2hηi (2.10)

ηi ∼ N (0, I) (2.11)

The gradient of the log-posterior can be computed since:

9

∇θ log p(θ|D) = ∇ log p(θ) +∇ log p(D|θ)−∇ log p(D)
= ∇ log p(θ) +∇ log p(D|θ)

= ∇ log p(θ) +∇ log

|D|∏
i=1

p(yi|xi, θ)

= ∇ log p(θ) +

|D|∑
i=1

∇ log p(yi|xi, θ)

Combining these facts, the update equation in 2.10 resembles the gradient ascent used in
traditional optimization based training, but with Gaussian noise added at each step. Many
MCMC methods can be thought of as noisy modifications of corresponding optimization
methods. In fact, Stochastic Gradient Langevin Dynamics [59] is a modification to ULA
which approximates the likelihood gradient with a minibatch gradient, meaning it is the
MCMC “equivalent” of Stochastic Gradient Descent (SGD).

Unlike the samples from the variational posterior qw(θ), the MCMC samples will be
approximate, since it is difficult to directly sample from the true posterior p(θ|D).

In this work, when mentioning Bayesian learning, we will typically assume MCMC is
being used, due to its similarity with traditional gradient based training. However, most
Bayesian FL aggregation techniques are agnostic to the underlying method being used, and
the MCMC samples may be replaced with samples from the approximate posterior qw∗(θ).

2.2 Federated Learning

In federated learning (FL), data is distributed across several clients. Let D = D1 ∪ ...∪Dn

where Di = {(x1, y1), ..., (xki , yki)} is the dataset of size ki at client i. The goal of FL is to
learn a predictive model over the entire dataset D, without any data leaving each client,
in order to preserve privacy.

A typical FL algorithm consists of the two basic steps:

1. Local training: each client learns a local model fθi(x), using its dataset Di.

2. Global aggregation: the clients send their local models to a central server, which
combines them to form a global model fθg (which need not be of the same form as
the local models).

10

For many algorithms, these two steps are alternated repeatedly until the global model
reaches some form of convergence. In this case, after the global model is formed, it is sent
back to the clients, which either copy the global weights to their model (θi ← θg) if the
global model is of the same form as the local models. Otherwise the clients use it to update
the local model in some manner.

Federated Averaging (FedAvg) [40] is the prototypical example of a Federated Learning
algorithm. It implements the above two steps as:

1. FedAvg local training: the local models θi are trained for l epochs on their local
datasets using SGD. Ie. an update on thetai is done as θ

′
i = θi−∇̃(1

ki

∑ki
j=1 l(xj, yj; θi)),

where ∇̃ refers to a minibatch approximation of the gradient, and l(xj, yj; θi) is the
per-training point loss.

2. FedAvg global aggregation: the global model is formed by taking the average of the
local parameters θg =

∑
i kiθi/(

∑
i ki).

The two steps are repeated over multiple rounds of communication.

Suppose we denote the previous global model with θg, which is copied over to the local
models θi ← θg, and we perform the local and global updates in one round to obtain θ′i
and θ′g. The intuition behind FedAvg is that, assuming all local models are initialized
identically, and local training is done only for a single iteration, the combination of the
two steps corresponds to:

θ′g =
∑
i

ki
|D|

θ′i

=
∑
i

ki
|D|

(θi − ∇̃(
1

ki

ki∑
j=1

l(xj, yj; θi))

=
∑
i

ki
|D|

(θg − ∇̃(
1

ki

ki∑
j=1

l(xj, yj; θg))

= θg −
∑
i

ki
|D|
∇̃(1

ki

ki∑
j=1

l(xj, yj; θg))

= θg − ∇̃(
1

|D|

|D|∑
j=1

l(xj, yj; θg))

11

Where the last step is equivalent to performing an SGD update on the global param-
eters. Thus, in the limit of taking only 1 step of local training per round, FedAvg is
equivalent to SGD on the global parameters.

As we increase the number of local iterations for training, the derivation above may not
hold. In particular, if the data is heterogeneous, meaning that client datasets follow dif-
ferent distributions (in either the targets, p(y), the inputs p(x) or the relation between the
two p(y|x)), then the above doesn’t hold and FedAvg is no longer equivalent to performing
global SGD. In fact, in this case, local client models may begin to diverge from each other,
causing the global model to achieve poor performance [60]. To avoid this, methods such
as FedAvg require more frequent rounds of communication. This can be quite costly in
terms of communication costs.

Many FL algorithms use FedAvg as a template, and perform some modification to it
with the goal of achieving faster convergence, or better performance in the heterogeneous
data setting [36, 58, 57, 38, 42].

For instance:

• FedProx [36]: changes the local training step by adding a penalty between the global
model and each client’s local model to the training loss. Ie. the local update becomes:

θ′i = θi − ∇̃(λ||θi − θg||+
1

ki

ki∑
j=1

l(xj, yj; θi)) (2.12)

The idea is that this penalty term keeps local models more closely synchronized with
the global model, preventing (or slowing) divergence in the case of heterogeneous
data.

• “AdaptiveFL” [51] uses an adaptive optimizer (such as Adam [32]) at the server for
aggregating local models, instead of simply averaging them.

2.2.1 Related Works - Bayesian Federated Learning

Bayesian learning offers FL techniques the advantage of better performance in heteroge-
neous settings. As argued by [1], FedAvg can be thought of as a technique which obtains
the mean of the global posterior, if each local posterior is approximated as a Gaussian

12

with the identity as the covariance matrix. Thus FedAvg implicitly assumes a form of
homogeneity which may not be practical. Bayesian techniques offer the ability to remedy
this by using more realistic approximations to the local posteriors.

The basic template for Bayesian FL is analogous to the one for traditional FL:

1. Local sampling: samples are drawn from the local Bayesian posteriors {θ1i , θ2i ..., θmi } ∼
p(θ|Di) using MCMC at each client.

2. Global aggregation: The local samples, or information gathered from the samples, is
communicated to a server, which uses it to obtain an approximation for the global
posterior p(θ|D)

Many methods differ primarily in how they perform the aggregation step.

“Embarrassingly Parallel MCMC” [46] aggregates information from the local pos-
teriors using the equation

p(θ|D) = 1

p(D)
p(D1, ...,Dn|θ)p(θ)

=
p(θ)

p(D)

n∏
i=1

p(Di|θ)

=
1

p(D)

n∏
i=1

p(θ|Di)
p(Di)

p(θ)

=
1

pn−1(θ)

∏
i

p(θ|Di) (2.13)

In other words, the local posteriors may be multiplied (with a corrective factor from the
prior) to obtain the density of the global posterior. The method uses the local samples to
estimate the local densities either as Gaussians (ie. using the sample mean and covariance)
or with a kernel density estimator. The parameters of these distributions are sent to the
server, which can analytically compute the product 2.13 to obtain a formula for the global
posterior density. This global density is then sampled to obtain the desired posterior
samples to which Eq. (2.7) may be applied for inference.

It is worth noting that the original work was not designed for use with neural networks,
and the memory costs associated with the method make it intractable for this setting. For
instance when approximating the local posteriors as Gaussians and multiplying them, a

13

computational cost of O(d3) is required for inverting the covariance matrices, where d is
the number of neural network parameters. This method is notable however for operating
with only a single communication round.

“Federated Posterior Averaging” [1] is similar to the above technique, except that
it only approximates the local posteriors as Gaussians, and devises a more efficient, iterative
algorithm for aggregating the local posteriors (with cost linear in the number of network
parameters), which it runs over multiple communication rounds. However, the iterative
method doesn’t compute the global posterior’s covariance, only its mean. This is because
the work is more interested in a point estimate for the posterior, rather than capturing the
uncertainty in predictions.

The main issue with both these techniques is that they require some approximation
of the global parameter posterior (e.g., in the form of a Gaussian), which can often be
inaccurate when the number of model parameters is large. Such approximations are es-
pecially poor for neural network models, where the model space posterior is known to be
multimodal [49].

Although originally meant to speed up the training of Gaussian processes, the “Bayesian
Committee Machine” (BCM) [56] can be thought of as an aggregation method which
combines low dimensional predictive posteriors p(y|x,Di), rather than the parameter poste-
riors p(θ|Di). It essentially uses an analogue of Equation 2.13. This results in an ensemble
model over the local Bayesian samples. The advantage of this method is that predictive
posteriors are much simpler, and lend themselves to, for instance, Gaussian approxima-
tions, without sacrificing accuracy. On the other hand, the aggregation formula is no longer
exact, but only approximately true, which causes other inaccuracies. Furthermore, the fact
that it creates a large ensemble model makes it inefficient for use in FL. The BCM will be
our starting point in developing our proposed method, and its drawbacks and advantages
will be discussed in more detail in later chapters.

2.2.2 Related Works - One-Shot Federated Learning

One of the goals of this work is to present a method operating in a single communication
round. Bayesian methods aren’t the only ones which can achieve this.

“One-Shot FL” [23], as well as “Federated Learning via Knowledge Transfer
(FedKT)” [35] perform one round training by constructing an ensemble from the client mod-
els, and compressing it into a single model using knowledge distillation on a public dataset.
The methods differ in how they construct the teacher ensemble: whereas “One-Shot FL”
averages the client predictions (and was tailored for SVM models), “FedKT” aggregates

14

based on majority voting by local models (and only applies to classification tasks). The lat-
ter technique uses a scheme called “consistent voting”, where it uses discrepancies between
client votes to determine which clients are uncertain about their predictions, and thus can
be ignored in the majority vote. Our method is closely related to these approaches, but
derives aggregation rules for the local client models using a Bayesian perspective, and is
applicable to any type of task or predictive model. These existing techniques use non-
Bayesian methods to obtain the ensemble. This means they do not account for uncertainty
within client models, or must use a heuristic such as “consistent voting” to do so [35]. Due
to this, the calibration offered by these models may not compare to Bayesian approaches.
Furthermore, a Bayesian approach offers other benefits in the case of heterogeneous data,
as argued in [1].

2.2.3 Knowledge Distillation

A tool used in this work, and a few mentioned earlier, is knowledge distillation. The
goal of knowledge distillation is to compress a given larger “teacher” model into a smaller
“student” model which matches its predictions on a shared data distribution [28]. A
common technique for distillation is to train the student model on some dataset and add a
term to the loss which measures the difference between the teacher and student predictions.

A number of FL techniques assume the server has access to a public (typically unla-
beled) dataset U which serves as the distillation dataset [23, 35, 7]. In this case, the student
is trained to minimize a loss of the form:

L(θS) =
∑
x∈U

l(fθS(x), fθT (x)) (2.14)

Where fθS(x) and fθT (x) are the predictive models of the student and teacher respec-
tively (with parameters θS and θT). l(·, ·) measures the discrepancy between predictions.
For classification, this discrepancy can be measured by the Kullback-Leibler divergence
between the distributions over classes, while for regression tasks, it can be measured by
the mean-squared error.

2.2.4 Evaluating Model Calibration

A model is referred to as well-calibrated if its probabilistic predictions align with their
true probabilities. For instance, if a well calibrated model predicts the class “cat” for 100

15

pictures of cats with probability 0.9, then 90 of these pictures will actually correspond to
cats [24]. For regression, a well-calibrated model that predicts a variance should have that
variance correspond to the actual observation noise σ2

o .

One metric for measuring a classification model’s calibration is “Expected Calibration
Error” (ECE). It works by computing probabilistic predictions on a training set. Then the
predictions are binned to intervals based on the highest probability assigned to each class
(we denote the probability as p̂i, and the predicted class as ŷi). The mth bin Bm will have
|Bm| points, and will have a “confidence” score: conf(Bm) = 1

|Bm|
∑

i p̂i (ie. the average

probability) and an “accuracy” of acc(Bm) =
1

|Bm|
∑

i 1(ŷi = yi). The ECE is simply the

weighted average of the discrepancy between the confidence and accuracy [24]:

ECE =
M∑

m=1

|Bm|
|D|

∣∣∣conf(Bm)− acc(Bm)
∣∣∣ (2.15)

An issue with ECE is that it is sensitive to the exact setting of the bins (ie. how many
bins we decide to use). Additionally, some intervals over p̂i may contain very few points,
which can skew the metric. A smaller ECE typically suggests a better calibrated model.

Another metric used to evaluate calibration is the negative log-likelihood:

L = −
|D|∑
i=1

log p(yi|xi, θ) (2.16)

The reason this is also a calibration score is because (in expectation), it is minimized
if and only if the model is well-calibrated [25].

16

Chapter 3

The Distilled BCM Algorithm for
Federated Learning

We take the perspective of learning a global Bayesian model on a dataset composed of n
shards: D = D1 ∪ ... ∪ Dn, each stored on an individual client. We assume we are in the
supervised setting so that each datapoint is an input and output pair (x, y). Ultimately
we’d like to construct a model which can make predictions using the (global) predictive
posterior p(y|x,D).

In this chapter, we first present the “Bayesian Committee Machine” [56], a method for
aggregating local Bayesian models into a global Bayesian model. The method is typically
seen as a way to reduce the computational cost of training Gaussian processes over large
datasets. We argue that the model is well suited for heterogeneous data in the Federated
setting, and adapt the method to make it practical for FL. We demonstrate the advantages
of the method over other FL aggregation techniques empirically.

3.1 Bayesian Committee Machine

The “Bayesian Committee Machine (BCM)” introduced in [56], approximates the global
predictive posterior by multiplying the local client predictive posteriors. This is justified,
under certain independence assumptions on the data, by the following observation:

Theorem 1. If the data shards are independent, i.e., p(D) =
∏

i p(Di) as well as condi-

17

tionally independent given a data-point (x, y), p(D|y, x) =
∏

i p(Di|y, x), then:

p(y|x,D) = 1

p(y|x)n−1

∏
i

p(y|x,Di) (3.1)

Proof.

p(y|x,D) = p(y|x,D1, ...,Dn)

= p(D1, ...,Dn|y, x)
p(y|x)
p(D)

=
p(y|x)
p(D)

∏
i

p(Di|y, x)

=
p(y|x)
p(D)

∏
i

p(y|x,Di)
p(Di)

p(y|x)

=
1

p(y|x)n−1

∏
i

p(y|x,Di) (3.2)

Above p(y|x) is the “prior predictive distribution”, and is determined by the chosen model
space prior p(w). Note that each distribution need not be identical.

The BCM model is typically used in the context Gaussian processes (GP) [56, 6, 15],
as a way to make inference feasible on large datasets. The reason is that, for a dataset
of size n, GP inference has a computational cost that scales as O(n3) (due to requiring
a matrix inversion). By using the BCM, the dataset is instead partitioned into smaller
subsets of size k, and inference may be performed separately on each of the n/k subsets.
This reduces the cost to O((n/k) · k3).

The main hurdle in using the BCM is the conditional independence assumption in the
theorem above. It can be written p(Di|D1, ...,Di−1, y, x) = p(Di|y, x). This approximately
holds if the other shards {D1, ...,Di−1} don’t provide any information on the shard Di. For
instance, this may be true if each shard consists of separated clusters of the input space,
or if, in classification, each shard contains different classes. In the case of training a GP,
this requirement may be satisfied by clustered or sorting the data before it is partitioned.

We argue that, in the FL setting, these assumptions can also be approximately true for
heterogeneous data. For instance, one way for clients to have heterogeneous datasets is if
they contain data located in different portions of input space (for instance, different digits
at each client for MNIST classification). This means the decomposition of (3.2) is a useful

18

approximation for our setting. This approximation will not always be precise, and we will
discuss its drawbacks and methods for remedying them in the following chapter.

Assuming that each client is able to provide some approximation to its local predictive
posterior p(y|x,Di), Equation (3.2) can be interpreted as an FL aggregation technique.
Below, we don’t restrict ourselves to the GP setting, and treat p(y|x,Di) as a Bayesian
predictive posterior obtained by any method. To proceed further we must make some
assumptions on the form of the predictions.

3.1.1 Aggregation for Classification

For classification: y is discrete. The product in (3.2) can be computed directly, i.e., for
each value of y ∈ {c1, ..., cK} (where cj is the jth class label):

p(y = cj|x,D) =
1

p(y = cj|x)n−1

∏
i

p(y = cj|x,Di) (3.3)

The prior and posterior distributions may be approximated from samples in (3.3).

We can interpret this in terms of uncertainties. First, rewriting the formula as:

p(y|x,D) = p(y|x)
∏
i

p(y|x,Di)

p(y|x)

Each client contributes a factor of p(y|x,Di)
p(y|x) (the quotient of the posterior and prior in

predictive space). If client i doesn’t learn much, and has little data (has high uncertainty),

its local posterior will be closer to the prior. Thus the factor p(y|x,Di)
p(y|x) ≈ 1 for each y. This

means the factor does not contribute much to the overall prediction.

3.1.2 Aggregation for Regression

For a regression task, suppose y ∈ Rd. In this case, we can approximate the local predictive
posteriors as (multivariate) Gaussians: p(y|x,Di) = N (µi,Σi) (with µi, Σi depending on
x). We similarly approximate the prior predictive distribution p(y|x) = N (µp,Σp).

Since the aggregation formula (3.2) multiplies or divides these densities, the global

19

predictive posterior will also be a Gaussian with some mean µg and covariance Σg:

Σg =

(∑
i

Σ−1
i − (n− 1)Σ−1

p

)−1

(3.4)

µg = Σg

(∑
i

Σ−1
i µi − (n− 1)Σ−1

p µp

)
(3.5)

The required means and covariances in these formulas may be estimated given samples
from each predictive distribution, which in turn may be obtained from samples of the
model space posterior p(θ|Di) using any MCMC method.

Note that this aggregation formula has an intuitive interpretation. Suppose we are in
the one-dimensional setting, where Σi = σ2

i is the variance of the output from the client
i. Further suppose that we have selected a prior with mean µp = 0 and high uncertainty
Σp = σ2

p ≫ σ2
i (which are reasonable settings for an uninformative prior) so that (σ2)−1

p ≈ 0.
Then the aggregation formulas in (3.4) and (3.5) approximately yield the weighted sum:

µg ≈
∑
i

riµi, ri =
(σ2)−1

i∑
i(σ

2)−1
i

(3.6)

The weight ri characterizes the uncertainty client i has in its prediction at input x. A client
with high uncertainty would have a correspondingly low weight, and therefore less influence
on the overall (mean) prediction. This is a helpful feature in settings with heterogeneous
data. In these settings, a client dataset Di may not contain any data resembling, or close
to some query input x, and we wouldn’t like the global prediction at x to be influenced
by such clients. Instead, the aggregated mean will be most influenced by clients with high
certainty.

Justification for Gaussian Approximation

Since we aren’t restricting ourselves to the GP setting, the idea that the predictive posterior
p(y|x,Di) may be approximated as a Gaussian needs some justification.

Generally speaking, approximating a distribution by a Gaussian is reasonable when
the distribution is unimodal and we assume a loss based on the squared distance to a
unique target value. Recall that the predictive posterior p(y|x,Di) is a distribution over
output values y. In supervised regression, we typically assume that there is a single target
value y∗ and we often seek to minimize the squared error (y − y∗)2. Similarly, under

20

Table 3.1: Average test accuracies (± standard error) on classification datasets for h = 0.3,
based on 10 seeds. Higher is better. The best technique among single round methods
is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%, ↑ / ↓ : higher/lower accuracy with
p < 5% (relative to D BCM) (according to the Wilcoxon signed-rank test).

h = 0.3 heterogeneity

Method Rounds MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

FedAvg ≥ 5 95.27 ± 0.05⇓ 79.14 ± 1.12⇓ 84.02 ± 0.05⇓ 40.49 ± 0.33⇓ 9.74 ± 0.12⇓

FedPA ≥ 5 91.21 ± 0.08⇓ 78.32 ± 0.45⇓ 71.11 ± 0.39⇓ 43.09 ± 0.23⇓ 8.04 ± 0.11⇓

FedAvg 1 73.74 ± 1.59⇓ 37.52 ± 2.28⇓ 67.68 ± 0.80⇓ 38.18 ± 0.54⇓ 7.90 ± 0.18⇓

FedPA 1 87.36 ± 0.71⇓ 70.16 ± 1.68⇓ 35.44 ± 1.17⇓ 23.19 ± 1.20⇓ 5.05 ± 0.36⇓

EP MCMC 1 90.99 ± 0.37⇓ 71.75 ± 1.40⇓ 48.95 ± 1.05⇓ 21.65 ± 1.39⇓ 12.14 ± 0.25⇓

FedProx 1 84.11 ± 1.36⇓ 69.63 ± 1.34⇓ 42.50 ± 1.02⇓ 10.08 ± 0.05⇓ 1.62 ± 0.11⇓

AdaptFL 1 91.60 ± 0.34⇓ 74.48 ± 0.87⇓ 41.23 ± 1.33⇓ 13.64 ± 0.96⇓ 5.34 ± 0.18⇓

FedBE 1 91.22 ± 0.42⇓ 80.39 ± 0.92⇓ 76.84 ± 0.28⇓ 42.01 ± 0.39⇓ 10.22 ± 0.14⇓

Oneshot FL 1 93.70 ± 0.09 83.72 ± 0.13↓ 82.06 ± 0.06↓ 43.63 ± 0.25⇓ 10.68 ± 0.11⇓

FedKT 1 94.01 ± 0.04 84.03 ± 0.10⇓ 83.52 ± 0.10⇓ 42.24 ± 0.24⇓ 9.91 ± 0.15⇓

BCM (ours) 1 95.68 ± 0.04⇑ 85.60 ± 0.06⇑ 86.18 ± 0.14⇑ 62.42 ± 0.14⇑ 25.04 ± 0.13⇑

D BCM (ours) 1 95.55 ± 0.04 85.25 ± 0.08 85.44 ± 0.14 61.79 ± 0.19 23.96 ± 0.17

suitable conditions, Bayesian consistency [47] ensures that the expectation of the predictive
posterior will converge to the target value y∗ in probability (i.e., Ep(y|x,Di)[y] → y∗). In
the case of a Gaussian predictive posterior, the probability that a prediction y is correct is
proportional to the exponential of the squared distance to the expectation (i.e., p(y|x,Di) ∝
exp((y − Ep(y|x,D)[y])

2). Hence, the assumption of a Gaussian predictive posterior is in line
with the assumption of a unique target y∗ and the minimum squared error in supervised
regression.

It’s important to note that this is different from assuming that the model space posterior
p(θ|Di) can be approximated as a Gaussian. The latter is not as reasonable since there
are typically many equivalent models (due to symmetries) that can generate the same
data Di. For instance, if we consider the space of neural networks with fully connected
layers, it is well known that hidden nodes can be interchanged to obtain symmetrically
equivalent models [49]. Hence the model posterior p(θ|Di) is typically multimodal and far
from Gaussian.

21

Table 3.2: Average test mean squared error (± standard error) on regression datasets,
based on 10 seeds. Lower is better. Multi-round methods are written above the line,
while methods run for a single round of communication are written below. The best
technique over 1 round is bolded. ⇑ / ⇓ : higher/lower mean squared error with p < 1%,
↑ / ↓ : lower/higher mean squared error with p < 5% (relative to D BCM) (according to
the Wilcoxon signed-rank test).

Method Rounds Air Quality Bike Wine Quality Real Estate Forest Fire

FedAvg 5 6.128 ± 0.074 0.293 ± 0.018↓ 2.815 ± 0.018⇑ 0.360 ± 0.008⇑ 2.791 ± 0.051

FedPA 5 9.163 ± 0.155⇑ 1.561 ± 0.136⇑ 3.077 ± 0.144⇑ 0.592 ± 0.009⇑ 2.837 ± 0.043

FedAvg 1 6.344 ± 0.087 0.337 ± 0.026 2.821 ± 0.019⇑ 0.354 ± 0.006⇑ 2.789 ± 0.054

FedPA 1 6.556 ± 0.129↑ 1.663 ± 0.035⇑ 2.870 ± 0.028⇑ 0.454 ± 0.009⇑ 2.792 ± 0.051

EP MCMC 1 6.297 ± 0.036↑ 0.350 ± 0.016↑ 2.488 ± 0.044⇑ 0.327 ± 0.007 2.803 ± 0.045

FedProx 1 6.210 ± 0.064 0.200 ± 0.014⇓ 2.479 ± 0.036 1.292 ± 0.178⇑ 3.129 ± 0.068⇑

AdaptFL 1 6.497 ± 0.118 2.158 ± 0.053⇑ 3.263 ± 0.029⇑ 0.405 ± 0.009⇑ 3.528 ± 0.240⇑

FedBE 1 9.263 ± 0.239⇑ 2.479 ± 0.069⇑ 3.455 ± 0.016⇑ 0.845 ± 0.008⇑ 2.786 ± 0.038

OneshotFL 1 9.477 ± 0.253⇑ 2.476 ± 0.070⇑ 3.452 ± 0.012⇑ 0.847 ± 0.009⇑ 2.790 ± 0.064

BCM (ours) 1 6.172 ± 0.037 0.337 ± 0.015↑ 2.374 ± 0.038 0.319 ± 0.006 2.803 ± 0.044

D BCM (ours) 1 6.187 ± 0.044 0.330 ± 0.013 2.378 ± 0.039 0.322 ± 0.006 2.815 ± 0.034

3.2 Applying the BCM to Federated Learning

We can apply the above aggregation formulae from the BCM model in a federated al-
gorithm. Namely, if we assume that we are learning a parametric model at each client
p(w|Di), then samples from this model can be shared among the clients, and used to make
predictions. The steps of the algorithm would be:

1. Sampling: At each client, use MCMC sampling to generate samples according to the
local posteriors {θ}i ∼ p(θ|Di).

2. Communication: each client communicates the samples to each other.

3. Approximate local posteriors: At prediction time, use each set of samples to produce
predictions according to p(y|x,Di) (using Equation (2.7)). This involves running
inference for each sample, then averaging the probabilistic predictions.

4. Aggregation: Using Eq. (3.5) (for regression tasks) or (3.3) (for classification tasks),
aggregate individual predictions into the global predictive posterior p(y|x,D).

22

Algorithm 1 D BCM

Input: Client datasets Di, sampler MCMC sample
Output: Model θ∗

for each client i do
{θ}i = MCMC sample(Di) {//step 1}
Communicate {θ}i to server {//step 2}

end for
At Server:
p̂(y|x,Di) =

1
|{θ}i|

∑
θ∈{θ}i p(y|x, θ) {//step 3}

p̂(y|x,D) = Aggregate(p̂(y|x,Di)) {//step 4, Eq 3.3, 3.5}
θ∗ = Distill(p̂(y|x,D)) {//step 5}
return θ∗

Since the aggregation is done in the predictive space, the algorithm essentially builds
an ensemble of models to predict according to the global posterior. If there are n clients,
each of which draws M samples from the local posterior, the ensemble has O(Mn) models.

The primary issues with this straight forward algorithm are:

• Communication cost: Each of the n clients needs to broadcast its M model samples
to each other client. In other words, a single client will need to send M · (n − 1)
models. A total of O(Mn2) models will need to be communicated overall, which can
be expensive as the number of clients grows.

• Computational cost of prediction: Inference for a single test point requires predicting
with M · n models. If each model is large or computationally expensive (such as a
neural network), this may be prohibitively expensive for a single client, both in
terms of memory and compute. Typical practice in FL is to assume that clients are
relatively lightweight in terms of computational power.

• Privacy concerns: each client will be able to access the trained models from other
clients. This means that trust needs to be extended between each client. In contrast,
typical practice in FL is that each client’s model should only be shared with a central
server. In the latter case, trust only needs to be extended to the server, rather than
each individual client.

Therefore, although M can be small (for instance M ≤ 6 in our experiments), this
algorithm is only suited for applications where there are a limited number of clients, and

23

where each has the computational capabilities to store the ensemble (for instance: the
cross-silo setting).

To make the algorithm more practical for Federated learning, we propose two modifi-
cations:

1. In step 2 (communication): instead of sharing client models with each other, they
are shared with a central server

2. We append an additional step - step 5 Distillation: The server forms the ensemble
to approximate p(y|x,D) according to equations 3.3 and 3.5, and uses knowledge
distillation to compress it into a single model using an unlabeled distillation dataset.
This model is sent back to clients

We call this variant “distilled BCM” or D BCM. The modifications aid in the issues
raised before:

• Each client only needs to communicate M models with the server. This means the
overall communication cost is O(Mn)

• At inference each client only needs to predict with the single, distilled, model. The
more expensive ensemble prediction is instead shifted to the server (during knowledge
distillation).

• Each client only needs to directly trust and share models with the central server.

The procedure is summarized in Algorithm 1.

Note that the algorithm works with a single round of communication. This is because
the sampling from the local posteriors can be done individually by each client, and the
aggregation step computes p(y|x,D) in one step. This feature of the method alleviates the
heavy cost of communication that multiple rounds bring, particularly, since a few samples
suffice.

3.3 Experiments

We verify the effectiveness of our method, both with and without distillation, by training
it on multiple regression and classification datasets, and comparing the performance to a

24

(a) MNIST (b) Fashion MNIST (c) EMNIST

(d) CIFAR10 (e) CIFAR100 (f) Legend

Figure 3.1: Test accuracies on the classification datasets with increasing data heterogeneity
(tested with parameter settings of h={0.0, 0.3, 0.6, 0.9}). SR = single round method, MR=
multi-round method. Averages and standard error over 10 seeds are reported.

selection of baseline algorithms. All tests were run across 5 clients. The code for experi-
ments, as well as details for the randomized seeds, and compute infrastructure are given
in the supplementary material.

Datasets were split into a global train and test set. The train set was further divided
among clients as well as a distillation set (20% of the training set). All reported results
correspond to the test set performance.

3.3.1 Classification Datasets

The method was evaluated for classification on the following datasets: MNIST [34], Fashion
MNIST [61], EMNIST [9] (using a split with 62 classes), CIFAR10 [33], and CIFAR100 [33].
The way in which each of these datasets are distributed among clients is controlled by a
“heterogeneity parameter”, h. For h = 0, the data is split uniformly among the clients,

25

and is thus homogeneously distributed. On the other hand, for h = 1 the data is sorted
by class before being split among clients. This means that each client observes data from
different classes with little overlap. In this sense, h = 1 represents the “fully heterogeneous”
setting. For 0 < h < 1, data from the above extremes is mixed: a fraction of size h of the
homogeneous data shard is replaced with the fully heterogeneous data for each client. In the
heterogeneous setting (h > 0), the aggregation technique plays a key role in constructing a
good global model, since each local model performs poorly given the imbalanced training
data.

3.3.2 Regression Datasets

The regression datasets used for evaluation include: the “wine quality” [10], “air qual-
ity” [14], “forest fire” [11], “real estate” [62], and “bike rental” [20] datasets from the UCI
repository [18]. These datasets were sorted according to certain features (such as the date,
for “airquality”), then split among clients, to simulate heterogeneous data.

3.3.3 Models

A two-layer fully connected network with 100 hidden units was used for MNIST, Fashion
MNIST, EMNIST, as well as the regression datasets. For the CIFAR10 and CIFAR100
datasets a Convolutional Neural network was used with 3 convolution layers, each followed
by “Max Pooling” layers, with a single fully connected layer at the end. For all networks,
the ReLU activation function was used between layers. For classification, the output was
the predictive distribution over classes, while for regression the output was the mean of
the predictive distribution. A Gaussian prior is assumed over the network parameters,
p(θ) = N (0, σ2I), with σ = 5e4.

3.3.4 Baselines

The Federated techniques compared include: Federated Averaging (FedAvg) [40], Feder-
ated Posterior Averaging (FedPA) [1], Embarrassingly Parallel MCMC (EP MCMC) [46],
FedProx [36], Adaptive FL [51], Federated Bayesian Ensemble (FedBE) [7], One Shot
Federated Learning (OneshotFL) [23], and Federated Learning via Knowledge Transfer
(FedKT) [35] (which is for classification only).

Hyperparameters for all methods and datasets were tuned with a grid search. The
search was performed primarily over optimization hyperparameters (such as learning rate,

26

and the optimization algorithm) and sampler hyperparameters (such as temperature, and
sample frequency). Further details are included in the supplementary material.

In the case of FedAvg, FedProx, FedBE, OneshotFL and FedKT, either SGD with
momentum or the Adam optimizer [32] was used for local optimization (as selected by a
grid search). For the rest of the methods, including our own, since they require MCMC
sampling, cyclic stochastic gradient Hamiltonian Monte-Carlo (cSGHMC) [64] was used.
For EP MCMC, the algorithm was computationally intractable for neural network models
due to the calculation of the inverse of a covariance matrix over parameters. Thus a
diagonal covariance matrix was assumed (which corresponds to the assumption that the
local posteriors are approximated by an axis-aligned Gaussian). All methods were run for
a single round. For comparison to more typical multi-round methods, FedAvg and FedPA
are also run for multiple rounds.

3.3.5 Training Details

For MNIST, Fashion MNIST and EMNIST, the training was run for 25 epochs per client
overall (split into 5 rounds for FedAvg and FedPA, while only run in a single round for the
rest). For CIFAR10 and CIFAR100, training was run for 50 epochs per client (split into 10
rounds for multi-round methods). For the regression datasets, a total of 20 epochs are used
for all datasets except “air quality”, which used 100 epochs (in both cases, divided into 5
rounds for multi-round methods). The methods involving sampling used a maximum of 6
samples for all experiments.

3.3.6 Classification Results

The results on the classification tasks with h = 0.3 (a heterogeneous setting), averaged over
10 seeds, are recorded in Table 3.1, along with an indicator of statistical significance. For all
datasets, we can identify that among both single and multi round methods, BCM performs
best. This result is statistically significant for all datasets other than MNIST. These results
suggest that despite training for only a single round, our method is competitive with more
widely used multi-round techniques.

We also compare the performance of the different algorithms as the level of data hetero-
geneity (h) is increased. The results are plotted in Figure 3.1. For these experiments, both
single round (SR) and multi-round (MR) methods were evaluated. From these results, we
can see that in all datasets, our method outperforms the other techniques as the hetero-
geneity increases. In particular, we observe that as h > 0 increases, our method suffers the

27

least performance loss, and obtains the highest accuracy out of the baselines. Additional
details (such as tabulated results) for these experiments are included in the supplementary
material.

For the experiments above, D BCM performs slightly below BCM, but outperforms all
other single round methods. From this we can observe that the distillation step (and the
reduced model complexity of the student) only induces a small performance penalty on the
method, and the method still performs competitively.

3.3.7 Regression Results

The results for the regression setting, averaged over 10 seeds, are recorded in Table 3.2,
along with an indicator for statistical significance. We can observe that our method per-
forms best outside of the “bike” and “forest fire” dataset. For the former, our method
performs second best behind FedProx, while for the latter, the differences are not statisti-
cally significant (and most baselines perform similarly).

In this setting, for the “bike” dataset, D BCM outperforms BCM. A possible reason for
this is that the reduced model complexity of the student has a regularizing effect, which
helps the method to avoid overfitting.

28

Chapter 4

Calibrating the BCM: β-Predictive
Bayes

In the previous chapter we assumed the Bayesian Committee Machine’s (BCM) decompo-
sition 3.2 was correct, and used it to approximate the global model. In this chapter, we
analyze when and how this approximation fails: namely in that it can produce a poorly
calibrated global model (even if, as we observed in the previous chapter, the accuracy may
still be high). We propose a method to rectify this issue.

A well-calibrated model is useful in FL since individual client datasets may be small or
noisy, and we’d like to quantify our uncertainty in these cases. Furthermore, calibration is a
particularly important metric for Bayesian methods since a “well-specified” Bayesian model
should be well-calibrated [13]. By well-specified, we require (among other conditions) that
the model is flexible enough to capture the “true” generative process of the data, and that
the prior has large enough support to include this process. Therefore, a poorly calibrated
Bayesian model lets us diagnose issues with the model specification or the approximate
inference. If our aggregation technique itself produces calibration error, then we’d be
unable to make use of this feature of Bayesian inference.

4.1 Analyzing the Calibration of the BCM

We can analyze the BCM equation in the context of Gaussian process regression, since it
allows us to explicitly calculate the predictive mean and variance.

29

We assume a smooth, isotropic kernel function k(x, x′) = k(||x − x′||). We assume a
model with Gaussian noise:

y = f(x) + ϵ (4.1)

ϵ ∼ N (0, σ2
o) (4.2)

Where σ2
o is the “observation”/noise variance in the predictions (in other words, the

aleatoric uncertainty in our predictions).

On some dataset D = (X,y), and with test point x∗, the Gaussian process inference
equations predict a mean and variance for p(y∗|x∗,Di) = N (µ(x∗), σ2(x∗)). If we denote
k∗ = [k(x∗, x1), ..., k(x

∗, x|D|)]
⊤ the vector of kernel evaluations between the test point x∗

and the points in the dataset D, and K as the kernel matrix (where Ki,j = k(xi, xj) for
xi, xj ∈ D) then the inference equations are [50]:

µ(x∗) = k⊤
∗ (K+ σ2

oI)
−1y (4.3)

σ2(x∗) = σ2
o + k(x∗, x∗)− k⊤

∗ (K+ σ2
oI)

−1k∗ (4.4)

Suppose the input data-points lie in some bounded region xi ∈ R. For these inference
equations we outline two observations about the predictive variance σ2(x∗):

•

Lemma 1. Assume x∗ ∈ R. Under some mild conditions on the kernel function, and
under the assumption of Gaussian or Laplacian observation noise, as the number of
data-points increases σ2(x∗)→ σ2

o (and in addition, the predictive mean converges to
the true function value: µ(x∗)→ f(x∗)) [8].

This intuitively means that for points close to the training data, our GP model attains
the correct mean and variance after seeing enough data.

•

Lemma 2. Assume x∗ /∈ R, and is sufficiently far away from all training points such
that k(x∗, xi) ≈ 0 for all xi ∈ X. Then the predictive variance becomes σ2(x∗) =
σ2
o + k(x∗, x∗), which we refer to as the “prior variance” σ2

p. Also, the predictive
mean becomes µ(x∗) = 0.

30

Proof. The inference equation 4.3 for the predictive variance reads:

σ2(x∗) ≈ σ2
o + k(x∗, x∗)− 0⊤(K+ σ2

oI)
−10

≈ σ2
o + k(x∗, x∗)

Similarly, the predictive mean is µ(x∗) ≈ 0⊤(K+ σ2
oI)

−1y = 0.

In other words, for a sufficiently distant test point, the predictive variance reverts to
a higher “prior” variance σ2

p = σ2
o + k(x∗, x∗). This is also expected behaviour for a

well-calibrated model, since it reflects the model’s higher uncertainty on unobserved
data.

Equipped with these observations, we can analyze the case with partitioned data.
We assume two idealized partitions for the overall dataset D into the m client datasets
D1, ...,Dm:

• Idealized Homogeneous Partition: each dataset Di maintains the same distri-
bution as the global dataset D. One way of doing this is to randomly subsample the
global dataset (without replacement) to form each local dataset.

• Idealized Heterogeneous Partition: all points xi ∈ Di and xj ∈ Dj are separated
by a kernel distance k(xi, xj) ≈ 0. In other words, the local datasets form clusters in
the input space, when viewed from the lens of the kernel function.

We can now show that the BCM equations underestimate the predictive variance in
the case of the idealized homogeneous partition:

Theorem 2. If data is split among m clients in an idealized homogeneous partition, and
x∗ ∈ R is a single test point, then the BCM equations 3.4 underestimate the predictive
variance σ2

BCM(x
∗) < σ2

o as the size of the data subsets grows (|Di| → ∞).

Proof. According to the BCM aggregation equation for regression:

σ−2
BCM(x

∗) =
∑
i

σ−2
i (x∗)− (m− 1)σ−2

p (x∗)

31

Where σ−2
i (x∗) is the inverse of the predictive variance output by the GP trained on Di.

As the size of the dataset Di increases, from lemma 1 we know that this quantity will
converge to σ2

o . On the other hand σ2
p = k(x∗, x∗)+σ2

o . Combining these facts (in the limit
of increasing data points):

σ−2
BCM(x

∗) = mσ−2
o − (m− 1)(σ2

o + k(x∗, x∗))−1

> mσ−2
o − (m− 1)σ−2

o

= σ−2
o

Where the second inequality follows from the fact that k(x∗, x∗) > 0 (for a positive kernel
function).

This implies σ2
BCM < σ2

o as claimed.

Furthermore, for a kernel function with a large prior variance σ−2
p ≈ 0 (which is typical

in practice when using an uninformative prior), we see that:

σ−2
BCM = mσ−2

o − (m− 1)σ−2
p

≈ mσ−2
o

And we end up underestimating the predictive variance by a factor of m, for m clients.

This means that the predictions provided by BCM are overconfident. On the other
hand in the same setting, for the mean prediction, if we assume a large prior variance
σ−2
p ≈ 0, a quick calculation shows that we still obtain accurate results. Starting with the

simplified equation for the BCM predictive mean 3.6 and applying lemma 1:

µBCM(x
∗) =

∑
i

σ−2
i µi/(

∑
i

σ−2
i)

≈
∑
i

σ−2
o f(x∗)/(

∑
i

σ−2
o)

= f(x∗)

In other words, the predictive mean still recovers the true mean function at x∗.

32

This sheds light on the results of the previous chapter: the BCM model (or its distilled
form) performed well for homogeneous data because only the mean predictions were eval-
uated (through the Mean Squared Error for regression, and accuracy for classification) not
the calibration.

We can also check to see that the BCM model produces a calibrated predictive variance
in the case of the idealized heterogeneous data setting, in line with the assumptions in the
previous chapter:

Theorem 3. If data is split among m clients in an idealized heterogeneous partition, and
x∗ is a single test point in the close vicinity of some data subset Dk, then the BCM equations
3.4 correctly estimate the predictive variance σ2

BCM(x
∗) = σ2

o as the size of the data subsets
grows (|Di| → ∞).

Proof. The BCM aggregation equation for regression is:

σ−2
BCM(x

∗) =
∑
i

σ−2
i (x∗)− (m− 1)σ−2

p (x∗)

Since x∗ is in the vicinity of some data subset Dk, we can apply lemma 1 to get
σ−2
k (x∗) = σ−2

o . On the other hand, since the data subsets are split up heterogeneously,
the test point x∗ is far from the other data sub-sets such that we can apply lemma 2 to
obtain σ−2

i (x∗) = σ2
p(x

∗) for all i ̸= k. Plugging these into the above expression yields:

σ−2
BCM(x

∗) = σ−2
k (x∗) +

∑
i ̸=k

σ−2
i (x∗)− (m− 1)σ−2

p (x∗)

= σ−2
o + (m− 1)σ−2

p (x∗)− (m− 1)σ−2
p (x∗)

= σ−2
o

4.1.1 Analyzing the Predictive Mixture Model

From the above we see that the BCM model produces overconfident estimates for the
(idealized) homogeneous setting. An alternate model which produces well-calibrated esti-
mates in this setting is the predictive mixture model. This model aggregates the local
posteriors as:

33

∑
i

|Di|
|D|

p(y|x,Di) (4.5)

ie. as a mixture, as opposed to the product of the BCM.

For GP regression, when each p(y|x,Di) = N (µi(x), σ
2
i (x)) is Gaussian, this model

produces a Gaussian mixture as its predictive distribution. In general, this won’t be Gaus-
sian, but we can approximate it with an overall Gaussian prediction N (µmix(x), σ

2
mix(x))

matching the mean and variance of the Gaussian mixture. This results in:

µmix(x) =
∑
i

|Di|
|D|

µi(x) (4.6)

σ2
mix(x) =

∑
i

|Di|
|D|

(σ2
i (x) + µ2

i (x))− µ2
mix(x) (4.7)

Which follows from the fact the moments of a mixture are equal to the mixtures of the
moments.

Unlike the BCM model, for homogeneous data, the mixture model is well-calibrated:

Theorem 4. If data is split among m clients in an idealized homogeneous partition, and
x∗ ∈ R is a single test point in the bounded region of the data, then the predictive mixture
equations 4.6 correctly estimate the predictive variance σ2

mix(x
∗) = σ2

o as the size of the
data subsets grows (|Di| → ∞).

Proof. In this setting, appealing to 1, each local predictor outputsN (µi(x
∗) = f(x∗), σ2

i (x
∗) =

σ2
o)

σ2
mix =

∑
i

|Di|
|D|

(σ2
i (x

∗) + µ2
i (x

∗))− µ2
mix(x

∗)

=
∑
i

|Di|
|D|

(σ2
o + f 2(x∗))− (

∑
i

|Di|
|D|

f(x∗))2

= σ2
o + f 2(x∗)− f 2(x∗)

= σ2
o

34

However, the drawback of the mixture model is that for the idealized heterogeneous
partition, it overestimates the predictive uncertainty:

Theorem 5. If data is split among m clients in an idealized heterogeneous partition, and
x∗ is a single test point in the close vicinity of some data subset Dk, then the predictive
mixture equations 4.6 overestimate the predictive variance σ2

mix(x
∗) > σ2

o as the size of the
data subsets grows (|Di| → ∞).

Proof. The mixture models predictive variance is:

σ2
mix(x

∗) =
∑
i

|Di|
|D|

(σ2
i (x

∗) + µ2
i (x

∗))− µ2
mix(x

∗)

Since x∗ lies in the vicinity of Dk, we have (applying lemma 1) that σ2
k(x

∗) = σ2
o (and

µk(x
∗) = f(x∗)), while from lemma 2 we know σ2

i (x
∗) = σ2

p(x
∗) > σ2

o (and µi(x
∗) = 0) for

all i ̸= k.

σ2
mix(x

∗) =
|Dk|
|D|

(σ2
o + f 2(x∗)) +

∑
i ̸=k

|Di|
|D|

(σ2
p(x

∗))− µ2
mix(x

∗)

=
|Dk|
|D|

σ2
o + σ2

p(x
∗)
(
1− |Dk|

|D|

)
+
|Dk|
|D|

f 2(x∗)− |Dk|
|D|

f 2(x∗)

=
|Dk|
|D|

σ2
o + σ2

p(x
∗)
(
1− |Dk|

|D|

)
=
|Dk|
|D|

σ2
o + (σ2

o + k(x∗, x∗))
(
1− |Dk|

|D|

)
= σ2

o + k(x∗, x∗)
(
1− |Dk|

|D|

)
> σ2

o

In other words we overestimate σ2
o by a constant of k(x∗, x∗)

(
1− |Dk|

|D|

)
.

We note that in this case, the predictive mean of the model in this case is also not accu-
rate, since µmix(x

∗) = |Dk|
|D| f(x

∗) ̸= f(x∗). However, this result is less relevant than the vari-

ance for realistic data partitions, since, revisiting the proof of lemma 2, if k(x∗, x∗) = ϵ < 1,
the variance goes to prior variance σ2

p(x
∗) with error O(ϵ2), while the mean goes to 0 with

approximate error O(ϵ).

35

4.1.2 Heuristic Argument for Classification

The preceding analysis may be extended to classification (or more general) models under
the following assumptions. Below, we denote the true underlying predictive model (with
correct aleatoric uncertainty) as pT (y|x), and the prior predictive model as pP (y|x).

1. For x∗ in the vicinity of data subset Di, and assuming all data subsets are large
enough, the local predictive model converges to the true model, i.e. p(y|x,Di) =
pT (y|x)

2. For x∗ far away from the data subset Di, the local predictor outputs the prior model:
p(y|x,Di) = pP (y|x)

3. The prior model pP (y|x) has higher variance, uncertainty, and/or entropy than the
true model pT (y|x).

All these are general desiderata for a well calibrated model. The first bullet ensures that
for in-domain points, the model is accurate, and the second bullet ensures that for out-of-
domain points, the model reverts to the predictions it would have made in the absence of
data (the prior predictions). The final bullet-point ensures that the prior predictions are
sufficiently uncertain.

Although some of these points may not be satisfied by some approximate models, they
are the ideal goal for a well-calibrated model. For instance, in classification with neural
networks using a softmax layer, item 2 may not be true, and it is the goal of multiple
methods to correct this defect [44]. This is why, for analytically simple models such as GP
regression, these assumptions hold.

Therefore, we can sketch an argument for why we expect the previous analysis to
extend to more general models, in the ideal well-calibrated case. For simplicity we assume
pP (y|x) ∝ 1, a uniform distribution (in the case of a bounded domain on y).

• BCM model: For homogeneous data, each local predictive distribution is correct on
the test point, so that p(y|x,Di) = pT (y|x). By multiplying together these m distri-
butions, we effectively obtain an aggregated predictive distribution: pBCM(y|x,D) ∝
pmT (y|x), which will in general be sharper than the desired distribution pT (y|x). We
therefore see how the BCM models tends to produce overconfident predictions in the
homogeneous case.

36

On the other hand, for heterogeneous data, only one of the factors in the product
distribution converges to pT (y|x), while the others still match the uniform prior
pP (y|x). In this case, the product ends up pBCM(y|x,D) ∝ pT (y|x), producing an
accurate model.

• Mixture model: For heterogeneous data, one of the local predictive distributions
is correct on the test point, with p(y|x,Dk) = pT (y|x), while the others match
the flat prior pP (y|x). In the mixture model, the overall prediction then mixes
between the correct distribution, and the wider/more uncertain prior distribution:
pmix(y|x,D) = (|Dk|/|D|)pT (y|x) + (1 − |Dk|/|D|)pP (y|x). This softens the overall
distribution, producing a more uncertain predictive distribution than the correct one.

On the other hand, for homogeneous data, each predictive distribution is identical,
and equal to the true distribution, so that the mixture returns the correct distribution
pmix(y|x,D) =

∑
i(|Di|/|D|)pT (y|x) = pT (y|x).

We summarize our observations for the analysis in table 4.1.

Table 4.1: Summary of Predictive Variance Analysis

Heterogeneous Data Homogeneous Data

BCM/Product Model Accurate variance Underestimates variance
Mixture Model Overestimates variance Accurate variance

4.2 Calibrating the Aggregated Model

The preceding analysis suggests a way to combine the predictive mixture model 4.5, and
the BCM (henceforth referred to as the “product model”, to contrast with the mixture
model) 3.2.

Namely, to obtain the correct calibration in the predictive model, we should interpolate
between the mixture, which is accurate for homogeneous data, and the product, which is
accurate for heterogeneous data.

For interpolation parameter β, the model, which we refer to as β-Predictive Bayes or
β-PredBayes is:

37

pβ(y|x,D) =
(1

p(y|x)n−1

∏
i

p(y|x,Di)
)β(∑

i

|Di|
|D|

p(y|x,Di)
)1−β

(4.8)

So that a case of β = 0.0 corresponds to the mixture model, and β = 1.0 corresponds
to the product model.

In the case of regression, assuming Gaussian outputs for each local predictive distri-
bution p(y|x,Di), and using the Gaussian approximation for the mixture distribution 4.6,
it can be shown that the aggregated predictive distribution is approximately a Gaussian
pβ(y|x,D) = N (µβ(x), σ

2
β(x)) with:

σ−2
β (x) = β · σ−2

prod + (1− β) · σ−2
mix(x) (4.9)

µβ(x) = σ2
β(x)

(
β · σ−2

prod(x)µprod(x) + (1− β) · σ−2
mix(x)µmix(x)

)
(4.10)

In other words the inverse-variance (or precision) interpolates between that of the prod-
uct and mixture distributions.

We learn the setting of the β by choosing it to minimize the negative log-likelihood of
a dataset on the server, U using a gradient-based optimizer. In other words:

β∗ = argmin
β

∑
(x,y)∈U

− log pβ(y|x,D) (4.11)

In the case of regression, the Gaussian negative log-likelihood can be used for training
(by applying 4.9 as the approximation for pβ(y|x,D)).

This is feasible in our setting because we already make use of a distillation dataset at
the server. We can simply use this distillation dataset to automatically tune the value of
β, without needing to explicitly know where we are along the homogeneous-heterogeneous
partition spectrum. Since we are only tuning a single scalar parameter, a small dataset
may suffice.

Besides the updated aggregation step and learning β, the algorithm remains unchanged
from 1. The overall steps for β-predBayes are presented in algorithm 2.

38

Algorithm 2 Distilled β-PredBayes

Input: Client datasets Di, sampler MCMC sample
Output: Model θ∗

for each client i do
{θ}i = MCMC sample(Di) {//step 1}
Communicate {θ}i to server {//step 2}

end for
At Server:
p̂(y|x,Di) =

1
|{θ}i|

∑
θ∈{θ}i p(y|x, θ) {//step 3}

p̂β(y|x,D) = Aggregate(p̂(y|x,Di)) {//step 4, Eq 4.8}
β∗ = argminβ

∑
− log p̂β(y|x,D) {//step 5, tune β}

θ∗ = Distill(p̂β∗(y|x,D)) {//step 6}
return θ∗

4.3 Experiments

We evaluate β-predBayes on the same regression and classification datasets as chapter 3.
All tests once again used 5 clients, and identical splits for the train, test and distillation sets.
We use the same method to partition the dataset for the heterogeneous and homogeneous
cases (sorting the data by class, for classification, or by an input feature for regression,
before splitting it among clients).

Since the objective of the experiments is to evaluate the calibration of the predictions
(not just their accuracy), we use the metric of negative-log-likelihood (NLL) on the test
set [24]. For classification, we may also use the expected calibration error (ECE), which
measures the difference between the confidence (probabilities) assigned to predicted classes,
and the probability they are predicted correctly.

4.3.1 Classification Results

We evaluate β-predBayes, in both its distilled (listed as D β-predBayes) and non-distilled
forms, along with the product (BCM) and mixture models. We also evaluate most of the
baselines in chapter 3, all in a single round of communication. One exception is Federated
Learning via Knowledge Transfer (FedKT) [35] because this method’s aggregation uses
majority voting for the global prediction, meaning that it doesn’t output a probability
distribution over classes, which would be needed to evaluate calibration.

39

The results for the negative log likelihood over different settings of the heterogeneity
are plotted in figure 4.1, while expected calibration error for these same classes are shown
in 4.2.

For the negative log-likelihood, the β-PredBayes model (and its distilled variant) per-
form best (least NLL), followed by the Mixture model, on the tested datasets. As het-
erogeneity increases, the NLL loss generally increases for other methods, while it largely
remains stable for β PredBayes

For the expected calibration error, as heterogeneity increases, the metric jumps more
erratically for some methods (which may be due to the sensitivity of the metric to certain
settings like the number of bins used). But the overall trend is still that β-PredBayes
perfoms best (with lowest ECE), followed by its distilled variant, followed by the mixture
model. Its worth noting that, for ECE, β-PredBayes outperforms the mixture model for
high heterogeneity setting (h = 0.9), which is expected from the analysis which predicted
that mixture models wouldn’t be well-calibrated in this setting.

4.3.2 Regression Results

For regression, β-predBayes was evaluated, along with the product and mixture models as
well as the baselines from chapter 3 which use an ensemble for predictive inference, since
these output a distribution over predictions (rather than just the mean).

A note on implementation for regression: the distilled student model is the same ar-
chitecture as the client models, except in the last layer where it is made to output both
a mean and an input-dependent variance. This network is trained to minimize the KL
divergence between its output Gaussian distribution, and that of the teacher network.

The resulting (Gaussian) negative log-likelihoods for a heterogeneity parameter of h =
1.0 are shown in table 4.2. We can see from this table that for all datasets except “Forest
Fire”, the distilled form of β-PredBayes performs best. It is possible that the distilled
version outperforms the non-distilled one due to some regularization effect of having a
smaller model.

40

(a) MNIST (b) Fashion MNIST (c) EMNIST

(d) CIFAR10 (e) CIFAR100 (f) Legend

Figure 4.1: Negative log likelihoods on the classification datasets with increasing data
heterogeneity (tested with parameter settings of h={0.0, 0.3, 0.6, 0.9}). Averages and
standard error over 5 seeds are reported. The omitted values (eg. for FedPA on EMNIST)
denote results where the negative log likelihood diverged.

41

(a) MNIST (b) Fashion MNIST (c) EMNIST

(d) CIFAR10 (e) CIFAR100 (f) Legend

Figure 4.2: Expected Calibration Errors on the classification datasets with increasing data
heterogeneity (tested with parameter settings of h={0.0, 0.3, 0.6, 0.9}). Averages and
standard error over 5 seeds are reported.

42

Table 4.2: Average negative log likelihood (± standard error) on regression datasets, based
on 5 seeds. Lower is better.

Method Air Quality Bike Wine Quality Real Estate Forest Fire

EP MCMC 11.114 ± 1.241 1.710 ± 0.121 2.977 ± 0.185 1.883 ± 0.303 1.664 ± 0.073

FedBE 9.311 ± 0.156 0.826 ± 0.027 2.126 ± 0.013⇑ 0.507 ± 0.012 1.397 ± 0.025

OneshotFL 11.315 ± 0.410 0.843 ± 0.026 2.164 ± 0.026⇑ 0.562 ± 0.019 1.397 ± 0.025

Mixture 9.028 ± 0.049 1.176 ± 0.010 2.555 ± 0.051 0.634 ± 0.006 1.390 ± 0.005

Product 8.981 ± 0.134 1.433 ± 0.038 2.894 ± 0.109 0.708 ± 0.057 2.564 ± 0.023

β-PredBayes (ours) 4.739 ± 0.130 0.943 ± 0.019 1.998 ± 0.059 0.473 ± 0.029 1.551 ± 0.011

D β-PredBayes (ours) 4.550 ± 0.167 0.159 ± 0.036 1.262 ± 0.031 0.210 ± 0.041 1.525 ± 0.041

43

Chapter 5

Conclusion

This work presented β-Predictive Bayes, an algorithm which aggregates local Bayesian
posteriors in predictive space using a tunable parameter β, and then distills the resulting
model. Owing to its Bayesian nature, the method is well suited for heterogeneous FL set-
tings, and only requires a single round of communication. The tunable parameter allows
the method to obtain accurate calibration performance. We performed experiments on var-
ious classification and regression datasets to show that the method performs competitively
with other FL techniques, and that it outperforms them in more heterogeneous settings
on both accuracy and calibration. The work reinforces the idea that Bayesian learning
is an effective tool for obtaining well calibrated models in heterogeneous settings without
incurring heavy communication costs.

5.1 Limitations and Future Work

Some directions for improving the proposed method include:

• Personalization The proposed approach aims to construct a global model for all
clients (in this case, based on the global Bayesian posterior). As such, in cases where
the clients have different class-conditional distributions p(y|x), a personalized model
would be desirable for each client. This is an important direction for future work.

• Privacy The proposed method communicates weight samples to the server, which
are obtained via MCMC. Although no data is shared, information about the data
could be leaked via the model parameters unless a differentially private mechanism

44

is used or encryption is applied. This trait is shared with other techniques (such
as FedAvg and FedPA). It would be interesting to explore the use of differentially
private sampling mechanisms [16].

• Server dataset β-Predictive Bayes uses a public dataset stored at the server for
distillation and tuning β. In cases where such a public dataset isn’t available, it
may need to be synthetically generated. It would be better to avoid this generation
process, and develop a data-free technique for compressing the ensemble and learning
β in the future. One possibility for this is to have clients communicate the gradients of
their dataset’s negative log likelihood to the server, and then use these to approximate
the gradient for learning β.

45

References

[1] Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and Afshin Rostamizadeh. Fed-
erated learning via posterior averaging: A new perspective and practical algorithms.
In International Conference on Learning Representations, 2021.

[2] Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On markov chain monte carlo
methods for tall data. Journal of Machine Learning Research, 18(47):1–43, 2017.

[3] Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan Ullman, and
Steven Wu. Private query release assisted by public data. In Hal Daumé III and
Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 695–703.
PMLR, 13–18 Jul 2020.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[5] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia
Smith, and Ameet Talwalkar. LEAF: A benchmark for federated settings. CoRR,
abs/1812.01097, 2018.

[6] Yanshuai Cao and David J. Fleet. Generalized product of experts for automatic and
principled fusion of gaussian process predictions. ArXiv, abs/1410.7827, 2014.

[7] Hong-You Chen and Wei-Lun Chao. Fed{be}: Making bayesian model ensemble appli-
cable to federated learning. In International Conference on Learning Representations,
2021.

[8] Taeryon Choi and Mark J. Schervish. On posterior consistency in nonparametric
regression problems. Journal of Multivariate Analysis, 98(10):1969–1987, 2007.

46

[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:
Extending mnist to handwritten letters. In 2017 international joint conference on
neural networks (IJCNN), pages 2921–2926. IEEE, 2017.

[10] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis.
Modeling wine preferences by data mining from physicochemical properties. Decision
support systems, 47(4):547–553, 2009.

[11] Paulo Cortez and Ańıbal de Jesus Raimundo Morais. A data mining approach to
predict forest fires using meteorological data. 2007.

[12] Ronald Cramer, Ivan Bjerre Damg̊ard, et al. Secure multiparty computation. Cam-
bridge University Press, 2015.

[13] A. P. Dawid. The well-calibrated bayesian. Journal of the American Statistical Asso-
ciation, 77(379):605–610, 1982.

[14] Saverio De Vito, Ettore Massera, Marco Piga, Luca Martinotto, and Girolamo
Di Francia. On field calibration of an electronic nose for benzene estimation in an
urban pollution monitoring scenario. Sensors and Actuators B: Chemical, 129(2):750–
757, 2008.

[15] Marc P. Deisenroth and Jun W. Ng. Robust bayesian committee machine for large-
scale gaussian processes. In Large-Scale Kernel Machines Workshop at ICML 2015,
2015.

[16] Christos Dimitrakakis, Blaine Nelson, Zuhe Zhang, Aikateirni Mitrokotsa, and Ben-
jamin IP Rubinstein. Differential privacy for bayesian inference through posterior
sampling. Journal of machine learning research, 18(11):1–39, 2017.

[17] Joseph L Doob. Application of the theory of martingales. Le calcul des probabilites et
ses applications, pages 23–27, 1949.

[18] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[19] Alain Durmus and Eric Moulines. High-dimensional bayesian inference via the unad-
justed langevin algorithm, 2016.

[20] Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and
background knowledge. Progress in Artificial Intelligence, pages 1–15, 2013.

47

[21] Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and
background knowledge. Progress in Artificial Intelligence, pages 1–15, 2013.

[22] Arun Ganesh and Kunal Talwar. Faster differentially private samplers via rényi diver-
gence analysis of discretized langevin mcmc. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 7222–7233. Curran Associates, Inc., 2020.

[23] Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning, 2019.

[24] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. 2017.

[25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[26] Mikko Heikkilä, Joonas Jälkö, Onur Dikmen, and Antti Honkela. Differentially private
markov chain monte carlo. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[27] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks
yield high-confidence predictions far away from the training data and how to mitigate
the problem. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 41–50, 2019.

[28] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a
neural network. ArXiv, abs/1503.02531, 2015.

[29] IJCAI Proceedings. IJCAI camera ready submission. https://proceedings.ijcai.
org/info.

[30] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew
Gordon Wilson. Averaging weights leads to wider optima and better generalization.
In Ricardo Silva, Amir Globerson, and Amir Globerson, editors, 34th Conference on
Uncertainty in Artificial Intelligence 2018, UAI 2018, 34th Conference on Uncertainty
in Artificial Intelligence 2018, UAI 2018, pages 876–885. Association For Uncertainty
in Artificial Intelligence (AUAI), 2018.

48

https://proceedings.ijcai.org/info
https://proceedings.ijcai.org/info

[31] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for
federated learning. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 5132–5143. PMLR, 13–18 Jul 2020.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[33] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[35] Qinbin Li, Bingsheng He, and Dawn Song. Practical one-shot federated learning for
cross-silo setting. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21, pages 1484–1490. International
Joint Conferences on Artificial Intelligence Organization, 8 2021. Main Track.

[36] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of
Machine Learning and Systems, 2:429–450, 2020.

[37] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. Federated optimization in heterogeneous networks. In I. Dhillon,
D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine Learning and Systems,
volume 2, pages 429–450, 2020.

[38] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN:
Federated learning on non-IID features via local batch normalization. In International
Conference on Learning Representations, 2020.

[39] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin
Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P Sheth. Machine learning
for internet of things data analysis: A survey. Digital Communications and Networks,
4(3):161–175, 2018.

49

[40] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y
Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data.
In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 1273–1282. PMLR, 20–22 Apr 2017.

[41] Diego Mesquita, Paul Blomstedt, and Samuel Kaski. Embarrassingly parallel mcmc
using deep invertible transformations. In Ryan P. Adams and Vibhav Gogate, editors,
Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, volume 115
of Proceedings of Machine Learning Research, pages 1244–1252. PMLR, 22–25 Jul
2020.

[42] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learn-
ing. In International Conference on Machine Learning, pages 4615–4625. PMLR,
2019.

[43] Jacob M. Montgomery, Florian M. Hollenbach, and Michael D. Ward. Improving
predictions using ensemble bayesian model averaging. Political Analysis, 20(3):271–
291, 2012.

[44] Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip HS Torr, and Yarin
Gal. Deterministic neural networks with appropriate inductive biases capture epis-
temic and aleatoric uncertainty. arXiv preprint arXiv:2102.11582, 2021.

[45] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[46] Willie Neiswanger, Chong Wang, and Eric P. Xing. Asymptotically exact, embarrass-
ingly parallel MCMC. In Proceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, UAI’14, page 623–632, Arlington, Virginia, USA, 2014. AUAI
Press.

[47] Agust́ın G Nogales. On consistency of the Bayes estimator of the density. Mathematics,
10(4):636, 2022.

[48] Boris Polyak. Some methods of speeding up the convergence of iteration methods.
Ussr Computational Mathematics and Mathematical Physics, 4:1–17, 1964.

[49] Arya A Pourzanjani, Richard M Jiang, and Linda R Petzold. Improving the identifi-
ability of neural networks for Bayesian inference. In NeurIPS Workshop on Bayesian
Deep Learning, 2017.

50

[50] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for
machine learning. Adaptive computation and machine learning. MIT Press, 2006.

[51] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated
optimization. In International Conference on Learning Representations, 2021.

[52] Sam Roweis. Gaussian identities. Unpublished Notes, 1999.

[53] Ossi Räisä, Antti Koskela, and Antti Honkela. Differentially private hamiltonian
monte carlo, 2021.

[54] J. Sanz-Serna. Markov chain monte carlo and numerical differential equations. Lecture
Notes in Mathematics, 2082, 01 2014.

[55] Minh-Ngoc Tran, Trong-Nghia Nguyen, and Viet-Hung Dao. A practical tutorial on
variational bayes, 2021.

[56] Volker Tresp. A bayesian committee machine. Neural computation, 12(11):2719–2741,
2000.

[57] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman
Khazaeni. Federated learning with matched averaging. In International Conference
on Learning Representations, 2019.

[58] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the
objective inconsistency problem in heterogeneous federated optimization. Advances
in neural information processing systems, 33:7611–7623, 2020.

[59] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 681–688. Citeseer, 2011.

[60] Blake E. Woodworth, Kumar Kshitij Patel, and Nathan Srebro. Minibatch vs local
SGD for heterogeneous distributed learning. CoRR, abs/2006.04735, 2020.

[61] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. 2017.

[62] I-Cheng Yeh and Tzu-Kuang Hsu. Building real estate valuation models with compar-
ative approach through case-based reasoning. Applied Soft Computing, 65:260–271,
2018.

51

[63] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia
Hoang, and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 7252–7261. PMLR, 09–15 Jun 2019.

[64] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wil-
son. Cyclical stochastic gradient MCMC for Bayesian deep learning. International
Conference on Learning Representations, 2020.

[65] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra.
Federated learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[66] Zhaohua Zheng, Yize Zhou, Yilong Sun, Zhang Wang, Boyi Liu, and Keqiu Li. Ap-
plications of federated learning in smart cities: recent advances, taxonomy, and open
challenges. Connection Science, 34(1):1–28, 2022.

[67] Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot
federated learning, 2020.

52

APPENDICES

53

Appendix A

Gaussian Regression Formula

We derive the aggregation formulas for regression described in Equations (5) and (6) in the
main paper. These are similar to aggregation formulas for products of Gaussian densities.
The only difference is that we are also dividing by Gaussian densities in this case. We
therefore confirm the formulas with a derivation.

We would like to obtain an expression for the global predictive posterior p(y|x,D) in
(A.1).

p(y|x,D) = 1

p(y|x)n−1

∏
i

p(y|x,Di) (A.1)

We assume:

• p(y|x,Di) = N (µi,Σi) (the local posterior for client i is a Gaussian distribution)

• p(y|x) = N (µp,Σp) (the predictive prior is also a Gaussian)

For convenience, we work with the precision matrix (rather than the covariance matrix)
S = Σ−1.

First note that for the generic Gaussian (µ, S−1), its log-density is expressed as:

log p(x) = −1

2
(x− µ)⊤S(x− µ) + C (A.2)

= −1

2
[x⊤Sx− µ⊤Sx− x⊤Sµ+ µ⊤Sµ] + C (A.3)

54

where C is a normalization constant. Taking the logarithm of (A.1) and expanding the
right hand side we obtain:

log p(y|x,D) =
∑
i

log p(y|x,Di)− (n− 1) log p(y|x)

=
∑
i

−1

2
(x− µi)

⊤Si(x− µi) + Ci

− (n− 1)[−1

2
(x− µp)

⊤Sp(x− µp) + Cp]

= −1

2
[x⊤(

∑
i

Si)x− (
∑
i

µ⊤
i Si)x

− x⊤(
∑
i

Siµi) +
∑
i

µ⊤
i Siµi

− (n− 1)x⊤Spx

+ (n− 1)µ⊤
p Spx+ (n− 1)x⊤Spµp

− (n− 1)µ⊤
p Spµp] +

∑
i

Ci − (n− 1)Cp

Writing the overall normalization constant as C̄, and collecting like terms gives:

55

log p(y|x,D) =− 1

2
[x⊤(

∑
i

Si − (n− 1)Sp)x

− (
∑
i

µ⊤
i Si − (n− 1)µ⊤

p Sp)x

− x⊤(
∑
i

Siµi − (n− 1)Spµp)

+
∑
i

µ⊤
i Siµi − (n− 1)µ⊤

p Spµp] + C̄

(A.4)

Since (A.4) is a quadratic form in x, we can deduce that p(y|x,D) is Gaussian with
some mean µg, and precision Sg. Matching the coefficients of (A.4) with (A.3), we can
identify the precision from the first term as:

Sg =
∑
i

Si − (n− 1)Sp (A.5)

We can compare the third term (the linear term with x⊤) in both equations to see the
mean:

Sgµg =
∑
i

Siµi − (n− 1)Spµp

=⇒ µg = S−1
g [
∑
i

Siµi − (n− 1)Spµp] (A.6)

Recasting Equations (A.5) and (A.6) in terms of the covariance we obtain the desired
result:

Σg =
(∑

i

Σ−1
i − (n− 1)Σ−1

p

)−1

(A.7)

µg = Σg

(∑
i

Σ−1
i µi − (n− 1)Σ−1

p µp

)
(A.8)

56

Appendix B

Additional Experiments and
Hyperparameters for D BCM

B.1 Additional Experimental Details

Additional details for the experiments are provided below.

B.1.1 Hardware, Software, and Randomization Details

The code for experiments was written in the Python language (version 3.8.10), primarily
using the Pytorch (version 1.9.0), Numpy (version 1.19.5) and Scipy (version 1.6.2) libraries.
Randomization was done by setting seeds for Pytorch and Numpy.

Experiments were carried out on a compute cluster using a single Nvidia GPU (either
the T4, or P100).

B.2 Hyperparameter Tuning

Hyperparameters were selected based on searching a grid for the best performing settings
according to the validation set performance (accuracy for classification, and mean squared
error for regression).

The hyperparameters tuned, and their corresponding grids are outlined in Table B.1
for both classification and regression. Note that FedPA requires a sampler at each client,

57

and an optimizer at the server. To distinguish where each hyperparameter is used for
this algorithm, we therefore label these cases FedPA(C) and FedPA(S) respectively. We
further distinguish between the single round (SR), and multi-round (MR) versions of this
algorithm.

The optimizers used for client training include SGD, SGD with momentum (SGDM),
and Adam, while for distillation, we also used Stochastic Weight Averaging (SWA) as a
possible optimizer.

The tuned hyperparameter settings for the homogeneous (h = 0) classification datasets
are in Table B.2, while for the heterogeneous setting h > 0 they are in Table B.3. For the
regression datasets, the tuned values are in Table B.4.

Note about reading tables: for these tables, if a hyperparameter is repeated more
than once, with an algorithm named beside it in brackets, it means the hyperparameter for
that algorithm is different. The rest of the algorithms associated with that hyperparameter
use the value listed without brackets. For instance, in Table B.4, for the “Bike” dataset,
the sampler learning rate is listed in the row “Sampler Learning Rate” as 2e-1, while it
is listed separately with the additional specification “FedPA (C) MR” (multi-round), as
5e-1. This means that FedPA, in the multi-round case, uses a sampler learning rate of
5e-1, while the other sampling algorithms (including FedPA SR - in the single round case)
use 2e-1.

Other hyperparameters not part of the grid search include:

• Batch size: fixed to 100 for all experiments

• Momentum in SGDM: fixed to 0.9 for all experiments

• Model architecture (as described in the main paper)

More algorithm-specific decisions/hyperparameters include:

• FedBE: 10 model samples were drawn from the approximate posterior to use in the
ensemble for all experiments (following the experiments in the original paper. This
gave a total ensemble size of 16 models = 10 (sampled) + 5 (client models) + 1
(averaged model). By contrast BCM contained an ensemble with 5 models.

• Adaptive FL: The FedYogi server update was used, based on the results from, which
suggested that it performed best among their proposed variants. β1 = 0.9 and
β2 = 0.99 were fixed, again, based on the paper.

58

• One-Shot FL: For the classification case, aggregation is done by averaging the logits
of the client models. (This is opposed to averaging and normalizing the probabilities,
after the softmax layer).

In tables B.1, B.2, B.3 and B.4, LR is used to denote learning rate.

B.2.1 Heterogeneous Classification Dataset Construction

The process for constructing a heterogeneous classification dataset is as follows:

• A parameter h ∈ [0, 1] is fixed

• The dataset is sorted by class labels, and split evenly into shards for each client (the
“fully heterogeneous shards”)

• A copy of the dataset is made and split such that each shard contains a roughly
uniform class distribution for each client (the “homogeneous shards”)

• To form the final shard for a client, a fraction h of each homogeneous shard is replaced
with the data from the corresponding fully-heterogeneous shard.

In this way, h = 0 corresponds to the homogeneous data setting, while h = 1.0 corre-
sponds to a degenerate heterogeneous case (for class distributions in each client).

B.3 Additional Experiments

B.3.1 Classification Experiments

The results for the classification datasets, on h = {0.0, 0.6, 0.9} (over 10 random seeds,
and with indicators for statistical significance) are written in Tables B.5, B.6, and B.7
respectively. These are provided to give additional detail to the results provided in Figure
1 of the main paper. More precisely, the results in Figure 1 (of the main paper) show the
qualitative trends of each algorithm as heterogeneity increases, while the results in Tables
B.5, B.6, and B.7 show corresponding precise numerical values with estimates of statistical
significance. The case for h = 0.3 is included as Table 1 in the main paper. In the case of
h = {0.6, 0.9}, the best performing one round algorithm (in terms of average performance)

59

is BCM, followed by the distilled variant D BCM. This is also the case for h = 0.0 with
the exception of the CIFAR datasets. For these, other algorithms perform slightly better
than BCM (or D BCM). A possible reason for this is that the conditional independence
assumption underlying the aggregation formula (A.1) fails to hold in the homogeneous data
setting. Nevertheless, the results for h > 0 reinforce the idea that the aggregation formula
is useful in heterogeneous settings.

60

Table B.1: The hyperparameters tuned, their possible values in the grid search, and the
algorithms each hyperparameter applies to.

Hyperparameter Grid Settings Algorithms Used In

Classification Regression

Optimizer {SGD, SGDM, Adam} FedAvg, OneshotFL, FedKT,
FedPA(S), FedProx,
AdaptFL, FedBE

Local LR {1e-1, 1e-2, 1e-3} {1e-1, 1e-2, 1e-3, 1e-4} FedAvg, OneshotFL, FedKT,
FedProx, AdaptFL, FedBE

Server LR {1, 5e-1, 1e-1, 1e-2} FedPA(S), AdaptFL

Cov. Param (ρ) {0.4, 0.9, 1.0} FedPA(C)

Proximal Param. (λ) {1, 1e-1, 1e-2, 1e-3} FedProx

Adaptivity (τ) {1, 1e-1, 1e-2, 1e-3} AdaptFL

Sampler LR {5e-1, 1e-1, 1e-2,1e-3} {5e-1, 2e-1, 1e-1, 1e-2, 1e-3} (D)BCM, EPMCMC,
FedPA(C)

Maximum Samples {4,6,12} (D)BCM, EPMCMC,
FedPA(C)

Temperature { 1
|D|} {1, 5e-1, 5e-2, 1

|D| } (D)BCM, EPMCMC,

FedPA(C)

Sampler Cycles {5} {2, 4,5} (D)BCM, EPMCMC,
FedPA(C)

Samples per cycle {2} {1,2,3} (D)BCM, EPMCMC,
FedPA(C)

Distill Optimizer {SGDM, Adam, SWA} D BCM, OneshotFL,
FedKT, FedBE

Distill LR {1e-2, 5e-3, 1e-4} {1e-2, 5e-3, 1e-3, 1e-4} D BCM, OneshotFL,
FedKT, FedBE

Distill Epochs {100,50, 20} D BCM, OneshotFL,
FedKT, FedBE

61

Table B.2: The tuned values of hyperparameters for the classification datasets in the
homogeneous case h = 0

Hyperparameter Tuned Value

MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

Optimizer SGDM

Optimizer (FedProx) SGDM Adam Adam SGDM SGDM

Optimizer (AdaptFL) SGDM SGDM SGDM SGD SGD

Local LR 1e-1 1e-1 1e-1 1e-2 1e-2

Local LR (FedProx) 1e-1 1e-3 1e-3 1e-2 1e-2

Local LR (AdaptFL) 1e-2 1e-2 1e-2 1e-1 1e-1

Server LR 1 5e-1 1e-1 5e-1 5e-1

Server LR (AdaptFL) 1e-1

Cov. Param (ρ) 0.4

Proximal Param (λ) 1e-2 1e-3 1e-3 1e-3 1e-3

Adaptivity (τ) 1e-2

Sampler LR 5e-1 1e-1 1e-1 1e-1 1e-1

Sampler LR (FedPA(C) SR, EP MCMC) 1e-1

Sampler LR (FedPA(C) MR) 1e-2

Maximum Samples 6

Temperature 1
|D|

Sampler Cycles 5

Samples per cycle 2

Distill Optimizer Adam

Distill LR 1e-4

Distill Epochs 100

62

Table B.3: The tuned values of hyperparameters for the classification datasets, in the
heterogeneous case h > 0

Hyperparameter Tuned Value

MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

Optimizer SGDM

Optimizer (FedProx) Adam Adam Adam SGDM SGDM

Optimizer (AdaptFL) SGD

Local LR 1e-2 1e-2 1e-3 1e-3 1e-3

Local LR (FedProx) 1e-3 1e-3 1e-3 1e-2 1e-2

Local LR (AdaptFL) 1e-1

Server LR 1 5e-1 1e-1 5e-1 5e-1

Server LR (AdaptFL) 1e-1

Cov. Param (ρ) 0.4

Proximal Param (λ) 1e-2 1e-2 1e-2 1e-3 1e-3

Adaptivity (τ) 1e-2

Sampler LR 1e-1

Sampler LR (FedPA(C) MR) 1e-2

Maximum Samples 6

Temperature 1
|D|

Sampler Cycles 5

Samples per cycle 2

Distill Optimizer Adam

Distill LR 1e-4

Distill Epochs 100

63

Table B.4: The tuned values of hyperparameters for the regression datasets

Hyperparameter Tuned Value

Air Quality Bike Wine Quality Real Estate Forest Fire

Optimizer Adam

Optimizer (FedPA(S)) SGDM Adam SGDM SGDM SGDM

Optimizer (FedProx) SGDM Adam Adam Adam SGDM

Optimizer (AdaptFL) SGDM SGDM SGD SGD SGD

Local LR 1e-2 1e-2 1e-3 1e-2 1e-4

Local LR (FedProx) 1e-2 1e-2 1e-2 1e-1 1e-1

Local LR (AdaptFL) 1e-2 1e-1 1e-1 1e-1 1e-2

Server LR 1e-1 1e-2 5e-1 1 1

Server LR (AdaptFL) 1e-1 1e-1 1 1e-1 1

Cov. Param (ρ) 0.4 1.0 0.9 0.4 0.4

Proximal Param (λ) 1e-2 1e-3 1e-3 1e-2 1e-1

Adaptivity (τ) 1e-2 1e-1 1 1e-2 1e-2

Sampler LR 1e-1 2e-1 2e-1 2e-1 1e-2

Sampler LR (FedPA(C) MR) 1e-1 5e-1 5e-1 1e-2 1e-2

Maximum Samples 6 4 4 6 4

Temperature 1 1
|D| 5e-2 5e-1 5e-1

Sampler Cycles 5 5 4 5 2

Samples per cycle 1 2 2 2 2

Distill Optimizer Adam

Distill LR 1e-3 1e-3 5e-3 5e-3 5e-3

Distill Epochs 100

64

Table B.5: Average test accuracies (± standard error) on classification datasets for h = 0.0,
based on 10 seeds. Higher is better. The best technique among single round methods
is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%, ↑ / ↓ : higher/lower accuracy with
p < 5% (relative to D BCM) (according to the Wilcoxon signed-rank test).

h = 0.0 heterogeneity

Method Rounds MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

FedAvg ≥ 5 97.61 ± 0.04⇑ 83.24 ± 0.36⇓ 80.46 ± 0.19⇓ 79.46 ± 0.07⇓ 38.86 ± 0.16⇑

FedPA ≥ 5 95.48 ± 0.28⇓ 76.59 ± 1.09⇓ 75.52 ± 0.45⇓ 41.83 ± 0.47⇓ 5.03 ± 0.31⇓

FedAvg 1 93.63 ± 0.32⇓ 86.61 ± 0.09 84.23 ± 0.11⇓ 69.89 ± 0.33⇓ 24.36 ± 0.31⇓

FedPA 1 95.30 ± 0.07⇓ 84.29 ± 0.26⇓ 62.62 ± 6.37⇓ 40.71 ± 1.19⇓ 8.10 ± 0.46⇓

EP MCMC 1 96.09 ± 0.05⇓ 86.22 ± 0.09⇓ 69.86 ± 6.89⇓ 67.94 ± 0.17⇓ 21.36 ± 0.16⇓

FedProx 1 94.34 ± 0.21⇓ 85.30 ± 0.17⇓ 74.61 ± 0.85⇓ 71.40 ± 0.35⇓ 25.16 ± 0.26⇓

AdaptFL 1 94.27 ± 0.28⇓ 83.61 ± 0.20⇓ 68.62 ± 0.55⇓ 46.27 ± 0.89⇓ 16.52 ± 0.32⇓

FedBE 1 94.70 ± 0.16⇓ 79.85± 0.72⇓ 72.18 ± 1.24⇓ 73.65 ± 0.32↓ 32.35 ± 0.09⇑

Oneshot FL 1 95.39 ± 0.07⇓ 83.91 ± 0.06⇓ 78.64 ± 0.15⇓ 76.45 ± 0.14 ⇑ 30.66 ± 0.09⇑

FedKT 1 94.81 ± 0.05⇓ 84.38 ± 0.08 81.01 ± 0.15⇓ 69.35 ± 0.25⇓ 28.88 ± 0.18

BCM (ours) 1 97.01 ± 0.05⇑ 86.96 ± 0.04⇑ 87.68 ± 0.10⇑ 73.85 ± 0.11⇑ 29.52 ± 0.11⇑

D BCM (ours) 1 96.39 ± 0.08 86.57 ± 0.03 86.96 ± 0.08 72.74 ± 0.10 28.63 ± 0.11

Table B.6: Average test accuracies (± standard error) on classification datasets for h = 0.6,
based on 10 seeds. Higher is better. The best technique among single round methods
is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%, ↑ / ↓ : higher/lower accuracy with
p < 5% (relative to D BCM) (according to the Wilcoxon signed-rank test).

h = 0.6 heterogeneity

Method Rounds MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

FedAvg ≥ 5 93.59 ± 0.11⇓ 76.39 ± 0.72⇓ 83.18 ± 0.04⇓ 33.94 ± 0.25⇓ 7.79 ± 0.16⇓

FedPA ≥ 5 89.41 ± 0.08⇓ 79.59 ± 0.38⇓ 67.54 ± 0.59⇓ 39.47 ± 0.31⇓ 7.96 ± 0.09⇓

FedAvg 1 50.28 ± 4.51⇓ 33.46 ± 1.54⇓ 63.10 ± 0.95⇓ 25.06 ± 0.66⇓ 5.85 ± 0.18⇓

FedPA 1 86.81 ± 0.85⇓ 63.72 ± 1.60⇓ 33.51 ± 1.02⇓ 14.52 ± 1.24⇓ 2.96 ± 0.29⇓

EP MCMC 1 90.07 ± 0.05⇓ 67.17 ± 1.69⇓ 48.39 ± 1.26⇓ 11.35± 0.53⇓ 3.57 ± 0.39⇓

FedProx 1 83.95 ± 0.87⇓ 68.78 ± 1.57⇓ 39.38 ± 0.77⇓ 10.03 ± 0.03⇓ 1.04 ± 0.03⇓

AdaptFL 1 90.81 ± 0.39⇓ 71.60 ± 1.20⇓ 38.72 ± 0.93⇓ 11.49 ± 0.58⇓ 1.76 ± 0.13⇓

FedBE 1 86.57 ± 1.74⇓ 77.43 ± 3.48⇓ 75.11 ± 0.28⇓ 35.71 ± 0.64⇓ 10.20 ± 0.18⇓

Oneshot FL 1 92.92 ± 0.08⇓ 82.37 ± 0.14⇓ 81.33 ± 0.05⇓ 39.00 ± 0.56⇓ 10.14 ± 0.12⇓

FedKT 1 92.93 ± 0.05⇓ 82.48 ± 0.17⇓ 82.47 ± 0.05⇓ 28.20 ± 0.57⇓ 6.54 ± 0.22⇓

BCM (ours) 1 94.54 ± 0.08 84.76 ± 0.10⇑ 85.04 ± 0.23⇑ 59.26 ± 0.21⇑ 23.95 ± 0.31⇑

D BCM (ours) 1 94.47 ± 0.05 84.47 ± 0.11 84.36 ± 0.23 58.48 ± 0.20 22.88 ± 0.25

65

Table B.7: Average test accuracies (± standard error) on classification datasets for h = 0.9,
based on 10 seeds. Higher is better. The best technique among single round methods
is bolded. ⇑ / ⇓ : higher/lower accuracy with p < 1%, ↑ / ↓ : higher/lower accuracy with
p < 5% (relative to D BCM) (according to the Wilcoxon signed-rank test).

h = 0.9 heterogeneity

Method Rounds MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

FedAvg ≥ 5 86.64 ± 1.04⇓ 62.75 ± 1.80⇓ 79.81 ± 0.04⇓ 34.62 ± 0.22⇓ 7.28 ± 0.19⇓

FedPA ≥ 5 86.39 ± 0.17⇓ 78.33 ± 0.17⇓ 59.70 ± 0.58⇓ 34.86 ± 0.40⇓ 6.88 ± 0.20⇓

FedAvg 1 28.23 ± 2.26⇓ 24.01 ± 1.48⇓ 59.03, ± 0.56⇓ 16.16 ± 1.05⇓ 3.97 ± 0.15⇓

FedPA 1 83.69 ± 0.94⇓ 57.24 ± 1.80⇓ 29.77 ± 0.81⇓ 13.52 ± 0.70⇓ 2.76 ± 0.24⇓

EP MCMC 1 87.63, ± 0.39⇓ 63.73 ± 1.50⇓ 45.59 ± 0.83⇓ 10.21 ± 0.16⇓ 4.33 ± 0.54⇓

FedProx 1 81.99 ± 0.83⇓ 66.05 ± 1.13⇓ 40.00 ± 1.23⇓ 10.17 ± 0.16⇓ 1.03 ± 0.03⇓

AdaptFL 1 88.41 ± 0.26⇓ 70.03 ± 1.35⇓ 38.71 ± 0.93⇓ 12.18 ± 0.70⇓ 1.63 ± 0.15⇓

FedBE 1 71.95 ± 4.43⇓ 59.31 ± 4.38⇓ 72.47 ± 0.18⇓ 23.13 ± 2.04⇓ 10.77 ± 0.25⇓

Oneshot FL 1 91.40 ± 0.09⇓ 77.77 ± 0.42⇓ 77.98 ± 0.07⇓ 43.18 ± 0.81⇓ 9.36 ± 0.19⇓

FedKT 1 89.81 ± 0.14⇓ 75.26 ± 0.56⇓ 77.55 ± 0.07⇓ 10.21 ± 0.28⇓ 5.10 ± 0.10⇓

BCM (ours) 1 91.75 ± 0.06 81.52 ± 0.18⇑ 82.35 ± 0.24⇑ 52.15 ± 0.44↓ 20.24 ± 0.40⇑

D BCM (ours) 1 91.68 ± 0.07 81.17 ± 0.16 81.82 ± 0.26 52.62 ± 0.48 19.05 ± 0.39

66

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Outline

	Background
	Bayesian Learning
	Approximate Bayesian Learning

	Federated Learning
	Related Works - Bayesian Federated Learning
	Related Works - One-Shot Federated Learning
	Knowledge Distillation
	Evaluating Model Calibration

	The Distilled BCM Algorithm for Federated Learning
	Bayesian Committee Machine
	Aggregation for Classification
	Aggregation for Regression

	Applying the BCM to Federated Learning
	Experiments
	Classification Datasets
	Regression Datasets
	Models
	Baselines
	Training Details
	Classification Results
	Regression Results

	Calibrating the BCM: -Predictive Bayes
	Analyzing the Calibration of the BCM
	Analyzing the Predictive Mixture Model
	Heuristic Argument for Classification

	Calibrating the Aggregated Model
	Experiments
	Classification Results
	Regression Results

	Conclusion
	Limitations and Future Work

	References
	APPENDICES
	Gaussian Regression Formula
	Additional Experiments and Hyperparameters for D BCM
	Additional Experimental Details
	Hardware, Software, and Randomization Details

	Hyperparameter Tuning
	Heterogeneous Classification Dataset Construction

	Additional Experiments
	Classification Experiments

