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Abstract

In the era of big data, Federated Learning (FL) has drawn great attention as it naturally
operates on distributed computational resources without the need of data warehousing.
Similar to Distributed Learning (DL), FL distributes most computational tasks to end
devices, but emphasizes more on preserving the privacy of clients. In other words, any
FL algorithm should not send raw client data, if not the information about them, that
could leak privacy. As a result, in typical scenarios where the FL framework applies, it
is common for clients to have or obtain insufficient training data to produce an accurate
model. To decide whether a prediction is trustworthy, models that provide not only point
estimations, but also some notion of confidence are beneficial. Gaussian Process (GP) is a
powerful Bayesian model that comes with naturally well-calibrated variance estimations.
However, it is challenging to learn a stand-alone global GP since merging local kernels leads
to privacy leakage. To preserve privacy, previous works that consider federated GPs avoid
learning a global model by focusing on the personalized setting or learning an ensemble of
local models.

In this work, we present Federated Bayesian Neural Regression (FedBNR), an algorithm
that learns a scalable stand-alone global federated GP that respects clients’ privacy. We
incorporate deep kernel learning and random features for scalability by defining a unifying
random kernel. We show this random kernel can recover any stationary kernel and many
non-stationary kernels. We then derive a principled approach of learning a global predic-
tive model as if all client data is centralized. We also learn global kernels with knowledge
distillation methods for non-identically and independently distributed (non-i.i.d.) clients.
We design synthetic experiments to illustrate scenarios where our model has a clear advan-
tage and provide insights into the rationales. Experiments are also conducted on real-world
regression datasets and show statistically significant improvements compared to other fed-
erated GP models.
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Chapter 1

Introduction

1.1 Problem Statement

In Federated Learning (FL) [28], we seek to train a model in a distributed way across
several clients without any data leaving the clients to preserve privacy. This is particu-
larly attractive in application domains where each client has insufficient data to train a
strong model by itself and therefore could benefit from additional information from other
clients. A trusted server is often used to aggregate the client models into a global model
that improves upon the local models. Since each client has limited data, its local model is
uncertain and therefore there is value in representing this uncertainty to improve the aggre-
gation at the server. Furthermore, uncertainty modeling can be used to derive confidence
estimates with respect to predictions.

Although confidence estimates are often desired by managers in the industry, currently
most FL algorithms are based on optimization techniques [28, 22, 55, 17, 24, 54, 29, 23].
These non-Bayesian techniques often provide only point estimates for regression tasks,
which gives us no information about how confident we should be about their predictions.
Even for classification tasks, simply taking the normalized probabilities calculated from the
predictive logits as the confidence score empirically yields models that is calibrated worse
than Bayesian models [1]. Thus, our work focuses on training a powerful Bayesian model,
Gaussian Processes (GPs), which provides not only point estimates but also naturally
well-calibrated uncertainty estimates.

GPs with deep kernel learning [61, 59] provide a good balance between expressiveness
and complexity to represent model uncertainty. At one end of the spectrum, most models



such as traditional neural networks do not capture any uncertainty, but are simple and
scalable. At the other end of the spectrum, most modern Bayesian techniques such as the
Bayesian neural networks express a full distribution over all weights of neural networks,
but inference tends to be intractable. In between, a GP with a deep kernel consists of
a neural feature extractor (also known as deep kernel) and a GP with some conventional
kernel, such as the Gaussian kernel, whose inputs are the extracted features, so the resulting
composition kernel can benefit both from the scalability of the non-Bayesian neural network
and the well-defined uncertainty notion of the simple GP. Besides, if one scarifies the
kernel lifting power (i.e. choosing an identity kernel) for simplicity, GPs with deep kernels
can degenerate into “neural linear” models [36, 32], where a distribution over the last
linear layer that facilitates exact Bayesian Linear Regression (BLR) inference is used to
replace the GP. Since the weights of the last layer are the most important for prediction,
representing their uncertainty is often sufficient to capture most of the uncertainty of a
model.

Several works have explored distributed GPs [3, (4] and federated GPs [1], but they
struggle with privacy risks that FL tries to reduce. While distributed GPs are designed
to improve scalability, they pose an important privacy risk, since sharing kernels either
implies sharing data or sharing pairwise data similarity. In contrast, pFedGP [!] shares
only the hyperparameters of deep kernels while learning local GPs that are never shared.
This personalized approach reduces privacy risks, but the local GPs do not benefit from
other client information (beyond the shared kernel hyperparameters).

In short, we seek an FL algorithm that learns a global GP without sending kernels or
features outside clients.

1.2 Contribution

We propose a new federated GP technique called Federated Bayesian neural regression
(FedBNR) that can learn a global GP with reduced privacy risks. We avoid kernel sharing
by working directly in the feature space and sharing scatter matrices (instead of kernels).
We also propose a unifying random kernel (URK) that leverages random features and deep
kernels to approximate any stationary kernel and some non-stationary kernels, including
infinite kernels. The contributions of this thesis can be summarized as follows:

e New federated GP technique with deep kernel learning called federated Bayesian neu-
ral regression (FedBNR). To our knowledge, this is the first federated GP technique
that learns a global GP. We describe an exact aggregation technique of the linear



layer that allows inference in a way that is mathematically equivalent to inference
with all the data centralized.

New unifying random kernel (URK) that provides a unifying definition for deep ran-
dom kernels. URK can approximate any stationary kernel and many non-stationary
kernels, including infinite kernels. This kernel has finitely many features and therefore
allows us to work directly in the feature space (instead of the dual space).

Experiments on real world regression datasets where we achieve statistically signifi-
cant improvements over prior techniques both in terms of predictions and expected
calibration error.



Chapter 2

Background and Related Work

In this chapter, we carefully review the FL framework, the GP model, and other techniques
based on which we developed our method.

Notation. We will use the following notations throughout the paper. X, X’ € RP*",
x,x’ € RP are input matrices or vectors. y € R" is the target vector. A * subscript indicates
the vectors have not been seen by the models. ¢ € R is the noise level of Bayesian models.
I is the identity matrix and O is the zero vector. Their dimensions can be inferred from the
context. ¢ : RP*® — RP'*@ denotes some basis function, and ® = ¢(X) is the corresponding
features of X. k : RP*® x RP*® — R*® denotes a kernel function, and K = k(X, X) is
the corresponding kernel matrix. a is a placeholder that indicates the function can take in
matrices or vectors of any dimension. w € R? is the weights of the last linear layer in a
Bayesian linear regression model. 3 € R?"*¥ is its prior covariance matrix. E[-], Cov(-,-),
| -], and tr(-) are the expectation, covariance, determinant, and trace function respectively.
Any symbol with a ¢ subscript is a local version of the the original symbol, held by some
client c.

2.1 Gaussian Processes

2.1.1 Bayesian Linear Regression

Bayesian linear regression (BLR) is the foundation of GPs. It assumes the true underlying
function f(-) is linear in some latent feature space induced by the basis functions ¢(+), and



the observations y are noisy:
y = f(x)+e=0¢() w+e where e ~ N(0,0?) (2.1)

In contrast to non-Bayesian linear regression, BLR assumes the linear weights w is a ran-
dom vector, and its probability distribution, called the prior, should be specified before
training based on prior knowledge. For simplicity and tractability, the prior is often as-
sumed Gaussian with zero mean and some covariance matrix 3:

Pr(w)=N(0,%) = [27Z]?exp (—(w — 0) 'S (w — 0)/2) (2.2)
Then the likelihood of observed data naturally follows as:
Pr(y|X,w) = N(®"w, o°I) (2.3)

To fit a BLR model, we estimate the posterior of w given the inputs and targets X,y,
using Bayes’ theorem:

Pr(w|X,y) o Pr(w) Pr(y|X, w)

x exp (—w' =7 'w/2) exp ( (y—@"'w) (y—®"w)/(207))
= exp (— TE 'wi2-(yly-2y' @ w+w' @2 w)/(20%))
x exp (—(w'(c?®®" —|— - ) — 20 %y '@ w)/2)

= exp (—( TAW 2007y T®@TAT)Aw)/2))

x exp (—(w'Aw — 2w’ Aw)/2))

x exp (—(w —w) A(w — w)/2)

where w = 0 2A"1®y and A = 0 2®®" + X!, Since the multiplication of two Gaussian
probability density distributions (pdfs) is still a Gaussian pdf, we have:

Pr(w|X,y) = N(w,A™) (2.4)

To provide more than point estimations, the prediction probability distribution can be
inferred from Equation 2.1:

(%, X y) = () (WIX,y) + e (2.5)

Here (y.|x.,X,y) and (w|X,y) are two new conditional random vectors that both have
Gaussian distributions. Since € is independent of w, by the linear combination rules of
multivariate Gaussian random variables:

Pr(y.fx., X, y) = N(¢(x.) W, 0 + ¢(x.) A7 p(x,)) (2.6)
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The complexity of BLR is linear in the amount of data, but cubic in the number of
features due to the inversion of A. If ¢ contains any hyperparameters, they can be learnt
by maximizing the log marginal likelihood. According to Bishop’s formulation, Equation
(3.86) in [3]:

log BPLllr%(y|X) x log/Pr(y|X,w) Pr(w)dw (2.7)

= —nlogo® —log|Z| —log|A| -y y/o? + w' Aw (2.8)

2.1.2 Kernel Trick

It is possible to overcome the cubic complexity in the number of features by modifying
the order of matrix multiplications. For simplicity, we choose ¥ = A\?I in the following
derivation, since it is the only case we will work with later when deriving our approach.
See Appendix A.1 for details. We first introduce two matrix identities.

Lemma 1 (push-through identity [11]). V U € R™* V € R¥" X\ € R such that the
INVersions exist:
(NI+UV)'U=UWN1+VU)!

Lemma 2 (Woodbury matrix identity [62]). V A € R™*" C € RF** U € Rk 'V ¢ RF*n
such that the inversions exist:

(A+UCV)'=A"- A 'UCT +VATIU) VAT

Then we can rewrite the prediction mean and variance in Equation 2.6 as follows:

¢(x) "W =¢(x.) 007 @® " + A1) Py )

= (%) ®(®'® + A %0%T) 'y, by Lemma 1 (2.10)

= \Np(x,) T ®(N® TP + o)y (2.11)

o(x.) AT 0(x.) = ¢(x.) (07 @@ + A7) o(x.) (2.12)
=?9(x) (@D + A 20°T) 1o (x.) (2.13)

= A20(x) I—®(®"® + A\ 20°1) '@ )¢(x,), by Lemma 2 (2.14)

= N(p(x.) " o(x.) — ¢(x.) " @(2T @ + A 20%)) ' () (2.15)

= Mo(x,) o(x.) — (No(x.) @) N’ @ '@ + 0’ (W@ T6(x.)) (2.16)



Notice in the new formulations, features of either the training or testing data always appear
in the form of inner products ¢' ¢. We can further simplify the equations by defining ¢/(-) =
Aé(-), and a kernel function k(-,-) = ¢/(:)"¢/(-). Specially, we call K = k(X,X) € R™"
the kernel matrix or the gram matrix. Then,

(x., X)(K + o?I) 'y (2.17)
(X4, X)) — k(x,, X) (K + %) k(X x,) (2.18)

Instead of calculating ¢'(-)"¢/(+) explicitly, it is sufficient to know just the results of the
kernel function evaluated on pairs of inputs. That is, we can directly specify the function
k(-,-) without knowing what features it induces as long as it meets the following condition.

Theorem 1 (Characterisation of kernels [11]). A function k: X x X — R can be decom-
posed into the inner product of feature mappings k(x,x") =< ¢(x), d(x') > if and only if
it is a symmetric function for which the matrices formed by restriction to any finite subset
of the space X are positive semi-definite.

In short, Theorem 1 states that a function is a valid kernel function if and only if it is
positive semi-definite. A kernel is called stationary if it solely depends on the distance be-
tween the pair of inputs 3f : k(x,x’) = f(x—x'), otherwise non-stationary. A popular sta-
tionary kernel is the Radial Basis Function (RBF) kernel k(x,x’) = exp(—||x—x'||?/(20?)),
where o € R is a hyperparameter.

With this kernel trick, the total training complexity becomes cubic in the number of
data points but independent of the number of features, allowing us to compute kernels
corresponding to potentially infinite features without paying a price. We refer to the
original BLR as working in the primal space, while Equation 2.17 - 2.18 as working in
the dual space. As we will show next, this method gives results identical to GPs, which
originates from a different model interpretation than BLRs.

2.1.3 Function Space View

A GP can be informally viewed as an infinite dimensional Gaussian distribution over func-
tions f(-). With a finite set of points of interest X on the support, a GP boils down to a
multi-dimensional Gaussian distribution f(X), providing mean and variance estimates at
these places. A noisy GP model is similar to BLR, but assumes no parameterization of
the true underlying function:

y = f(x) + € ,where e ~ N(0,0?) (2.19)
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Instead of assuming a prior over the weights, GP assumes a Gaussian prior over the
function itself, whose mean is usually zero and covariance is some positive semi-definite
function (thus also a kernel function).

Pr(f(-)) = N(0, k(-,-)) (2.20)

Similarly to BLR, the likelihood, posterior, and prediction can be computed as:

Pr(y[X, f() = N(f(X),0°T)

Pr(f()1X,y) O<P1“( () Pr(y|X, ()
N(m(), k()

Pr(y.[x., X, Y) N(m(x.), 0% + K (x.,x.))

where m(-) = k(-, X)(K + o2I) 'y and &/'(-,-) = k(-,-) — k(-, X)(K + o?1) k(X -).

As we have established through Equation 2.9 - 2.18, a GP always has an equivalent
BLR (but the BLR may not be feasible due to its complexity). The main difference lies in
the kernel function. Popular kernels tend to contain infinite features, providing significant
model capacity compared to BLR. Hyperparameters of k(-,-) can be learnt similarly by
maximizing the log marginal likelihood:

log Pr(y/) ox og. [ Pr(y11(), %) Pr(())df (2.25)
= —y (K4 o’ I) 7'y — log |K + oI| (2.26)

For further details, check Chapter 2 of [57].

2.1.4 Random Features

As mentioned above, the complexity of GP is cubic in the amount of data due to the
inversion of K + ¢2I. Thus in practice, full GPs are often intractable when the size of
dataset is large, and approximations are needed for scalability. Random features [35] is a
kind of approximation that allows working in the primal space despite the full GP having
infinitely many features. The idea is to find randomized basis functions z such that:

B, X) = 600 T9() = Efz(x)T2(x)] ~ (m (S e



When s%) , the normalized concatenation of m samples of z(x), has much lower dimen-
sionality than ¢(x) and the amount of data, the cubic cost in the number of features

becomes negligible.

The most renowned random feature approach is random Fourier features (RFF) [37]
that can approximate any stationary kernel, based on Bochner’s theorem:

Theorem 2 (Bochner [37]). A continuous kernel k(x,x') = k(x — x') = k(0) on R? is
positive definite if and only if k(0) is the Fourier transform of a non-negative measure.

If the kernel is real-valued and properly scaled, its inverse Fourier transform p(w) is
also real-valued and is a proper probability distribution. Then a valid mapping is z,(x) =

[cos(wx),sin(w'x)]T, since

k() = /Rp p(w) cos(w' 0)dw = Eyfcos(w' )] = Eyzy,(x) 20 (X)] (2.28)

The true expectation is then approximated by the empirical mean of multiple samples from
Z,(x), which makes it possible to recover an infinite kernel with a finite set of features,
and enables working directly in the primal space.

2.2 Federated Learning

2.2.1 Framework Setting

In Federated Learning (FL), there is always a collection of clients ¢ € S that wish to
collaborate, and each client holds their own data D, = {X,,y.} locally. We seek to train
some machine learning model My with parameters 6 on these client data. Conventionally,
we would centralize all the data D = U.csD.., and choose some algorithm A and parameter
initialization 6y to learn the model:

My = A(D, 6) (2.29)

This simple approach becomes infeasible if the clients cannot directly share their data
due to privacy concerns. FL is designed to specifically tackle this problem. In typical
scenarios, a trusted central server is allowed to receive and send perturbed matrices that
only contain limited information about raw client data such as model parameters, but any
message that could easily leak the original data is still prohibited. Most FL algorithms

9
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Figure 2.1: Diagram of regular iterative Federated Learning. Clients train their models
locally, and send information about the updated model to the server. The server aggregates
the information into global consensus parameters, sends them back to clients for a new
iteration.

iterate between local optimization and global aggregation, as shown in Figure 2.1. During
local optimization at ¢ iteration, all the clients (or a proportion of the clients in some
cases) start with the global consensus parameters 6%, and run the algorithm A to update
the local models:

My = A(D,6") (2.30)

Then, clients extract information from their updated model, and send this information
instead of data to the central server so that it can be aggregated into the global consensus
parameters for next iteration §7!. We denote the function for information extraction f,
and for aggregation f,. Then this process can be formulated as:

9t+1 fa<fe(M9t+1) .. 7f6<'M92;:1)>7 Cl,"' ,Ck e S (231)
Intuitively, /7! should serve as a better approximation to the parameters 6 in Equation

2.29 than 0", so does the corresponding global model Mgy:+1 to My (if such a global model
is available). The very first FL algorithm, FedAvg [28], chooses the following instances and

10



illustrates that this framework is effective:

A(D.,0) : finite iterations of gradient updates (2.32)
Je(Mo,) = 0. (2.33)

D
fa(9617“' 700k) = Z%ec (234)

In words, FedAvg sends all the model parameters to the server, and assigns their average
to the new global parameters. The choice of f, is then widely used and studied in the FL
literature. We will refer to it as the FedAvg heuristic later.

2.2.2 Challenges

FL faces a few unique challenges. First, since practically the server has no control over
how D is distributed to all the clients, it is very likely that we have non-identically-and-
independently-distributed (non-i.i.d.) clients. That is, if we assume all the client data are
sampled from their corresponding latent distribution D, ~ Pr.(x,y):

Elciy Cj € Sv PI(X, y) 7é Pr(x, y) (235)
To be more specific, mainly two types of non-i.i.d. data are considered [60]:

1. Label distribution skew: Pr.(y) are different, but Pr.(x|y) may be identical.

2. Label preference skew: Pr.(y|x) are different, but Pr.(x) may be identical.

Most works [18, 42, 29] dealing with non-i.i.d. clients focus on the label distribution skew
case, though these two cases may occur at the same time. When the first case arises, using
the FedAvg heuristic can cause the global consensus parameters to converge slower or
even diverge from the optimum, and it is in general non-trivial to find a good aggregation
function f,. When the second case arises, any uni-model M, which assumes a single true
underlying function f(-), cannot capture different label preferences of clients. Methods
developed to deal with this case include personalization [25, 21], clustering [I 1, 19], and
adding contextual features [20]. We only deal with the label distribution skew in this thesis,
since one GP is a uni-model. More information about non-i.i.d. data can be found in this
survey [66].

11



Besides non-i.i.d. clients, FL also faces the challenge that it is not always safe to build
a global model My with only the global consensus parameters  available, due to privacy
concerns. Note here the algorithm A cannot be applied since the server has no access to
D. This thesis specifically tackles this challenge. For example, if we assume a stand-alone
global GP model and use the FedAvg heuristic, we can have a personalized FL algorithm,
like pFedGP [1]:

0 : hyperparameters of GP kernel
My, = Pr(y.|x., D.) by Equation 2.24
My = Pr(y.|x., D) by Equation 2.24
A(D,,0) : Local updates by Equation 2.26
fe(M,) =

ROSENS z R

This is a valid FL algorithm in the sense that clients collaborate to learn the kernel hy-
perparamters, and only limited information about the raw data are sent to the server.
However, building the global model My requires the kernel distance between data points,
making it inevitably violating the privacy of clients. This statement applies to any GP
approximation that works in the dual space such as the inducing points approximation [34].

On the other hand, FedLoc [(] that assumes an ensemble global model, the distributed
product-of-GP-experts model [3], and applies the Proximal ADMM (pxADMM) [63] algo-
rithm from the field of Distributed Learning, can be specified as:

0 : hyperparameters of GP kernel and pxADMM (2.42)

My, = Pr(y.|x., D.) by Equation 2.24 (2.43)

My = Pr(y,|x,, D) = II.(My, )% (2.44)

A(D.,0) : Local updates by pxADMM (2.45)
fe(Mo,) = (2.46)
fa(Oeys---,0c,) Global consensus by pxADMM (2.47)

B is a hyperparameter used to balance the local models in generalized product-of-experts [5].
In order to obtain the global model My, the server must have access to all the client models
My, , due to Equation 2.44. To preserve privacy, we should not collect these models to
any entity, since it requires access to the client data to calculate the kernel distance by
Equation 2.24. We should not send data points to clients for their local predictions either,
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since these data points can also be confidential (e.g. any of the clients seeking prediction
with the global model). Thus it is not safe to learn a global GP with FedLoc either.

2.3 Summary of Related Work

Deep kernel learning and GP approximations. There have been many works that
committed to increase the model capacity of GPs by incorporating deep neural networks
(DNNs). [L6, 4] either pretrains a deep belief network or directly trains it with a GP to
extract first-step features before sending the data into the GP with conventional kernels.
[61, 59], building on top of [58, 60, 48, 15, 30], extend this idea with approximations for
scalability and stochastic variational inference for classification tasks. Then [19] studies
the variance estimations of deep kernel learning models and propose to use Monte-Carlo
Dropout [9] for better calibration, and [31] proposes to use Bayesian Neural Networks
instead of deterministic DNNs to prevent over-fitting. Besides, [10] designed a special
architecture that makes it possible for DNNs to simulate GP behaviors. [7] forms GPs
into a deep architecture that corresponds to a deep belief network based on GP mappings.
To make GPs practical, one popular method is the inducing point approximation, where
the joint GP prior of training points and inducing points are approximated [31]. Variants
includes SoD [31], SoR [11], DTC [10], FITC [15], and PITC [39]. Later, KISS-GP [5]
gave another interpretation that inducing point approximations are equivalent to global GP
interpolation, and it can exploit Kronecker structures [33]. However, these methods work in
the dual space and will pose privacy risks under the FL framework. Another approximation
method is random features [35, 13, 33] that use randomized basis functions to approximate
kernels. More information about scalable GPs can be found in this survey [20].

Distributed and Federated Gaussian Processes (GPs). Closely related to our work
is the literature on distributed and federated GPs. Distributed GPs [¢, (4] were initially
proposed to improve scalability by partitioning the data into several machines since GPs
that operate in the dual space scale cubically with the amount of data in the worst case. The
product-of-experts framework has emerged as a popular technique to aggregate local GPs,
including generalized product of experts [5] and robust Bayesian committee machines [3].
Distributed optimization of hyperparameters in GPs has also been explored [63]. While
those techniques do not ensure data privacy, recent work about federated GPs reduce
privacy risks while training in a distributed way. This includes pFedGP [1], which optimizes
the hyperparameters of a global deep kernel, while training local GPs. In another line of
work, GPs have also been used to estimate correlations between clients in FL in order to
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actively select independent clients for aggregation [16]. Our work differs from previous
distributed and federated GPs by learning a global GP while reducing privacy risks.

Bayesian FL. Beyond federated GPs, other Bayesian models have been explored to
represent distributions over models and predictions in FL. The challenge is in the aggre-
gation of the local posteriors. Various techniques have been proposed including posterior
averaging [2], online Laplace approximation [27], Thompson sampling [6], MCMC [53].
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Chapter 3

FedBNR

3.1 Algorithm

We now describe our approach. First we extend RFF to non-stationary kernels. Then we
show how we can learn a stand-alone global GP in a principled way by updating the model
in two phases.

3.1.1 Unifying Random Kernel

Although conventional stationary kernels have been specifically popular due to their dis-
tance awareness property, deep kernel learning [01, 59] pointed out that incorporating
DNNs with stationary kernels further increases the model capacity and makes it more
suitable for modern machine learning tasks. However, the common architecture that a
DNN is plugged in before the kernel to extract first-step features usually results in non-
stationary kernels and also constrains the architecture of the combined kernel. Thus, we
wish to extend RFF to non-stationary kernels and provide a unifying definition for random
kernels with DNNs, with which people can design any architecture freely.

Let w € R be any random variable or vector, and g : RY x RP*® — R%@ he any
function that extracts d features out of each input with some random weights w. Then we
construct the random basis functions z as z,(x) = g(w,x). We define the true underlying
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kernel and its approximation, the unifying random kernel (URK) as:

k(x,x') = Ey[2,(%) "2 (x')] = tr(Coviy(2u(x), 2, (X)) + Eulz,(x)] "Eu[z,(x)]  (3.1)
~ URK., (x,X) = (%) (%) , (3.2)

where s (x) is the concatenation of m samples of z,(x).

Kernel s5URK URK can recover any stationary kernel since RFF is a special case of it:

Theorem 3. Given any properly scaled stationary kernel k(x,x') on RP and its inverse

Fourier transform p(w), Jw ~ p(w), g(w, x) = [cos(w'x),sin(w x)]" s.t. lim,,— URK, 4(x,x') =

k(x,x').

Proof. Following Theorem 2 and Equation 2.28, the construction of w and z, is equivalent
to RFF, so k(x,x') = E,[z,(x)"z,(x")]. By Equation 3.2, URK, 4(x,x’) is an unbiased
estimator of E, [z, (x) "z, (x)], so lim,,— URK, ,(x,x') = k(x,x'). O

To provide some insights into possible non-stationary kernels expressed by URK, we
give two example constructions of non-stationary kernels below.

Theorem 4. Let w ~ N(0,1), g(w,x) = exp(w'x), then k(x,x') = lim,,—., URK, 4(x,x’)
has infinite features.

Proof.
b, X) = Bulz(x) T7(X)]
= E,[exp (w' (logx + logX'))]
= M, (logx + logX'), the moment generating function of w
= exp((x +x) " (x +x)/2)

xp((x'x +x'"x)/2) eXp(XTX/)

I
@

T\
= exp((x'x +x'"x)/2) Z (x ZX) , by the Maclaurin series of exp(z)
1=0 '

= [exp(x x/2 + uexp(x'Tx'/2)
> (S e )
(%) ¢(x')
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Additionally, we show URK can recover the popular polynomial kernel, a non-stationary
kernel beyond RFF’s capability.

111 1T 1
Theorem 5. Let Cpory, Npory € R. Define ppoy, = |5, 3 3 2—p] € RPHL w ~

Multi(Npoy, Ppoly), the multinomial distribution, X = [\/2¢pory, V2px']T € RFFL g(w,x) =
exp(w' logx), then k(x,x') = lim,,— 0 URK, 4(x,X/) = (XX + Cpoiy ) o

Proof. In the following proof, any subscript ¢+ means the 4;, entry of the vector. By defini-
tion,
k(x,x') = Ey [z, (X)Tzw (x)]
= E,[exp (w' (logx + logX'))]

= M, (logx + logX’), the moment generating function of w
p+1

Mpoly
= Z Ppoly,i €xp(log X; + log )‘(2))

i=1

1 N e
=13 exp(2log \/2¢p01y) + Z on exp(log \/2px; + /2plog X;))
i=1
P Tpoly
= | Cpoly -+ Z X1X;>
i=1

T

= (x' X'+ Cpoty) "W

]

URK—Kernel More importantly, note that in the definition of URK we do not rely on
the inverse Fourier transformation or the Bochner’s theorem to find a valid distribution for
w. Instead, any p(w) and g can give us a valid kernel:

Theorem 6. Given any proper probability distribution p(w) on R and function g on
RY x RPX@ — R¥@ the corresponding kernel matriz k(X,X') = lim,,—., URK, ,(X,X)
is positive semi-definite.

Proof. Following Equation 3.1, we have

(X, X) = 30, (Cov(20(X)i, 20(X));)) + Eufzu(X)] T By [2,(X)].
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Figure 3.1: From left to right: a standard deep kernel learning algorithm with conventional
stationary kernel GPs; the corresponding URK architecture; a more general architecture
enabled by URK for convenient latent stationary kernel learning.

z,(X); denotes the i row of the d x n matrix z,(X). The first term is the addition
of d covariance matrices and is always positive definite; the second term is symmetrical

and essentially adds one feature to the first term. Thus k(X, X') is always positive semi-
definite. ]

Since ¢ is an arbitrary function, we can assign it any DNN with any architecture.
We call it a Kernel Neural Network (KNN) since its weights, 6, are essentially the kernel
hyperparameters. Theorem 6 allows us to train kernels with optimization methods similarly
to training DNNs from a much richer hypothesis set than conventional kernels.

3.1.2 Greater Expressiveness with URK

We expand on new architectures of deep random kernels enabled by the definition of URK
in this section to show that URK is more flexible than common heuristics in deep kernel
learning. Minimal arguments and evidence are provided below since the ultimate goal of
this thesis is still to propose a Bayesian FL algorithm that can learn a global GP, not a
random feature algorithm that provides better GP approximation.
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As illustrated in Figure 3.1, URK can recover any standard deep kernel combined with
conventional stationary GPs easily. Further more, we can exploit the flexibility of URK
and define a distribution shifter A that transforms w. We can start from a standard normal
distribution, which is very easy to sample from, and send the samples through A to simulate
a much more complex distribution with minimal computation resources required. If we
choose h carefully so that the identity function is in its hypothesis set, we will presumably
learn a kernel at least as good as the Gaussian kernel.

If we take a step further beyond DNNs, the function ¢ in URK can be assigned some
replication policy that creates randomized versions of x given different w such as multi-
plying or adding random Gaussian noise to the input. Combined with the idea of being
distance-aware in some latent space, we present another architecture as the leftmost dia-
gram in Figure 3.2. We train a GP with URK of these two architectures on a step function
and show their predictions in Figure 3.2, where f is a very small DNN. The green curve
shows the predictions. The light red area is a 95% confidence interval based on variance.
The blue points are the training data. The replicate policy (the upper right one), al-
though introduces no additional parameters, further increases the model capacity, and its
prediction is more reasonable than just using a DNN and a stationary kernel.

3.1.3 Two-phase Update

The training procedure of FedBNR can be divided into 2 phases, as illustrated in Fig. 3.3.
In the first phase, we train the KNN by optimization methods. In the second phase, we
calculate the weights of the last linear layer that maps the random features to the output
space, by a closed-form formula inferred from Equation 2.1 - 2.6. The pseudocode of
FedBNR is summarized in Algorithm 1.

In phase 1, we follow a standard training procedure under the FL framework. We
assume there is a central server holding the shared global KNN weights 6 and global
hyperparameters o, A that denote the noise level and the prior variance respectively. We
assume there is a set of clients ¢ € S holding local KNN weights 6., local hyperparameters
Oe, A, local inputs X, and local targets y.. We use 0(x) to denote the result of sending x
through the KNN. In the beginning of each aggregation round, the server first sends a copy
of aggregated or initialized 6, o, A to all the clients. Then all the clients ¢ € S first update
their local model for a fixed number of iterations. Then they send 6., o., and \. back to
the server for aggregation and start another aggregation round. The local loss function is
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Figure 3.2: Left: another URK architecture. Right: Train a GP with URK on a step

function.

Top right: results of the leftmost architecture in Figure 3.2. Bottom right:

results of the rightmost architecture in Figure 3.1. Blue points: training data; green curve:
point estimation; red range: 95% confidence interval.
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Algorithm 1 Federated Bayesian Neural Regression
(0: the global KNN, o: noise level, \: prior covariance of the linear layer, w: a set of
random numbers, (: local learning step, (’: knowledge distillation step)
Phase 1: Kernel Learning
Initialize shared kernel 0 < 0°, hyperparameters o <— d% \ < \°
for each aggregation round ¢ < 0,1,2,--- do
for each client ¢ € S do
0L, ot Nl 0 ot N\
for each local update round £ < 0,1,2,--- do
0!, 0t N« — (VLML according to Equation 3.3
if FedAvg then
Ot ot TN < mean(6%), mean()\y), mean()\k)
else if Knowledge Distillation then
for each knowledge distillation round &’ < 0,1,2,--- do
gL ot N« 'V LED according to Equation 3.4
Phase 2: Update the Global Linear Layer
Server: send 6,0, \,w to all clients
for each Client c € S do
compute the random features ®, < (w, X,) and send ®.®, to the server
Server: send A7! < (6723 °(®,.®]) + A\72I)7! to all clients
for each Client c € S do
W, < 0 2A71®_y. and send W, to the server

Server: W < > oW,
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Figure 3.3: FedBNR learns a global federated GP in two phases: kernel learning with FL
optimization and last layer updating with exact Bayesian inference. Though we work in
the primal space, URK allows us to approximate an infinite kernel in the dual space with
finite features in the primal space.

the local log marginal likelihood:

£é\/[L = 1Og PrBLR(Ych(Xc); Oc, /\c) = TN log 0-3 - 10g(|/\31| |Ac|) - YCTYC/UCQ + W:ACWC

(3.3)
One commonly used method for aggregation is the FedAvg [28] heuristic, where the new
global model parameters are assigned the average of all client model parameters 6 =
Y ees be/|S|. However, multiple works [18, 42, 29] have pointed out the quality and the
convergence rate of this heuristic can suffer from non-i.i.d. clients. To account for this, we
propose to adapt kernel knowledge distillation [12] to aggregate the KNNs. We assume
the server holds a relatively small dataset X4, yrq and tries to minimize the following
knowledge distillation loss with respect to this dataset:

LEP = £ME + o x MSE <9(Xkd)T0(Xk.d) =) 0e(Xpa) " 0c(Xa) /|S|> (3.4)

ceS

Here, L} is the global log marginal likelihood loss £M% with respect to the knowledge

distillation dataset Xjg4,yre- « is a common hyperparameter in knowledge distillation
methods to adjust the ratio between the log marginal likelihood loss and the mean squared
error (MSE) loss. The MSE loss factor forces the global kernel 6(Xyy)"0(Xyq) to simulate
the mean of all client kernels > o 0.(Xya) " 0:(Xa)/|S], which is akin to concatenating all
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the features of the client kernels. Ideally, if the global kernel successfully learns to do so, it
should not perform worse on any of the clients, while the FedAvg heuristic has no similar
guarantees.

In phase 2, we fix the kernel hyperparameters and learn A~!, the matrix for covariance
prediction, and w, the weights of the last linear layer, in an exact way as if all client data
are centralized. To understand the procedure, first notice that we can decompose A and
w as follows:

A=070d + X7 I=0") &P + 171 (3.5)
ceS
w=0"A"'®y =) 0 ’A'By, (3.6)
ceS

Here @, = 6(X,) denotes the random features of local inputs extracted by the global KNN.
The server first broadcasts the global model to all the clients, and asks them to return
the scatter matrices ®.®_, and then the server can calculate A following Equation 3.5.
Next, the server broadcasts A~! and asks clients for the intermediate weights o 2A~1®_ y..
Finally, the server can calculate w according to Equation 3.6 and broadcasts the whole

model again to all the clients.

We claim that FedBNR protects privacy of clients at least as well as FedAvg and other
federated learning algorithms that send client models to the server. In phase 1, the aggre-
gation only requires client model parameters. In phase 2, we send information twice outside
each client: the scatter matrices and the intermediate weights. Sending these matrices and
vectors are safer than sending the features ®,. directly since they have limited sizes that are
completely independent of the training data size n., meaning they must only contain lim-
ited information about the raw data. Specifically, the scatter matrices are of size md x md,
and the intermediate weights are of size md, where m is the number of samples from z and
d is the output dimension of the KNN. Although there have been critiques that part of the
client data can be recovered from just gradients (model parameter changes) in FedAvg,
it is possible to further make FedAvg and our model more secured by trivially applying
differential privacy to public messages, since these messages are essentially summed at the
server to a single term.
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3.2 Experiments

3.2.1 Synthetic Experiment

Although personalized federated learning (PFL) is usually viewed as an advanced version
of the plain FL framework since it learns a fine-tuned local model for each client and
can automatically handle label preference skew [06] (i.e. Pr(y|X) varies for clients), it
is noteworthy that if all the clients can agree on a single global model in the hypothesis
set, PFL with no global model may not be the best choice due to the trade-off between
generalization and personalization. For example, a hospital that only collected data for
lung cancer may also want their model to help diagnosing COVID-19, but personalization
would prevent the model from generalizing to other diseases. Moreover, when a new client
comes in with few data points, the quality of prediction will suffer compared to other
clients, even only querying its own range.

We designed the following synthetic experiments to support these arguments. We first
decide a true underlying function, sample 200 points uniformly from the range [—5, 5],
and add Gaussian noise with ¢ = 0.5. We then learn the kernel hyperparameters in a
centralized fashion to eliminate any impact from imperfect kernels later on. Details about
the kernel sizes and architectures can be found in Appendix B. We then assign the first
100 points in range [—5,0] to client 1, and the rest to client 2. We train pFedGP and
FedBNR with the learnt kernel hyperparameters fixed and query for prediction in range
[—5,5]. The top left graph of Figure 3.4 shows the result of pFedGP, and the top right one
shows the result of FedBNR. The blue curve shows the true underlying function, and the
green curve shows the predictions. The light red area is a 95% confidence interval based
on variance.

Since both algorithms share the same kernel hyperparameters, the only difference lies
in whether they leverage data of both clients for the predictive model. As shown in the
pFedGP graph, the personalized model of client 1 only sees its own data (red dots), so it
does not generalize well to the range of client 2, while the global model learnt by FedBNR
can leverage all the data (blue dots) and generalizes to the full range.

Next, we introduce two new clients into the system. The first client holds data uniformly
sampled from range [—5,5], and the second from range [5,15]. We again fix the kernel
hyperparameters learnt centrally and train pFedGP, FedLoc, and FedBNR on these new
clients seperated. For testing, we still query the range [—5,5]. The bottom graphs of
Figure 3.4 shows the MSE loss as the size of data of both new clients grows. As expected,
for pFedGP, the quality of prediction is massively impacted when there are few points in
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Figure 3.4: Top graphs: (i) left: prediction of a pFedGP model trained on two non-
overlapping clients; (ii) right: global prediction of FedBNR. Blue curve: underlying truth;
green curve: point estimation; red range: 95% confidence interval; dots: training data
leveraged by the model. Bottom graphs: MSE of predictions tested on the same range v.s.
number of training data from a new client; (i) left: client with training range [-5, 5]; (ii)
right: client with training range [5, 15]
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the first case, and for FedBNR the loss remains approximately a straight line. For FedLoc,
the loss is also impacted due to zero-out effects of non-overlapping client models. Even
worse, when training data and testing data are not in the same range for the second new
client, the MSE loss of both pFedGP and FedLoc never drops back to the level of previous
clients.

3.2.2 UCI Regression Datasets

We conducted comprehensive experiments on five UCI regression datasets under ten cases.
Results of two variants are reported: i) FedBNR that performs the FedAvg heuristic at
aggregation; and ii) FedBNR-KD that performs the knowledge distillation method at ag-
gregation.

Two groups of baselines are compared to our method for RMSE error: i) ablation
study that contains local+local, local+global, avg+local, and kd+global, in the format
of kernel learning method + last linear weight learning method, where we remove the
global aggregation of either phase 1 or phase 2 from our methods; ii) previous works
that contains (1) FedAvg [28], a standard non-Bayesian FL algorithm that has a global
model; (2) FedProx [22], a non-Bayesian FL algorithm that adds a proximal loss to FedAvg
to prevent client models from getting too far from the global model; (3) pFedGP [1], a
Bayesian PFL method that learns a local GP with a shared deep kernel for each client;
and (4) pFedGP [01], a Bayesian FL method that directly applies distributed GP methods
[63] without deep kernel learning. We also compare to pFedGP and FedLoc for calibration
errors since they are Bayesian models that have a notion of confidence. Besides, we report
results of a centralized GP equipped with URK as a casual reference of the testing error
lower-bound.

We used fully connected neural networks to extract first-step features for FedAvg,
FedProx, and pFedGP. We used Gaussian kernels for the GPs in pFedGP and FedLoc. For
fairness, KNNs used by our methods have similar architectures to the combined kernel of
pFedGP. For scalability, FITC [15] approximations are implemented for the other GPs as
described in pFedGP. We used 50 random samples for KNN and 50 inducing points for
pFedGP and FedLoc. Further details are in Appendix A.

Each dataset is uniformly divided into 8:1:1 training:testing:validation sets globally.
The training data is sorted by the feature that has the largest absolute correlation coeffi-
cient with the output, and divided into multiple chunks. Each client randomly takes two
chunks so that their data distributions are heterogeneous. The larger the absolute corre-
lation coefficient is, the more significant the distribution skew is. Before training, we tune
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Table 3.1: UCI regression datasets, RMSE reported. 1 and 1 denote significantly worse
results with p < 0.01 and p < 0.05 respectively; |} and | denote significantly better results
similarly.

Skillcraft [17] SML [65] Parkinsons [50] Bike [52] CCPP [51]
train/test size 2670 334 3309 414 4700 587 7008 876 7654 957
corr-coef -0.660 0.783 0.410 0.539 -0.948
#clients 10 100 10 100 10 100 10 100 10 100
Central GP 0.95 0.21 3.58 0.37 4.02

local+local 1.26"  1.48" 1.49" 232" 10.9" 10.6" 0.79" 0.92" 146" 19.3"
local+global ~ 1.08" 1.22" 1.00" 1.65" 6.42" 7420 059" 0.73" 5620 7.03"

avg-+local 1.05"  1.06" 0.61" 0817 9.84" 880" 045" 0.54" 832" 13.4"
kd+local 1.04" 1.28" o0.86" 1.34" 6.157 6.97" 051" 061" 1000 1710
FedAvg [28]  1.00" 1.03" 0.36" 0.71" 6.83" 7.38"  0.38" 042 445 4.44
FedProx [22] 098  1.05" 0.34T o0.62" 6.32"7 738" 039 042 443 447
pFedGP [1] 0.99" 1.15" 0.75" 1.34" 9.36" 8.91" 045" 046" 1427 18210
FedLoc [61] 1.08" 415" 283" 543" 840" 11.5"  0.64" 075" 20.6" 4411
ours

FedBNR 098 0.97 0.25 0.44 3.10 542 0.39  0.42 440 4.51

FedBNR-KD  0.96% 098" 055" 055" 458" 4.67  0.43" 048" 4.38 4.38}

hyperparameters that cannot be learnt by gradient descent with grid searching on the vali-
dation set. Specially, FedBNR-KD uses 80% of the validation set for knowledge distillation,
and the rest 20% for validation. All the datasets are then ran for at most 50 local epochs
times 100 aggregation rounds in full batches. Validation and testing error are recorded
for each aggregation round. For methods that contain only local models, these errors are
defined as the mean error of all local models with respect to the testing/validation set.
If the validation error has not improved for 5 rounds, the training process is terminated.
We report the average minimum testing RMSE for 10 random seeds for each case in Table
3.1. We also measured the statistical significance of the results compared to FedBNR with
one-tailed Wilcoxon signed-rank tests [76]. We then report expected calibration errors in
Table 3.2 and perform the Wilcoxon test compared to FedBNR-KD. Additional metrics,
including the maximum calibration error, the Brier score, and further details of Table 3.1
are listed below in Section 3.2.3.

The results show: i) in terms of RMSE, our methods are statistically better than the
Bayesian models pFedGP and FedLoc in all the cases and better than the non-Bayesian
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Table 3.2: Expected calibration error (ECE) reported. f} and 1 denote significantly worse
results with p < 0.01 and p < 0.05 respectively; || and | denote significantly better results
similarly.

Skillcraft SML Parkinsons Bike CCPP
#clients 10 100 10 100 10 100 10 100 10 100
Central GP 0.02 0.09 0.27 0.11 0.24
pFedGP [1]  0.43" 0.38" 0.45" 0.45" 049" 048" 042" 041" 0.49" 0.49"
FedLoc [64]  0.327 0.44" 0.12¢ 0.27" 032" 043" 026" 0.16" 0.23% o0.50"
ours
FedBNR 0.05 0.20" 0.39" 037" 0.36" 040" 0.07 0.04" 024¢ 0.20%

FedBNR-KD 0.05 0.06 0.20 0.21 0.29 0.30 0.08 0.09 0.30 0.31

models FedAvg and FedProx in most of the cases, especially when the training set at
each client is significant smaller than the whole set; ii) compared with the ablation study
methods, our methods always perform better, so the global aggregation at both phases are
essential; iii) FedLoc without deep kernel learning has a especially smaller model capacity;
iv) FedBNR-KD only outperforms FedBNR, in 40% of cases in terms of RMSE, which is
probably due to the small size of data (8% of all) used for knowledge distillation. However,
FedBNR-KD is clearly more stable when client heterogeneity gets worse as the number of
clients increases. It is also better calibrated than FedBNR and other Bayesian models in
most cases.

3.2.3 Other Metrics

We include the maximum calibration error (MCE) and the Brier score (BRI) of the UCI
experiments in Table 3.3 and 3.4. MCE measures the (estimated) worst difference between
p% confidence intervals and p’% test points falling into these intervals. BRI measures the
mean squared difference between the confidence p% and observations, where a test point
falling in the CI is observed as 1, otherwise 0, and the regression task is binarized into a
classification task. We also include the standard error of the mean (SEM) in Table 3.5 and
3.6. Our methods still perform better in most of the cases.
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Table 3.3: Maximum calibration error (MCE) reported. f} and 1 denote significantly worse
results with p < 0.01 and p < 0.05 respectively; |} and | denote significantly better results

similarly.

Skillcraft SML Parkinsons Bike CCPP
#clients 10 100 10 100 10 100 10 100 10 100
Central GP 0.03 0.16 0.42 0.16 0.40
pFedGP 0.77" 0.65" 0.82"7 0.83" 0.93" 0.91" 0.78" 0.73" 0.94" 0.93"
FedLoc 0.51"  0.81" 0.20% 0.44" 054" 0.76" 0.42" 0.28" 0.39¢ 0.95
ours
FedBNR 0.09 0.32" o0.67" o0.62" 0.62" 0.72" 0.15 0.64" 0.39¢ 0.31¢
FedBNR-KD 0.10 0.11 0.33 0.35 0.47 0.48 0.15 0.17 0.49  0.50

Table 3.4: Brier score (BRI) reported. {} and 1 denote significantly worse results with
p < 0.01 and p < 0.05 respectively; |} and | denote significantly better results similarly.

Skillcraft SML Parkinsons Bike CCPP
#clients 10 100 10 100 10 100 10 100 10 100
Central GP 0.16 0.20 0.24 0.18 0.24
pFedGP 0.30" 028" 0.31" 0.31" 033" 0.33" 0.30" o0.30" 0.33" 0.33"
FedLoc 0.21  0.31" o0.18 0.25" 0.26" 0.30" 0.19+ o0.16¢ 0.24% 0.33"
ours
FedBNR 0.18 0.22" 0.20" 0.28" 0.28" 0.30" 0.20" 0.29" 0.24% 0.22¢
FedBNR-KD 0.18 0.18 0.23 0.23 0.25 0.26 0.19 020 025 0.26
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Table 3.5: UCI regression datasets, RMSE + standard error of the mean (SEM) reported.
First half.

Skilleraft SML Parkinsons
#clients 10 100 10 100 10 100
local+local 1.261+0.03 1.484-0.01 1.494-0.06 2.3240.03 10.940.26 10.6+0.05
local+global  1.0840.02 1.2240.01 1.0040.02 1.65+0.01 6.42+0.10 7.42+0.01
avg+local 1.0540.02 1.0640.02 0.61+£0.06  0.8140.05 9.84+0.31 8.80+0.11
kd+local 1.0440.01 1.2840.02 0.86+£0.06 1.3440.12 6.15+0.30  6.97+0.27
FedAvg 1.0040.01 1.0340.01 0.36+0.02 0.71+£0.02 6.83+£0.16 7.38+0.21
FedProx 0.98+0.01 1.05+0.01 0.34+0.01 0.62+0.02 6.32+£0.27  7.38+0.25
pFedGP 0.99-+0.01 1.1540.01 0.75+0.05 1.34+0.04 9.36+0.16 8.9140.09
FedLoc 1.0840.01 4.15+0.26 2.83+0.07  5.4340.04  8.4040.02 11.540.03
ours
FedBNR 0.984+0.01 0.97+0.01 0.2540.01 0.444-0.02 3.10£0.23 5.4240.20
FedBNR-KD 0.96+0.01 0.9840.01 0.55+0.01 0.55+0.01 4.58+0.05 4.67+0.04

Table 3.6: UCI regression datasets, RMSE + standard error of the mean (SEM) reported.
Second half.

Bike CCPP
#clients 10 100 10 100
local+local 0.79£0.02  0.91£0.01  14.6+0.31  19.3£2.08
local+global  0.59£0.01  0.73£0.01  5.62+0.19  7.03%+0.16
avg-+local 0.45+0.01  0.54+0.01  8.32+£0.43  13.4+0.43
kd-+local 0.51+0.01  0.61+0.01  10.0+£0.61  17.1+0.63
FedAvg 0.38+0.01 0.42+0.01 4.45+0.06  4.444+0.04
FedProx 0.39£0.01  0.42+0.01 4.43+0.04  4.47+0.02
pFedGP 0.45£0.02  0.46+0.01  14.24+0.61  18.2+0.23
FedLoc 0.64+£0.01  0.75+0.01  20.6+£0.74  44.1+0.61
ours
FedBNR 0.39+£0.01  0.42+0.01 4.40+0.01  4.514+0.03
FedBNR-KD 0.43£0.01  0.48+£0.01 4.38+0.01 4.38+0.01
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Chapter 4

Conclusion

4.1 Summary

In this work, we proposed FedBNR, a novel Bayesian federated learning algorithm that
learns a global federated GP without privacy leakage and introduced URK, a unifying def-
inition for deep random features, to approximate kernels with randomized basis functions
in the primal space. FedBNR consists of a non-Bayesian DNN and a Bayesian linear layer,
thus both scalable and provides well-calibrated uncertainty estimates; FedBNR learns a
randomized kernel represented by a DNN under the URK definition, thus has better model
capacity than plain DNNs; FedBNR shares scatter matrices instead of direct features to
achieve the exact global optimum of the last layer, thus is accurate and privacy-friendly.
We derived two variants based on the FedAvg heuristic and the knowledge distillation.
Both variants show empirically statistically significant improvements in terms of point es-
timation and calibration than other federated GP models when there is no label preference
skew.

4.2 Limitations and Future work

e We presented the definition of URK and proved any URK is a valid kernel, but
it is not clear whether any kernel has a corresponding URK that gives reasonable
approximation. We were able to prove this property for any stationary kernel, and
it is worth exploring the non-stationary kernel set.
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e We gave a few examples on new architectures enabled by URK without rigorous
demonstration of further contribution. It might be possible to extend these architec-
tures to discrete domains such as NLP.

e We considered knowledge distillation for non-i.i.d. data but the empirical results are
mixed, especially when the heterogeneity is mild. This is possibly related to the size
of the knowledge distillation dataset, and artificially generating adversial samples
might solve this problem.

e We focused on the uni-model case without any label preference skew. We could
generalize to multi-models by considering mixtures of GPs or client clusters.
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Appendix A

Further Details

A.1 Prior Covariance

In section 2.1.2, we stated that we only work with ¥ = M\2I for the prior covariance of the
BLR. This is due to the fact that we use random features to recover the true underlying
kernel. In general, a BLR with basis functions ¢ and prior

Pr(w) = N(0,%) (A1)

is equivalent to a GP with the following prior kernel function:

k(x,x') = E[f(x)f(x')] (A.2)
= ¢(x) 'Elww ]p(x) (A.3)
= ¢(x) " (Cov(w) + E[w]E[w] ")p(x) (A4)
= ¢(x) Bo(x') (A.5)
=) (%)% ;0(x); (A.6)

, where the subscripts means the i or j%* entry of the vector /matrix. In our approach, each
¢ consists of a set of samples from z, where ¢(x); and ¢(x’); are sampled at the same time
for any i. We construct the kernel as URK (x,x') = E[z(x)z(x)'] = ¢(x)"¢(x')/v/m — 1

When ¥ # M1, there will be interaction terms between different random samples
o(x);X; jo(x')j,4 # j, which does not have any reasonable meaning or interpretation,
and we will not be recovering any form of the desired URK.
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Figure A.1: Architecture of DNNs used in UCI experiments. Left: the feature extractor
for x; right: the distribution shifter for w. FC is short for "fully connected”. The layer

size s varies for different datasets.

A.2 Experiment Hyperparameters

Figure A.1 shows the architecture of DNNs used in the UCI experiment. For FedAvg,
FedProx, and pFedGP, we used the left DNN as their feature extractor. For our methods,
we used the rightmost architecture in Figure 3.1 with the same feature extractor f, a very

small distribution shifter A (the right DNN in Figure A.1), and w ~ N(0,I5).

We run each random seed of each dataset on 1 CPU and 1 NVIDIA T4 GPU with 16GB
RAM. Some important hyperparameters are listed in Table A.1. These hyperparameters
are selected through grid searching, as suggested by FedProx.
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Table A.1: Hyperparameters used in the UCI experiment. For FedLoc L = 10p to run the
Proximal ADMM algorithm.

Skillcraft SML Parkinsons Bike CCPP
#clients 10 100 10 100 10 100 10 100 10 100
size s 200 2000 2000 5000 5000
FedProx p 05 1.0 01 1.0 1.0 1.0 0.1 0.01 0.001 1.0
FedLoc p oe3 Hed de3 bHed le3 Hel ded Hed led led
FedBNR-KD o 10 2 1 0.5 5 2 5 0.5 5 )
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