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Abstract

Sum-Product Networks (SPNs), which are probabilistic inference machines, have attracted a
lot of interests in recent years. They have a wide range of applications, including but not limited
to activity modeling, language modeling and speech modeling. Despite their practical applica-
tions and popularity, little research has been done in understanding what is the connection and
difference between Sum-Product Networks and traditional graphical models, including Bayesian
Networks (BNs) and Markov Networks (MNs). In this thesis, I establish some theoretical con-
nections between Sum-Product Networks and Bayesian Networks. First, I prove that every SPN
can be converted into a BN in linear time and space in terms of the network size. Second, I show
that by applying the Variable Elimination algorithm (VE) to the generated BN, I can recover the
original SPN.

In the first direction, I use Algebraic Decision Diagrams (ADDs) to compactly represent
the local conditional probability distributions at each node in the resulting BN by exploiting
context-specific independence (CSI). The generated BN has a simple directed bipartite graphical
structure. I establish the first connection between the depth of SPNs and the tree-width of the
generated BNs, showing that the depth of SPNs is proportional to a lower bound of the tree-width
of the BN.

In the other direction, I show that by applying the Variable Elimination algorithm (VE) to
the generated BN with ADD representations, I can recover the original SPN where the SPN can
be viewed as a history record or caching of the VE inference process. To help state the proof
clearly, I introduce the notion of normal SPN and present a theoretical analysis of the consistency
and decomposability properties. I provide constructive algorithms to transform any given SPN
into its normal form in time and space quadratic in the size of the SPN. Combining the above
two directions gives us a deep understanding about the modeling power of SPNs and their inner
working mechanism.
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Chapter 1

Introduction

Sum-Product Networks (SPNs) have recently been proposed as tractable deep models [19] for
probabilistic inference. They distinguish themselves from other types of probabilistic graphical
models (PGMs), including Bayesian Networks (BNs) and Markov Networks (MNs), by the fact
that inference can be done exactly in linear time with respect to the size of the network. This has
generated a lot of interest since inference is often a core task for parameter estimation and struc-
ture learning, and it typically needs to be approximated to ensure tractability since probabilistic
inference in BNs and MNs is #P-complete [22].

The relationship between SPNs and BNs, and more broadly with PGMs, is not clear. Since
the introduction of SPNs in the seminal paper of [19], it is well understood that SPNs and BNs
are equally expressive in the sense that they can represent any joint distribution over discrete
variables1, but it is not clear how to convert SPNs into BNs, nor whether a blow up may occur in
the conversion process. The common belief is that there exists a distribution such that the smallest
BN that encodes this distribution is exponentially larger than the smallest SPN that encodes this
same distribution. The key behind this belief lies in SPNs’ ability to exploit context-specific
independence (CSI) [4].

While the above belief is correct for classic BNs with tabular conditional probability dis-
tributions (CPDs) that ignore CSI, and for BNs with tree-based CPDs due to the replication
problem [14], it is not clear whether it is correct for BNs with more compact representations
of the CPDs. The other direction is clear for classic BNs with tabular representation: given a
BN with tabular representation of its CPDs, I can build an SPN that represents the same joint
probability distribution in time and space complexity that may be exponential in the tree-width

1Joint distributions over continuous variables are also possible, but I will restrict myself to discrete variables in
this thesis.
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of the BN. Briefly, this is done by first constructing a junction tree and then translating it into an
SPN2. However, to the best of my knowledge, it is still unknown how to convert an SPN into a
BN and whether the conversion will lead to a blow up when more compact representations than
tables and trees are used for the CPDs.

I prove in this thesis that by adopting Algebraic Decision Diagrams (ADDs) [2] to represent
the CPDs at each node in a BN, every SPN can be converted into a BN in linear time and
space complexity in the size of the SPN. The generated BN has a simple bipartite structure,
which facilitates the analysis of the structure of an SPN in terms of the structure of the generated
BN. Furthermore, I show that by applying the Variable Elimination (VE) algorithm [26] to the
generated BN with ADD representation of its CPDs, I can recover the original SPN in linear time
and space with respect to the size of the SPN. Hence this thesis clarifies the relationship between
SPNs and BNs as follows: 1), Given an SPN, there exists a BN with ADD representation of
CPDs, whose size is bounded by a linear factor of the original SPN, that represents the same
joint probability distribution. 2), Given a BN with ADD representation of CPDs constructed
from an SPN, I can apply VE to recover the original SPN in linear time and space complexity in
the size of the original SPN.

1.1 Contributions

My contributions can be summarized as follows. First, I present a constructive algorithm and
a proof for the conversion of SPNs into BNs using ADDs to represent the local CPDs. The
conversion process is bounded by a linear function of the size of the SPN in both time and space.
This gives a new perspective to understand the probabilistic semantics implied by the structure
of an SPN through the generated BN. Second, I show that by executing VE on the generated
BN, I can recover the original SPN in linear time and space complexity in the size of the SPN.
Combined with the first point, this establishes a clear relationship between SPNs and BNs. Third,
I introduce the subclass of normal SPNs and show that every SPN can be transformed into a
normal SPN in quadratic time and space. Compared with general SPNs, the structure of normal
SPNs exhibit more intuitive probabilistic semantics and hence normal SPNs are used as a bridge
in the conversion of general SPNs to BNs. Fourth, my construction and analysis provides a new
direction for learning the parameter/structure of BNs since the SPNs produced by the algorithms
that learn SPNs [8, 10, 16, 21] can be converted into BNs.

2http://spn.cs.washington.edu/faq.shtml
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1.2 Roadmap

The rest of the thesis is structured as follows. In Chapter 2 I will first introduce some background
knowledge, including the notion of conditional independence and context-specific independence.
I will also give a short introduction to Bayesian networks, Markov networks, algebraic decision
diagrams and Sum-Product networks. I present my main results in Chapter 3, which includes
constructive algorithms and proofs of transformations between Bayesian networks and Sum-
Product networks. I make some remarks and discuss some implications of my main theorems
proved in Chapter 4. Chapter 5 concludes the thesis.
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Chapter 2

Preliminaries

I start by introducing the notation used in this thesis. I use 1 : N to abbreviate the notation
{1, 2, . . . , N}. I use a capital letter X to denote a random variable and a bold capital letter X1:N

to denote a set of random variables X1:N = {X1, . . . , XN}. Similarly, a lowercase letter x is
used to denote a value taken by X and a bold lowercase letter x1:N denotes a joint value taken by
the corresponding vector X1:N of random variables. I may omit the subscript 1 : N from X1:N

and x1:N if it is clear from the context. For a random variableXi, I use xji , j ∈ 1 : J to enumerate
all the values taken by Xi. For simplicity, I use Pr(x) to mean Pr(X = x) and Pr(x) to mean
Pr(X = x). I use calligraphic letters to denote graphs (e.g., G). In particular, BNs, SPNs and
ADDs are denoted respectively by B, S and A. For a DAG G and a node v in G, I use Gv to
denote the subgraph of G induced by v and all its descendants. Let V be a subset of the nodes of
G, then G|V is a subgraph of G induced by the node set V. Similarly, I use X|A or x|A to denote
the restriction of a vector to a subset A. I use node and vertex, arc and edge interchangeably
when I refer to a graph. Other notation will be introduced when needed.

To ensure that the thesis is self contained, I briefly review some background materials about
the notion of conditional independence/context-specific independence, probabilistic graphical
models, including both Bayesian Networks and Markov Networks, Algebraic Decision Diagrams
and Sum-Product Networks.

2.1 Conditional Independence

In this section I first review some background knowledge about conditional independence and
context-specific independence. Both of these two notions will play a central role in my discussion
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afterwards. LetX , Y and Z be three random variables. I say thatX is independent of Y , denoted
by X ⊥⊥ Y , if and only if

∀x, y Pr(x, y) = Pr(x) Pr(y) (2.1)

Similarly, I say that X is conditionally independent of Y given Z, denoted by X ⊥⊥ Y |Z, if and
only if

∀x, y, z Pr(x, y|z) = Pr(x|z) Pr(y|z) (2.2)

provided that all the conditional distributions Pr(X|Z), Pr(Y |Z) and Pr(X, Y |Z) are well-
defined for all the possible values of Z = z. I proceed to define the notion of context-specific
independence (CSI) as follows: X is said to be independent of Y given Z = z, denoted by
X ⊥⊥ Y |Z = z, if and only if

∃z ∀x, y, Pr(x, y|z) = Pr(x|z) Pr(y|z) (2.3)

In other words, there exists a value Z = z, such that under the context of Z = z, the con-
ditional distribution Pr(X, Y |Z = z) factorizes into Pr(X|Z = z) and Pr(Y |Z = z). Note
that conditional independence induces context-specific independence. As will be clear later, in
probabilistic graphical models, the conditional independence property among the random vari-
ables is encoded by the graphical structure, while the context-specific independence can only be
exploited by specific data structures.

2.2 Probabilistic Graphical Models

Probabilistic graphical models are an elegant framework which combines both graph theory and
probability theory to compactly model complex, real-world phenomena. Many commonly used
statistical models can be categorized as probabilistic graphical models, including Naive-Bayes,
Hidden Markov Models, Kalman Filters, Ising models and so on. In a probabilistic graphical
model, each node represents a random variable and the links between them express the proba-
bilistic relationship between the two random variables.

Generally, there are two kinds of probabilistic graphical models, depending on whether the
graph is directed or not. The first kind of graphical models is the class of Bayesian networks, also
known as directed graphical models or belief networks. The other major class of graphical mod-
els is called Markov networks, also known as undirected graphical models or Markov random
fields. Directed graphical models are useful to express causal relationships between variables
whereas undirected graphical models are often used to express the correlations among random
variables. In this thesis I focus more on the the relationship between Sum-Product networks and
Bayesian networks. However, my conclusion can also be extended to Markov networks. I will
briefly discuss how to convert an SPN into an MN in the discussion section.
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2.2.1 Bayesian Networks

Consider a problem whose domain is characterized by a set of random variables X1:N with fi-
nite support. The joint probability distribution over X1:N can be characterized by a Bayesian
Network, which is a DAG where nodes represent the random variables and edges represent prob-
abilistic dependencies among the variables. In a BN, I also use the terms “node” and “variable”
interchangeably. For each variable in a BN, there is a local conditional probability distribution
(CPD) over the variable given its parents in the BN. I give an example of a BN over three vari-
ables H1, H2 and X in Fig. 2.1.

X

H1 H2

H1 H2 X Pr(X|H1, H2)
0 0 0 0.3
0 0 1 0.7
0 1 0 0.3
0 1 1 0.7
1 0 0 0.3
1 0 1 0.7
1 1 0 0.4
1 1 1 0.6

H1 Pr(H1)
0 0.35
1 0.65

H2 Pr(H2)
0 0.2
1 0.8

Figure 2.1: An example of Bayesian network over three variables.

The structure of a BN encodes conditional independencies among the variables in it. Let
X1, X2, . . . , XN be a topological ordering of all the nodes in a BN1, and let πXi

be the set of
parents of node Xi in the BN. Each variable in a BN is conditionally independent of all its non-
descendants given its parents. Hence, the joint probability distribution over X1:N admits the
factorization in Eq. 2.4.

Pr(X1:N) =
N∏
i=1

Pr(Xi |X1:i−1) =
N∏
i=1

Pr(Xi | πXi
) (2.4)

For the example given in Fig. 2.1, the joint probability distribution factorizes as Pr(H1, H2, X) =
Pr(H1)×Pr(H2)×Pr(X|H1, H2). A general procedure called d-separation [15] could be used to

1A topological ordering of nodes in a DAG is a linear ordering of its nodes such that each node appears after all
its parents in this ordering.
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ascertain whether a particular conditional independence statement holds in a Bayesian network.
Given the graphical structure and its associated conditional probability distributions, one can use
various inference algorithms to do probabilistic reasoning in BNs. Typical algorithms include
variable elimination and belief propagation. See [24] for a comprehensive survey.

2.2.2 Markov Networks

The other major class of probabilistic graphical models is known as Markov networks (MNs) or
Markov random fields (MRFs). These are undirected graphical models in which nodes still cor-
respond to random variables as in Bayesian networks but the links between them are undirected,
hence only indicating the correlations between them, rather than the causality relationships in
Bayesian networks.

Again, as in Bayesian networks, the graph structure of Markov networks expresses the qual-
itative properties of the distribution they encode. Let C denote a clique in the graph, which
corresponds to a set of random variables XC . The joint probability distribution encoded by a
Markov network is written as a product of factors or potential functions ψC(XC) over the maxi-
mal cliques of the graph:

Pr(X1:N) =
1

Z

∏
C

ψC(XC) (2.5)

where all the potential functions are required to be nonnegative and the quantity Z is a normal-
ization constant also known as the partition function, which is given by

Z =
∑
X

∏
C

ψC(XC) (2.6)

Because the potential functions are constrained to be nonnegative, it is often useful to express
them as exponential functions as

ψC(XC) = exp{−E(C)} (2.7)

where E(C) is often called the energy function for clique C (originates from statistical physics).
The joint distribution is defined as the product of local potentials, and the total energy of the
Markov network is hence the sum of local energies. An example for a Markov network over
4 random variables is shown in Fig. 2.2. The four potential functions in Fig. 2.2 are ψX1,X2 =
exp{−(X1−X2)2}, ψX1,X3 = exp{−(X1−X3)2}, ψX2,X4 = exp{−(X2−X4)2} and ψX3,X4 =
exp{−(X3 −X4)2}.

Note that different from the conditional probability distribution associated with each node in
the Bayesian networks, the potential function in Markov network does not admit a probabilistic
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X1

X2 X3

X4

ψX1,X2
ψX1,X3

ψX2,X4
ψX3,X4

Figure 2.2: A Markov network over 4 random variables, with potential functions over {X1, X2},
{X1, X3}, {X2, X4} and {X3, X4}.

interpretation. Also, in order to do inference in Markov networks, I need to compute the value
of the partition function. This leads to the main difficulty in learning and inference of Markov
networks because it normally requires a computation over exponentially many entries.

The test of conditional independence in Markov networks corresponds to the test of graph
separation. More concretely, given three sets of random variables (nodes), denoted by X, Y and
Z, X is conditionally independent of Y given Z, i.e., X ⊥⊥ Y|Z, if there is no path connecting
nodes in X to nodes in Y that do not contain nodes in Z. Intuitively, this means that if I remove
nodes in Z from the graph, then nodes X and nodes in Y are disconnected from each other.

2.2.3 Inference: Variable Elimination Algorithm

Given a probabilistic graphical model over a set of variables X1:N , inference refers to the process
of computing the posterior probability Pr(XA|XB = xB), where A,B ⊆ 1 : N and A∩B = ∅.
Roughly, there are three kinds of inference we are interested:

1. Joint inference: A = 1 : N and B = ∅. This corresponds to the case when we want to
compute the likelihood of a full instantiation of the variables.

8



2. Marginal inference: A ( 1 : N and B = ∅, where we’d like to query the probability for a
subset of the random variables.

3. Conditional inference: B 6= ∅, where we want to query the likelihood of XA given that
we have observed the event xB.

All these three kinds of inference queries can be answered in probabilistic graphical models using
inference algorithms. In this thesis I focus on one specific kind of inference algorithm, known as
the variable elimination [25] (VE) algorithm, which is simple but yet sufficient for my purpose.

I can use variable elimination algorithm to answer any of the three kinds of queries listed
above in a probabilistic graphical model. Let’s start from the most general form of inference
query: Pr(XA|XB = xB) where A,B ⊆ 1 : N and A ∩ B = ∅. VE takes as input a set of
functions, a query set XA, an evidence set XB = xB, an elimination order over variables and
outputs the probability Pr(XA|XB = xB). Intuitively, VE works in the following way:

1. Select one variable X ∈ 1 : N\A ∪B to be eliminated following the elimination order.

2. Multiply all the functions which contain X .

3. Sum-out X from the product of functions.

VE keeps eliminating variables that do not appear in neither the query set nor the evidence set
until there is no such variable. After all the irrelevant variables have been eliminated, one can
answer the inference query by first clipping the values of variables in the evidence set and then
renormalizing the final function to make it a probability distribution. In the case of a Bayesian
network, the set of functions taken as input to VE is the set of conditional probability distributions
at each node of the BN. In the case of a Markov network, the set of functions is the set of potential
functions defined for each maximal clique in the network.

The order of the variables to be eliminated has a large impact on the running time of VE.
However, computing the optimal order of variables which minimizes the computational cost of
VE given a fixed network is again, known to be NP-complete (reduction from MAX-CLIQUE
problem). Many heuristic algorithms to select a good elimination order exist, but here I focus on
introducing the general idea of VE and hence assuming that we’re given an elimination order as
input to VE. Alg. 1 gives the pseudocode for the variable elimination algorithm:

9



Algorithm 1 Variable Elimination
Input: A set of functions fn, a query set A ⊆ 1 : N , an evidence set B ⊆ 1 : N with value xB,

an elimination order π
Output: A posterior probability distribution Pr(XA|XB = xB)

1: Φ← {fi}
2: for each variable X in π do
3: // Multiply all the relevant functions
4: ΦX ← {fi|X appears in fi}
5: fX ←

∏
f∈ΦX

f
6: // Summing-out
7: f−X ←

∑
X fX

8: Φ← Φ\ΦX ∪ {f−X}
9: end for

10: // Value clipping for evidence set B
11: for each observed variable X in XB do
12: Set the value of X in Φ according to xB

13: end for
14: // Re-normalization
15: return Φ(XA,xB)∑

xA
Φ(xA,xB)

2.2.4 Tree-width

Tree-width is a graph theoretic notion associated with undirected graphs. It is commonly used
as a parameter in the parameterized complexity analysis of graph algorithms. The notion of
tree-width is especially important in probabilistic graphical models as it has been shown that the
computational complexity of exact inference algorithms, including variable elimination, belief
propagation, etc, is exponential in the tree-width of the underlying graphical model [24]. To
introduce tree-width, I begin by introducing the notion of tree-decomposition of an undirected
graph as it is closely related to tree-width.

Definition 1 (Tree-decomposition). A tree-decomposition of a graph G = (GV ,GE) is a tree T ,
with nodes X1, X2, . . . , XT where each Xi is a subset of GV , satisfying the following properties:

1.
⋃T

i=1Xi = GV . That is, each node in G is contained in at least one node in T .

2. If Xi and Xj both contain a node v ∈ GV , then all the nodes Xk of the tree in the unique
path between Xi and Xj contain v as well. Equivalently, the tree nodes in T containing v
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form a connected sub-tree of T (This property is also known as the running intersection
property).

3. For every edge (v, w) ∈ GE , there is a subset Xi that contains both v and w. Or equiva-
lently, every edge in G is covered by at least one node in T .

The width of a tree-decomposition is defined as maxi |Xi|−1. The tree-width of a graph G is the
minimum width among all possible tree-decompositions of G. In the above definition, the size
of the largest set Xi is diminished by one to make the tree-width of a tree equal to 1.

There are several equivalent definitions of tree-width. Here I give the one which will be used
later in this thesis:

Definition 2 (Tree-width). The tree-width of an undirected graph G is one less than the size of
the maximum (largest) clique in the chordal graph containing G with the smallest clique number.

As a direct corollary, we know that the tree-width of a complete graph Kn is n− 1. Based on
the alternative definition of tree-width, I state the following theorem which will be used later to
prove the connection between the height of an SPN and the tree-width of a BN:

Theorem 1. For any undirected graph G, we have ω(G)− 1 ≤ tree-width(G), where ω(G) is the
size of the maximum clique in G.

Thm. 1 says that for any undirected graph G, the size of the largest clique minus 1 is always
a lower bound of the tree-width of G. It is also worth mentioning here that it is NP-complete to
determine whether a given graph G has tree-width of at most K [20].

2.3 Algebraic Decision Diagram

One of the key ideas in this thesis is to use Algebraic Decision Diagrams (ADDs) to compactly
represent the local conditional probability distributions associated with each node in the Bayesian
networks. Intuitively, ADDs can be understood as directed acyclic graphs (DAGs) used to encode
discrete functions. There exist other data structures, including decision trees, noisy-OR, etc,
which can be used to encode the conditional probability distributions at each node of an BN.
One of the advantages of using ADDs lies in the fact that they can exploit the context-specific
independence (CSI) among variables while at the same time avoid the replication problem [14]
present in decision trees. For readers who are more familiar with Binary Decision Diagrams
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(BDDs), an ADD can be viewed as an extension of a BDD where the leaves in ADD are extended
to have real values rather than simple binary values as in BDDs.

I first give a formal definition of Algebraic Decision Diagrams (ADDs) for variables with
Boolean domains and then extend the definition to domains corresponding to arbitrary finite sets.

Definition 3 (Algebraic Decision Diagram [2]). An Algebraic Decision Diagram (ADD) is a
graphical representation of a real function with Boolean input variables: f : {0, 1}N 7→ R,
where the graph is a rooted DAG. There are two kinds of nodes in an ADD. Terminal nodes,
whose out-degree is 0, are associated with real values. Internal nodes, whose out-degree is 2, are
associated with Boolean variables Xn, n ∈ 1 : N . For each internal node Xn, the left out-edge is
labeled with Xn = FALSE and the right out-edge is labeled with Xn = TRUE.

The function fA(·) represented by an ADD A over X1:N can be defined recursively. If ADD
A has an empty scope, i.e., it is a leaf node, then fA(x) = c for all joint assignment x, where c is
the value stored at the leaf node. Otherwise if the ADD A has non-empty scope, let the variable
associated with the root node be Xn, then fA(X1:N) = fAXn=xn

(X1, . . . , Xn−1, Xn+1, . . . , XN),
where AXn=xn represents the sub-ADD pointed to by the edge labeled with Xn = xn from the
root of A. The above equations are then recursively applied to all the nodes in A to build the
function fA(X1:N).

Example 1. Here I show an example of ADD over three boolean variables X1, X2 and X3. The
discrete function over X1, X2 and X3 is shown and encoded in Fig. 2.3. Literally, I can also list
the function encoded by the ADD in Fig. 2.3 as follows:

Table 2.1: Discrete function encoded in Fig. 2.3
X1 X2 X3 f(X1, X2, X3)
True True True 0.1
True True False 0.9
True False True 0.3
True False False 0.7
False True True 0.3
False True False 0.7
False False True 0.6
False False False 0.4

Note that the ADD in Fig. 2.3 is not the unique ADD representation of the discrete function
listed in Table 2.1. Observing that the sub-ADD following the path X1 = True → X2 =
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Figure 2.3: An ADD representation of a discrete function over three variables. Each edge
emanated from a node Xn is associated with a label either True or False, which means
Xn = True or Xn = False correspondingly.

False is isomorphic to the sub-ADD following the path X1 = False → X2 = True, I
can construct a more compact ADD representation of the discrete function listed in Table 2.1 in
Fig. 2.4.
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Figure 2.4: A more compact ADD representation of the discrete function listed in Table 2.1.

I extend the original definition of an ADD by allowing it to represent not only functions of
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Boolean variables, but also any function of discrete variables with a finite set as domain. This
can be done by allowing each internal node Xn to have |Xn| out-edges and label each edge with
xjn, j ∈ 1 : |Xn|, where Xn is the domain of variable Xn and |Xn| is the number of values Xn

takes. Such an ADD represents a function f : X1×· · ·×XN 7→ R, where×means the Cartesian
product2 between two sets. Henceforth, I will use my extended definition of ADDs throughout
the thesis.

For my purpose, I will use an ADD as a compact graphical representation of local CPDs
associated with each node in a BN. This is a key insight of my constructive proof presented later.
Compared with a tabular representation or a decision tree representation of local CPDs, CPDs
represented by ADDs can fully exploit CSI [4] and effectively avoid the replication problem [14]
of the decision tree representation.

I give another example in Fig. 2.5, Fig. 2.6 and Fig. 2.7 where the tabular representation,
decision-tree representation and ADD representation of a function of 4 Boolean variables is
presented. The tabular representation in Fig. 2.5 cannot exploit CSI and the Decision-Tree rep-
resentation in Fig. 2.6 cannot reuse isomorphic subgraphs. The ADD representation in Fig. 2.7
can fully exploit CSI by sharing isomorphic subgraphs, which makes it the most compact repre-
sentation among the three representations. In Fig. 2.6 and Fig. 2.7, the left and right branches of
each internal node correspond respectively to FALSE and TRUE.

X1 X2 X3 X4 f(·) X1 X2 X3 X4 f(·)
0 0 0 0 0.4 1 0 0 0 0.4
0 0 0 1 0.6 1 0 0 1 0.6
0 0 1 0 0.3 1 0 1 0 0.3
0 0 1 1 0.3 1 0 1 1 0.3
0 1 0 0 0.4 1 1 0 0 0.1
0 1 0 1 0.6 1 1 0 1 0.1
0 1 1 0 0.3 1 1 1 0 0.1
0 1 1 1 0.3 1 1 1 1 0.1

Figure 2.5: Tabular representation.

2A Cartesian product is a binary mathematical operation between two setsA andB which returns a set containing
all ordered pairs (a, b) where a ∈ A and b ∈ B.
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X1

X3 X2

X4 0.3 X3 0.1

0.4 0.6
X4 0.3

0.4 0.6

Figure 2.6: Decision-Tree representation.

X1

X3

X2

X4 0.3
0.1

0.4 0.6

Figure 2.7: ADD representation.

Another advantage of ADDs to represent local CPDs is that arithmetic operations such as
multiplying ADDs and summing-out a variable from an ADD can be implemented efficiently in
polynomial time. This will allow us to use ADDs in the Variable Elimination (VE) algorithm to
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recover the original SPN after its conversion to a BN with CPDs represented by ADDs. Readers
are referred to [2] for more detailed and thorough discussions about ADDs.

2.4 Sum-Product Network

Before introducing SPNs, I first define the notion of network polynomial, which plays an impor-
tant role in my proof shown later. I use I[X = x] to denote an indicator that returns 1 when
X = x and 0 otherwise. To simplify the notation, I will use Ix to represent I[X = x].

Definition 4 (Network Polynomial [19]). Let f(·) ≥ 0 be an unnormalized probability distri-
bution over a Boolean random vector X1:N . The network polynomial of f(·) is a multilinear
function

∑
x f(x)

∏N
n=1 Ixn of indicator variables, where the summation is over all possible in-

stantiations of the Boolean random vector X1:N .

Intuitively, the network polynomial is a Boolean expansion [3] of the unnormalized probabil-
ity distribution f(·). For example, the network polynomial of a BNX1 → X2 is Pr(x1, x2)Ix1Ix2+
Pr(x1, x̄2)Ix1Ix̄2 + Pr(x̄1, x2)Ix̄1Ix2 + Pr(x̄1, x̄2)Ix̄1Ix̄2 .

Definition 5 (Sum-Product Network [19]). A Sum-Product Network (SPN) over Boolean vari-
ables X1:N is a rooted DAG whose leaves are the indicators Ix1 , . . . , IxN

and Ix̄1 , . . . , Ix̄N
and

whose internal nodes are sums and products. Each edge (vi, vj) emanating from a sum node vi
has a non-negative weight wij . The value of a product node is the product of the values of its
children. The value of a sum node is

∑
vj∈Ch(vi)

wijval(vj) where Ch(vi) are the children of vi
and val(vj) is the value of node vj . The value of an SPN S[Ix1 , Ix̄1 , . . . , IxN

, Ix̄N
] is the value of

its root.

The scope of a node in an SPN is defined as the set of variables that have indicators among
the node’s descendants: For any node v in an SPN, if v is a terminal node, say, an indicator
variable over X , then scope(v) = {X}, else scope(v) =

⋃
ṽ∈Ch(v) scope(ṽ). [19] further define

the following properties of an SPN:

Definition 6 (Complete). An SPN is complete iff each sum node has children with the same
scope.

Definition 7 (Consistent). An SPN is consistent iff no variable appears negated in one child of a
product node and non-negated in another.

Definition 8 (Decomposable). An SPN is decomposable iff for every product node v, scope(vi)⋂
scope(vj) = ∅ where vi, vj ∈ Ch(v), i 6= j.
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An SPN is said to be valid iff it defines a (unnormalized) probability distribution. [19] proved
that if an SPN is complete and consistent, then it is valid. Note that this is a sufficient, but
not necessary condition. In this thesis, I focus only on complete and consistent SPNs as I am
interested in their associated probabilistic semantics. For a complete and consistent SPN S, each
node v in S defines a network polynomial fv(·) which corresponds to the sub-SPN rooted at
v. The network polynomial defined by the root of the SPN can then be computed recursively
by taking a weighted sum of the network polynomials defined by the sub-SPNs rooted at the
children of each sum node and a product of the network polynomials defined by the sub-SPNs
rooted at the children of each product node. The probability distribution induced by an SPN S is
defined as PrS(x) , fS(x)∑

x fS(x)
, where fS(·) is the network polynomial defined by the root of the

SPN S.

Example 2. An example of a complete and consistent SPN is given in Fig. 2.8. The SPN in

+

× × ×

+ + + +

Ix1 Ix̄1 Ix2 Ix̄2

10
6

9

6

4 9
1 6

14 2
8

Figure 2.8: A complete and consistent SPN over Boolean variables X1, X2.

Fig. 2.8 is also decomposable since every product node has children whose scopes do not in-
tersect. The network polynomial defined by (the root of) this SPN is: f(X1, X2) = 10(6Ix1 +
4Ix̄1)(6Ix2 + 14Ix̄2) + 6(6Ix1 + 4Ix̄1)(2Ix2 + 8Ix̄2) + 9(9Ix1 + Ix̄1)(2Ix2 + 8Ix̄2) = 594Ix1Ix2 +
1776Ix1Ix̄2 + 306Ix̄1Ix2 + 824Ix̄1Ix̄2 and the probability distribution induced by S is PrS =
594
3500

Ix1Ix2 + 1776
3500

Ix1Ix̄2 + 306
3500

Ix̄1Ix2 + 824
3500

Ix̄1Ix̄2 .

The computational complexity of inference queries in an SPN S, including joint inference,
conditional inference and marginal inference is O(|S|). I give the joint inference algorithm for
SPNs below:
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Algorithm 2 Joint Inference in an SPN
Input: SPN S , joint query x, normalization constant ZS
Output: PrS(x)

1: for each leaf nodes Ixn do
2: if Xn = xn then
3: Set Ixn = 1
4: else
5: Set Ixn = 0
6: end if
7: end for
8: for every internal node V ∈ S in bottom-up order do
9: if V is a sum node then

10: Set val(V ) =
∑

iwi × val(Vi)
11: else if V is a product node then
12: Set val(V ) =

∏
i val(Vi)

13: end if
14: end for
15: return 1

ZS
val(Root(S))

In Line 10 of Alg. 2, wi are the weights associated with the sum node V and val(Vi) is the
value stored at the ith child of V . ZS is the normalization constant in SPN S which can be
computed from the root node of S by setting all the leaf nodes to 1. It’s clear that in Alg. 2 I visit
each node and edge in S once in the bottom-up order to compute the joint probability, so that the
computational complexity for Alg. 2 is O(|S|).

Now I proceed to give the algorithm for marginal inference in SPNs in Alg. 3. The only
difference between marginal inference and joint inference in SPNs lies in the fact that in marginal
inference I set the value of all leaf nodes that do not appear in the marginal query to be 1 since
they should be summed out.

For conditional inference, I can compute the conditional probability Pr(x|y) by using Bayes’
rule Pr(x|y) = Pr(x,y)

Pr(y)
where the numerator corresponds to a joint inference query that can be

answered with Alg. 2 and the denominator can be computed using Alg. 3 as a marginal query.
Again, to compute the conditional probability, I only need to traverse the SPN twice, so the
computational complexity is again, O(|S|).

Example 3. I now give a concrete example to illustrate how to answer a joint query, a marginal
query and a conditional query in an SPN using Alg. 2 and Alg. 3. Consider the SPN in Fig. 2.8
for example.
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Algorithm 3 Marginal Inference in SPN
Input: SPN S , marginal query x, normalization constant ZS
Output: PrS(x)

1: for each leaf nodes Ixn do
2: if Xn is assigned value in x then
3: if Xn = xn then
4: Set Ixn = 1
5: else
6: Set Ixn = 0
7: end if
8: else
9: Set Ixn = 1

10: end if
11: end for
12: for every internal node V ∈ S in bottom-up order do
13: if V is a sum node then
14: Set val(V ) =

∑
iwi × val(Vi)

15: else if V is a product node then
16: Set val(V ) =

∏
i val(Vi)

17: end if
18: end for
19: return 1

ZS
val(Root(S))

First, I need to compute the normalization constant ZS since it is required for both Alg. 2 and
Alg. 3. Setting all the values of leaf nodes in Fig. 2.8 to 1, propagating the values in bottom-up
order, I obtain the normalization constant at the root, given by

ZS = 10(6 + 4)× (6 + 14) + 6(6 + 4)× (2 + 8) + 9(9 + 1)× (2 + 8) = 3500

Now suppose I am interested in computing the joint query Pr(X1 = True, X2 = False).
Following Alg. 2, I set the values of the leaf nodes as follows: Ix1 = 1, Ix̄1 = 0, Ix2 = 0 and
Ix̄2 = 1. Again, I propagate the values in the SPN until I obtain the value at the root node, which
is 1776. Then I can obtain the joint probability by normalizing the value by ZS , which gives the
joint probability Pr(X1 = True, X2 = False) = 1776

3500
.

If I am interested in computing the marginal query Pr(X2 = False), I can first set the
values of the leaf nodes in S as Ix1 = 1, Ix̄1 = 1, Ix2 = 0 and Ix̄2 = 1. I set both the values of Ix1

and Ix̄1 to 1 because in the marginal query the variable X1 needs to be summed out. Following
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Alg. 3, I obtain 2600 as the value at the root node. The final step, again, is to normalize the value
by the normalization constant. Doing so gives us Pr(X2 = False) = 2600

3500
.

Assume I am also interested in computing the value of the conditional query Pr(X1 =
True|X2 = False). I first apply the Bayes’ rule:

Pr(X1 = True|X2 = False) =
Pr(X1 = True, X2 = False)

Pr(X2 = False)

Since both the numerator and the denominator have been computed before, I can obtain the value
of Pr(X1 = True|X2 = False) immediately as Pr(X1 = True|X2 = False) = 1776

2600
.

2.4.1 Related Work

Different from traditional probabilistic graphical models, where the computational complexity
for exact inference can still be intractable even the graph admits a compact representation, the
inference complexity in SPN, including joint inference, marginal inference and conditional in-
ference, is linear in the size of SPN. For example, consider a Markov network that is an n × n
grid with (n + 1)2 nodes and 2n(n + 1) edges. Although the n × n grid Markov net is a sparse
graph, the computational complexity for exact inference in this graph is O(2n), which is compu-
tationally intractable even for a moderate size of n. In general, the computational complexity for
exact inference in graphical models, including both Bayesian networks and Markov networks, is
exponential in the tree-width of the graph. However, as we introduced in the last section, given a
graph, it is NP-complete to compute the tree-width of the graph. Hence practitioners often resort
to approximate inference algorithms, such as variational inference methods [27], Markov Chain
Monte Carlo based sampling methods [23], loopy belief propagation [13], etc, to handle the infer-
ence problem in graphical models. SPNs open the door for tractable exact inference, while at the
same time do not sacrifice its representation power [19]. Due to their flexibility and tractability,
SPNs have been widely applied in various fields, for example, image completion [19, 8], activity
modeling [1], speech modeling [17], language modeling [6] and density estimation [10, 21].

There are two main research problems in SPNs: parameter learning and structure learning.
Given an SPN with fixed structure, Domingos et al. proposed both generative learning and dis-
criminative learning algorithms for parameters [19, 9] in SPNs. At a high level, these approaches
view SPNs as deep architectures and apply projected gradient descent to optimize the data log-
likelihood function for parameter learning. Structure learning algorithms for SPNs have also
been designed [8, 10, 16, 21]. In summary, there are two strands of methods for learning the
structure of SPNs: top-down approach and bottom-up approach.
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In [16], Peharz et al. proposed a bottom-up approach to construct an SPN from simple mod-
els over small variable scopes, and grow the model over larger and larger variable scopes, until
a node with complete scope is reached. The limitations in their method lie in two folds: 1). the
final SPN has a rigid structure in the sense that every product node will only have two children
since only the region pair with the least statistical dependence test will be merged during the
structure learning process. 2). it happens during the algorithm that there is no two regions can be
merged before the root node in constructed hence the algorithm may fail due to the decompos-
ability constraint of SPN.

Another line of research focuses on top-down learning of SPNs. Dennis and Ventura pro-
posed the first structure learning algorithm for SPNs [8], where the authors applied K-means
clustering on variables to generate region graphs and then expand each region graph with a fixed
structure to build an SPN. Gens and Domingos built the first connection between structure learn-
ing of SPN and hierarchical clustering [10]. In their pioneering work, which we refer to as
LearnSPN, they used a naive bayes mixture with EM training to build sum nodes and used a sta-
tistical independence test (G-test) to consider pair-wise relationships between variables in order
to build product nodes. This process is recursively applied until there is only once instance or
one variable in current split of the data set. However, LearnSPN always tries to build a product
node first (split on variables), and only when this step fails it tries to build a sum node (split
on instances). This will cause the final SPN produced by LearnSPN to have consecutive sum
nodes, which is redundant because consecutive sum nodes can be efficiently combined into one
sum node without changing the network polynomial. More importantly, consecutive sum nodes
essentially build more hard clusters on instances with each cluster owning only a very small
fraction of the total data set, hence this will cause the following statistical independence test
to be unreliable when building a product node. As a consequence, the final SPN produced by
LearnSPN tends to be very large but shallow.

Based on LearnSPN and aiming at modeling both direct and indirect interactions among vari-
ables, Rooshenas et al. came up with a new model (ID-SPN) which combines both SPNs and
Markov networks [21]. The final model is compiled into an arithmetic circuit for fast inference.
ID-SPN explores an interesting direction on combining SPN with classic graphical models, in-
cluding Bayesian networks and Markov networks, for better performance on density estimation.
Interested readers are refered to [12] for more work on this direction.

To understand the theoretical properties of SPNs, Peharz et al. independently showed that the
weights of edges from each sum node in an SPN can be locally normalized without changing the
probability distribution induced by the SPN [18]. Furthermore, they also independently proved
that complete and consistent SPNs cannot model a distribution exponentially more compact than
complete and decomposable SPNs. However, to the best of my knowledge, there is no theoretical
work on building the connection between SPNs and traditional probabilistic graphical models.
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In this thesis, I give two constructive algorithms (and also proofs) on converting from one model
to the other without an exponential blow-up in both time and space. This helps to understand
better the inner working mechanism of SPNs. Also, by building the corresponding BN from an
SPN, one can understand the interactions among the observable random variables in an SPN by
inspecting the topological structure of the corresponding BN.
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Chapter 3

Main Results

In this chapter, I first state the main results obtained in this thesis and then provide detailed proofs
with some discussion of the results. To keep the presentation simple, I assume without loss of
generality that all the random variables are Boolean unless explicitly stated. It is straightforward
to extend my analysis to discrete random variables with finite support. For an SPN S, let |S| be
the size of the SPN, i.e., the number of nodes plus the number of edges in the graph. For a BN B,
the size of B, |B|, is defined by the size of the graph plus the size of all the CPDs in B (the size of
a CPD depends on its representation, which will be clear from the context). The main theorems
are:

Theorem 2. There exists an algorithm that converts any complete and decomposable SPN S
over Boolean variables X1:N into a BN B with CPDs represented by ADDs in time O(N |S|).
Furthermore, S and B represent the same distribution and |B| = O(N |S|).

As it will be clear later, Thm. 2 immediately leads to the following corollary:

Corollary 3. There exists an algorithm that converts any complete and consistent SPN S over
Boolean variables X1:N into a BN B with CPDs represented by ADDs in time O(N |S|2). Fur-
thermore, S and B represent the same distribution and |B| = O(N |S|2).

Remark 1. The BN B generated from S in Theorem 2 and Corollary 3 has a simple bipartite
DAG structure, where all the source nodes are hidden variables and the terminal nodes are the
Boolean variables X1:N .

Remark 2. Assuming sum nodes alternate with product nodes in SPN S, the depth of S is
proportional to the maximum in-degree of the nodes in B, which, as a result, is proportional to a
lower bound of the tree-width of B.
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Theorem 4. Given the BN B with ADD representation of CPDs generated from a complete and
decomposable SPN S over Boolean variables X1:N , the original SPN S can be recovered by
applying the Variable Elimination algorithm to B in O(N |S|).

Remark 3. The combination of Theorems 2 and 4 shows that distributions for which SPNs
allow a compact representation and efficient inference, BNs with ADDs also allow a compact
representation and efficient inference (i.e., no exponential blow up).

3.1 Normal Sum-Product Network

To make the upcoming proofs concise, I first define a normal form for SPNs and show that every
complete and consistent SPN can be transformed into a normal SPN in quadratic time and space
without changing the network polynomial. I then derive the proofs with normal SPNs. Note that
in the thesis I only focus on SPNs that are complete and consistent since I am mainly interested in
the (unnormalized) joint probability distribution associated with complete and consistent SPNs.
Complete and consistent SPNs are interesting because they form a super class of complete and
decomposable SPNs, which are frequently used and discussed in the literature. Hence, when I
refer to an SPN, I assume that it is complete and consistent without explicitly stating this.

For an SPN S, let fS(·) be the network polynomial defined at the root of S . Define the height
of an SPN to be the length of the longest path from the root to a terminal node.

Definition 9. An SPN is said to be normal if

1. It is complete and decomposable.

2. For each sum node in the SPN, the weights of the edges emanating from the sum node are
nonnegative and sum to 1.

3. Every terminal node in an SPN is a univariate distribution over a Boolean variable and
the size of the scope of a sum node is at least 2 (sum nodes whose scope is of size 1 are
reduced into terminal nodes).

Theorem 5. For any complete and consistent SPN S , there exists a normal SPN S ′ such that
PrS(·) = PrS′(·) and |S ′| = O(|S|2).

To show this, I first prove the following lemmas.

Lemma 6. For any complete and consistent SPN S over X1:N , there exists a complete and
decomposable SPN S ′ over X1:N such that fS(x) = fS′(x),∀x and |S ′| = O(|S|2).
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Proof. Let S be a complete and consistent SPN. If it is also decomposable, then simply set
S ′ = S and I am done. Otherwise, let v1, . . . , vM be an inverse topological ordering of all the
nodes in S , including both terminal nodes and internal nodes, such that for any vm,m ∈ 1 : M ,
all the ancestors of vm in the graph appear after vm in the ordering. Let vm be the first product
node in the ordering that violates decomposability. Let vm1 , vm2 , . . . , vml

be the children of vm
where m1 < m2 < · · · < ml < m (due to the inverse topological ordering). Let (vmi

, vmj
), i <

j, i, j ∈ 1 : l be the first ordered pair of nodes such that scope(vmi
)
⋂

scope(vmj
) 6= ∅. Hence,

let X ∈ scope(vmi
)
⋂

scope(vmj
). Consider fvmi

and fvmj
which are the network polynomials

defined by the sub-SPNs rooted at vmi
and vmj

.

Expand network polynomials fvmi
and fvmj

into a sum-of-product form by applying the dis-
tributive law between products and sums. For example, if f(X1, X2) = (Ix1 +9Ix̄1)(4Ix2 +6Ix̄2),
then the expansion of f is f(X1, X2) = 4Ix1Ix2 + 6Ix1Ix̄2 + 36Ix̄1Ix2 + 54Ix̄1Ix̄2 . Since S is
complete, then sub-SPNs rooted at vmi

and vmj
are also complete, which means that each mono-

mial in the expansion of fvmi
must share the same scope. The same applies to fvmj

. Since
X ∈ scope(vmi

)
⋂

scope(vmj
), then every monomial in the expansion of fvmi

and fvmj
must

contain an indicator variable over X , either Ix or Ix̄. Furthermore, since S is consistent, then the
sub-SPN rooted at vm is also consistent. Consider fvm =

∏l
k=1 fvmk

= fvmi
fvmj

∏
k 6=i,j fvmk

.
Because vm is consistent, I know that each monomial in the expansions of fvmi

and fvmj
must

contain the same indicator variable of X , either Ix or Ix̄, otherwise there will be a term IxIx̄ in
fvm which violates the consistency assumption. Without loss of generality, assume each mono-
mial in the expansions of fvmi

and fvmj
contains Ix. Then I can re-factorize fvm in the following

way:

fvm =
l∏

k=1

fvmk
= I2

x

fvmi

Ix

fvmj

Ix

∏
k 6=i,j

fvmk

= Ix
fvmi

Ix

fvmj

Ix

∏
k 6=i,j

fvmk
= Ixf̃vmi

f̃vmj

∏
k 6=i,j

fvmk
(3.1)

where I use the fact that indicator variables are idempotent, i.e., I2
x = Ix and f̃vmi

(f̃vmj
) is de-

fined as the function by factorizing Ix out from fvmi
(fvmj

). Eq. 3.1 means that in order to make
vm decomposable, I can simply remove all the indicator variables Ix from sub-SPNs rooted at
vmi

and vmj
and later link Ix to vm directly. Such a transformation will not change the network

polynomial fvm as shown by Eq. 3.1, but it will remove X from scope(vmi
)
⋂

scope(vmj
). In

principle, I can apply this transformation to all ordered pairs (vmi
, vmj

), i < j, i, j ∈ 1 : l with
nonempty intersections of scope. However, this is not algorithmically efficient and more impor-
tantly, for local components containing Ix in fvm which are reused by other nodes vn outside of
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Svm , I cannot remove Ix from them otherwise the network polynomials for each such vn will be
changed due to the removal. In such case, I need to duplicate the local components to ensure
that local transformations with respect to fvm do not affect network polynomials fvn . I present
the transformation in Alg. 4. Alg. 4 transforms a complete and consistent SPN S into a complete

Algorithm 4 Decomposition Transformation
Input: Complete and consistent SPN S.
Output: Complete and decomposable SPN S ′.

1: Let v1, v2, . . . , vM be an inverse topological ordering of nodes in S.
2: for m = 1 to M do
3: if vm is a non-decomposable product node then
4: Ω(vm)← ⋃

i 6=j scope(vmi
)
⋂

scope(vmj
)

5: V← {v ∈ Svm | scope(v)
⋂

Ω(vm) 6= ∅}
6: SV ← Svm|V
7: D(vm)← descendants of vm
8: for node v ∈ SV\{vm} do
9: if Pa(v)\D(vm) 6= ∅ then

10: Create p← v ⊗∏X∈Ω(vm)∩scope(v) Ix∗
11: Connect p to ∀f ∈ Pa(v)\D(vm)
12: Disconnect v from ∀f ∈ Pa(v)\D(vm)
13: end if
14: end for
15: for node v ∈ SV in bottom-up order do
16: Disconnect ṽ ∈ Ch(v) ∀scope(ṽ) ⊆ Ω(vm)
17: end for
18: Connect

∏
X∈Ω(vm) Ix∗ to vm directly

19: end if
20: end for
21: Delete all nodes unreachable from the root of S
22: Delete all product nodes with out-degree 0
23: Contract all product nodes with out-degree 1

and decomposable SPN S ′. Informally, it works using the following identity:

fvm =

 ∏
X∈Ω(vm)

Ix∗

 l∏
k=1

fvmk∏
X∈Ω(vm)∩scope(vmk

) I∗x
(3.2)

where Ω(vm) ,
⋃

i,j∈1:l,i 6=j scope(vmi
) ∩ scope(vmj

), i.e., Ω(vm) is the union of all the shared
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variables between pairs of children of vm and Ix∗ is the indicator variable of X ∈ Ω(vm) appear-
ing in Svm . Based on the analysis above, I know that for each X ∈ Ω(vm) there will be only
one kind of indicator variable Ix∗ that appears inside Svm , otherwise vm is not consistent. In Line
6, Svm |V is defined as the sub-SPN of Svm induced by the node set V, i.e., a subgraph of Svm
where the node set is restricted to V. In Lines 5-6, I first extract the induced sub-SPN SV from
Svm rooted at vm using the node set in which nodes have nonempty intersections with Ω(vm). I
disconnect the nodes in SV from their children if their children are indicator variables of a subset
of Ω(vm) (Lines 15-17). At Line 18, I build a new product node by multiplying all the indicator
variables in Ω(vm) and link it to vm directly. To keep unchanged the network polynomials of
nodes outside Svm that use nodes in SV, I create a duplicate node p for each such node v and link
p to all the parents of v outside of Svm and at the same time delete the original link (Lines 9-13).

In summary, Lines 15-17 ensure that vm is decomposable by removing all the shared indicator
variables in Ω(vm). Line 18 together with Eq. 3.2 guarantee that fvm is unchanged after the
transformation. Lines 9-13 create necessary duplicates to ensure that other network polynomials
are not affected. Lines 21-23 simplify the transformed SPN to make it more compact. An
example is depicted in Fig. 3.1 to illustrate the transformation process.

I now analyze the size of the SPN constructed by Alg. 4. For a graph S, let V(S) be the
number of nodes in S and let E(S) be the number of edges in S. Note that in Lines 8-17 I only
focus on nodes that appear in the induced SPN SV, which clearly has |SV| ≤ |Svm|. Furthermore,
I create a new product node p at Line 10 iff v is reused by other nodes which do not appear in
Svm . This means that the number of nodes created during each iteration between Lines 2 and 20
is bounded by V(SV) ≤ V(Svm). Line 10 also creates 2 new edges to connect p to v and the
indicator variables. Lines 11 and 12 first connect edges to p and then delete edges from v, hence
these two steps do not yield increases in the number of edges. So the increase in the number
of edges is bounded by 2V(SV) ≤ 2V(Svm). Combining increases in both nodes and edges,
during each outer iteration the increase in size is bounded by 3|SV| ≤ 3|Svm| = O(|S|). There
will be at most M = V(S) outer iterations hence the total increase in size will be bounded by
O(M |S|) = O(|S|2).

Lemma 7. For any complete and decomposable SPN S over X1:N that satisfies condition 2 of
Def. 9,

∑
x fS(x) = 1.

Proof. I give a proof by induction on the height of S . Let R be the root of S.

• Base case. SPNs of height 0 are indicator variables over some Boolean variable whose
network polynomials immediately satisfy Lemma 7.

• Induction step. Assume Lemma 7 holds for any SPN with height ≤ k. Consider an SPN S
with height k + 1. I consider the following two cases:
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Figure 3.1: Transformation process described in Alg. 4 to construct a complete and decompos-
able SPN from a complete and consistent SPN. The product node vm in the left SPN is not
decomposable. Induced sub-SPN Svm is highlighted in blue and SV is highlighted in green.
vm2 highlighted in red is reused by vn which is outside Svm . To compensate for vm2 , I create a
new product node p in the right SPN and connect it to indicator variable Ix3 and vm2 . Dashed
gray lines in the right SPN denote deleted edges and nodes while red edges and nodes are added
during Alg. 4.

– The root R of S is a product node. Then in this case the network polynomial fS(·)
for S is defined as fS =

∏
v∈Ch(R) fv. I have∑

x

fS(x) =
∑
x

∏
v∈Ch(R)

fv(x|scope(v)) (3.3)

=
∏

v∈Ch(R)

∑
x|scope(v)

fv(x|scope(v)) (3.4)

=
∏

v∈Ch(R)

1 = 1 (3.5)

where x|scope(v) means that x is restricted to the set scope(v). Eq. 3.4 follows from
the decomposability of R and Eq. 3.5 follows from the induction hypothesis.

– The root R of S is a sum node. The network polynomial is fS =
∑

v∈Ch(R) wR,vfv. I
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have ∑
x

fS(x) =
∑
x

∑
v∈Ch(R)

wR,vfv(x) (3.6)

=
∑

v∈Ch(R)

wR,v

∑
x

fv(x) (3.7)

=
∑

v∈Ch(R)

wR,v = 1 (3.8)

Eq. 3.7 follows from the commutative and associative law of addition and Eq. 3.8
follows by the induction hypothesis.

Corollary 8. For any complete and decomposable SPN S over X1:N that satisfies condition 2 of
Def. 9, PrS(·) = fS(·).

Lemma 9. For any complete and decomposable SPN S, there exists an SPN S ′ where the weights
of the edges emanating from every sum node are nonnegative and sum to 1, and PrS(·) = PrS′(·),
|S ′| = |S|.

Proof. Alg. 5 runs in one pass of S to construct the required SPN S ′. I proceed to prove that the

Algorithm 5 Weight Normalization
Input: SPN S
Output: SPN S ′

1: S ′ ← S
2: val(Ix)← 1, ∀Ix ∈ S
3: Let v1, . . . , vM be an inverse topological ordering of the nodes in S
4: for m = 1 to M do
5: if vm is a sum node then
6: val(vm)←∑

v∈Ch(vm) wvm,vval(v)

7: w′vm,v ← wvm,vval(v)

val(vm)
, ∀v ∈ Ch(vm)

8: else if vm is a product node then
9: val(vm)←∏

v∈Ch(vm) val(v)
10: end if
11: end for
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SPN S ′ returned by Alg. 5 satisfies PrS′(·) = PrS(·), |S ′| = |S| and that S ′ satisfies condition
2 of Def. 9. It is clear that |S ′| = |S| because I only modify the weights of S to construct S ′
at Line 7. Based on Lines 6 and 7, it is also straightforward to verify that for each sum node
v in S ′, the weights of the edges emanating from v are nonnegative and sum to 1. I now show
that PrS′(·) = PrS(·). Using Corollary 8, PrS′(·) = fS′(·). Hence it is sufficient to show
that fS′(·) = PrS(·). Before deriving a proof, it is helpful to note that for each node v ∈ S ,
val(v) =

∑
x|scope(v)

fv(x|scope(v)). I give a proof by induction on the height of S.

• Base case. SPNs with height 0 are indicator variables which automatically satisfy Lemma 9.

• Induction step. Assume Lemma 9 holds for any SPN of height ≤ k. Consider an SPN S
of height k+ 1. Let R be the root node of S with out-degree l. I discuss the following two
cases.

– R is a product node. Let R1, . . . , Rl be the children of R and S1, . . . ,Sl be the cor-
responding sub-SPNs. By induction, Alg. 5 returns S ′1, . . . ,S ′l that satisfy Lemma 9.
Since R is a product node, I have

fS′(x) =
l∏

i=1

fS′i(x|scope(Ri)) (3.9)

=
l∏

i=1

Pr
Si

(x|scope(Ri)) (3.10)

=
l∏

i=1

fSi(x|scope(Ri))∑
x|scope(Ri)

fSi(x|scope(Ri))
(3.11)

=

∏l
i=1 fSi(x|scope(Ri))∑

x

∏l
i=1 fSi(x|scope(Ri))

(3.12)

=
fS(x)∑
x fS(x)

= Pr
S

(x) (3.13)

Eq. 3.10 follows from the induction hypothesis and Eq. 3.12 follows from the dis-
tributive law due to the decomposability of S.
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– R is a sum node with weights w1, . . . , wl ≥ 0. I have

fS′(x) =
l∑

i=1

w′ifS′i(x) (3.14)

=
l∑

i=1

wival(Ri)∑l
j=1wjval(Rj)

Pr
Si

(x) (3.15)

=
l∑

i=1

wival(Ri)∑l
j=1wjval(Rj)

fSi(x)∑
x fSi(x)

(3.16)

=
l∑

i=1

wival(Ri)∑l
j=1wjval(Rj)

fSi(x)

val(Ri)
(3.17)

=

∑l
i=1 wifSi(x)∑l

j=1wjval(Rj)
=

fS(x)∑
x fS(x)

(3.18)

= Pr
S

(x) (3.19)

where Eq. 3.15 follows from the induction hypothesis, Eq. 3.17 and 3.18 follow from
the fact that val(v) =

∑
x|scope(v)

fv(x|scope(v)),∀v ∈ S.

This completes the proof since PrS′(·) = fS′(·) = PrS(·).

Given a complete and decomposable SPN S, I now construct and show that the last condition
in Def. 9 can be satisfied in time and space O(|S|).

Lemma 10. Given a complete and decomposable SPN S, there exists an SPN S ′ satisfying
condition 3 in Def. 9 such that PrS′(·) = PrS(·) and |S ′| = O(|S|).

Proof. I give a proof by construction. First, if S is not weight normalized, apply Alg. 5 to
normalize the weights (i.e., the weights of the edges emanating from each sum node sum to 1).

Now check each sum node v in S in a bottom-up order. If |scope(v)| = 1, by Corollary 8 I
know the network polynomial fv is a probability distribution over its scope, say, {X}. Reduce
v into a terminal node which is a distribution over X induced by its network polynomial and
disconnect v from all its children. The last step is to remove all the unreachable nodes from S to
obtain S ′. Note that in this step I will only decrease the size of S, hence |S ′| = O(|S|).

Proof of Thm. 5. The combination of Lemma 6, 9 and 10 completes the proof of Thm. 5.

An example of a normal SPN constructed from the SPN in Fig. 2.8 is depicted in Fig. 3.2.
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Figure 3.2: Transform an SPN into a normal form. Terminal nodes which are probability distri-
butions over a single variable are represented by a double-circle.

3.2 Sum-Product Network to Bayesian Network

In order to construct a BN from an SPN, I require the SPN to be in a normal form, otherwise I
can first transform it into a normal form using Alg. 4 and 5.

Let S be a normal SPN over X1:N . Before showing how to construct a corresponding BN,
I first give some intuitions. One useful view is to associate each sum node in an SPN with a
hidden variable. For example, consider a sum node v ∈ S with out-degree l. Since S is normal,
I have

∑l
i=1wi = 1 and wi ≥ 0,∀i ∈ 1 : l. This naturally suggests that I can associate a hidden

discrete random variable Hv with multinomial distribution Prv(Hv = i) = wi, i ∈ 1 : l for each
sum node v ∈ S. Therefore, S can be thought as defining a joint probability distribution over
X1:N and H = {Hv | v ∈ S, v is a sum node} where X1:N are the observable variables and H
are the hidden variables. When doing inference with an SPN, I implicitly sum out all the hidden
variables H and compute PrS(x) =

∑
h PrS(x,h). Associating each sum node in an SPN with

a hidden variable not only gives us a conceptual understanding of the probability distribution
defined by an SPN, but also helps to elucidate one of the key properties implied by the structure
of an SPN as summarized below:

Proposition 11. Given a normal SPN S, let p be a product node in S with l children. Let
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v1, . . . , vk be sum nodes which lie on a path from the root of S to p. Then

Pr
S

(x|scope(p)

∣∣∣ Hv1 = v∗1, . . . , Hvk = v∗k) =

l∏
i=1

Pr
S

(x|scope(pi)

∣∣∣ Hv1 = v∗1, . . . , Hvk = v∗k) (3.20)

where Hv = v∗ means the sum node v selects its v∗th branch.

Proof. Consider the sub-SPN Sp rooted at p. Sp can be obtained by restrictingHv1 = v∗1, . . . , Hvk =
v∗k, i.e., going from the root of S along the path Hv1 = v∗1, . . . , Hvk = v∗k. Since p is a decom-
posable product node, Sp admits the above factorization by the definition of a product node and
Corollary 8.

Note that there may exist multiple paths from the root to p in S. Each such path admits the
factorization stated in Eq. 3.20. Eq. 3.20 explains two key insights implied by the structure of
an SPN that will allow us to construct an equivalent BN with ADDs. First, CSI is efficiently
encoded by the structure of an SPN using Proposition 3.20. Second, the DAG structure of an
SPN allows multiple assignments of hidden variables to share the same factorization, which
effectively avoids the replication problem present in decision trees.

Based on the observations above and with the help of the normal form for SPNs, I now
proceed to prove the first main result in this thesis: Thm. 2. First, I present the algorithm to
construct the structure of a BN B from S in Alg. 6. In a nutshell, Alg. 6 creates an observable
variable X in B for each terminal node over X in S (Lines 2-4). For each internal sum node v in
S, Alg. 6 creates a hidden variable Hv associated with v and builds directed edges from Hv to all
observable variables X appearing in the sub-SPN rooted at v (Lines 11-17). The BN B created
by Alg. 6 has a directed bipartite structure with a layer of hidden variables pointing to a layer of
observable variables. A hidden variableH points to an observable variableX in B iffX appears
in the sub-SPN rooted at H in S.

I now present Alg. 7 and 8 to build ADDs for each observable variableX and hidden variable
H in B. For each hidden variable H , Alg. 8 builds AH as a decision stump1 obtained by finding
H and its associated weights in S. Consider ADDs built by Alg. 7 for observable variables
Xs. Let X be the current observable variable I am considering. Basically, Alg. 7 is a recursive
algorithm applied to each node in S whose scope intersects with {X}. There are three cases. If
current node is a terminal node, then it must be a probability distribution over X . In this case I
simply return the decision stump at the current node. If the current node is a sum node, then due

1A decision stump is a decision tree with one variable.
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Algorithm 6 Build BN Structure
Input: normal SPN S
Output: BN B = (BV ,BE)

1: R← root of S
2: if R is a terminal node over variable X then
3: Create an observable variable X
4: BV ← BV ∪ {X}
5: else
6: for each child Ri of R do
7: if BN has not been built for SRi

then
8: Recursively build BN Structure for SRi

9: end if
10: end for
11: if R is a sum node then
12: Create a hidden variable HR associated with R
13: BV ← BV ∪ {HR}
14: for each observable variable X ∈ SR do
15: BE ← BE ∪ {(HR, X)}
16: end for
17: end if
18: end if

to the completeness of S, I know that all the children of R share the same scope with R. I first
create a node HR corresponding to the hidden variable associated with R into AX (Line 8) and
recursively apply Alg. 7 to all the children of R and link them to HR respectively. If the current
node is a product node, then due to the decomposability of S, I know that there will be a unique
child of R whose scope intersects with {X}. I recursively apply Alg. 7 to this child and return
the resulting ADD (Lines 12-15).

Equivalently, Alg. 7 can be understood in the following way: I extract the sub-SPN induced
by {X} and contract2 all the product nodes in it to obtain AX . Note that the contraction of
product nodes will not add more edges into AX since the out-degree of each product node in
the induced sub-SPN must be 1 due to the decomposability of the product node. I illustrate the
application of Alg. 6, 7 and 8 on the normal SPN in Fig. 3.2, which results in the BN B with
CPDs represented by ADDs shown in Fig. 3.3.

2In graph theory, the contraction of a node v in a DAG is the operation that connects each parent of v to each
child of v and then delete v from the graph.
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Algorithm 7 Build CPD using ADD, observable variable
Input: normal SPN S, variable X
Output: ADD AX

1: if ADD has already been created for S and X then
2: AX ← retrieve ADD from cache
3: else
4: R← root of S
5: if R is a terminal node then
6: AX ← decision stump rooted at R
7: else if R is a sum node then
8: Create a node HR into AX

9: for each Ri ∈ Ch(R) do
10: Link BuildADD(SRi

, X) as ith child of HR

11: end for
12: else if R is a product node then
13: Find child SRi

such that X ∈ scope(Ri)
14: AX ← BuildADD(SRi

, X)
15: end if
16: store AX in cache
17: end if

I now show that PrS(x) = PrB(x) ∀x.

Lemma 12. Given a normal SPN S, the ADDs constructed by Alg. 7 and 8 encode local CPDs
at each node in B.

Proof. It is easy to verify that for each hidden variable H in B, AH represents a local CPD since
AH is a decision stump with normalized weights.

For any observable variable X in B, let Pa(X) be the set of parents of X . By Alg. 6, every
node in Pa(X) is a hidden variable. Furthermore, ∀H , H ∈ Pa(X) iff there exists one terminal

Algorithm 8 Build CPD using ADD, hidden variable
Input: normal SPN S, variable H
Output: ADD AH

1: Find the sum node H in S
2: AH ← decision stump rooted at H in S
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Figure 3.3: Construct a BN with CPDs represented by ADDs from an SPN. On the left, the
induced sub-SPNs used to create AX1 and AX2 by Alg. 7 are indicated in blue and green respec-
tively. The decision stump used to create AH by Alg. 8 is indicated in red.

node over X in S that appears in the sub-SPN rooted at H . Hence given any joint assignment
h of Pa(X), there will be a path in AX from the root to a terminal node that is consistent
with the joint assignment of the parents. Also, the leaves in AX contain normalized weights
corresponding to the probabilities of X (see Def. 9) induced by the creation of decision stumps
over X in Lines 5-6 of Alg. 7.

Theorem 13. For any normal SPN S over X1:N , the BN B constructed by Alg. 6, 7 and 8 encodes
the same probability distribution, i.e., PrS(x) = PrB(x),∀x.

Proof. Again, I give a proof by induction on the height of S.

• Base case. The height of SPN S is 0. In this case, S will be a single terminal node over
X and B will be a single observable node with decision stump AX constructed from the
terminal node by Lines 5-6 in Alg. 7. It is clear that PrS(x) = PrB(x),∀x.

• Induction step. Assume PrB(x) = PrS(x),∀x for any S with height ≤ k, where B is the
corresponding BN constructed by Alg. 6, 7 and 8 from S. Consider an SPN S with height
k + 1. Let R be the root of S and Ri, i ∈ 1 : l be the children of R in S. I consider the
following two cases:

– R is a product node. Let scope(Rt) = Xt, t ∈ 1 : l. Claim: there is no edge
between Si and Sj, i 6= j, where Si(Sj) is the sub-SPN rooted at Ri(Rj). If there is
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an edge, say, from vj to vi where vj ∈ Sj and vi ∈ Si, then scope(vi) ⊆ scope(vj) ⊆
scope(Rj). On the other hand, scope(vi) ⊆ scope(Ri). So I have ∅ 6= scope(vi) ⊆
scope(Ri)

⋂
scope(Rj), which contradicts the decomposability of the product node

R. Hence the constructed BN B will be a forest of l disconnected components, and
each component Bt will correspond to the sub-SPN St rooted at Rt,∀t ∈ 1 : l, with
height ≤ k. By the induction hypothesis I have PrBt(xt) = PrSt(xt),∀t ∈ 1 : l.
Consider the whole BN B, I have:

Pr
B

(x) =
∏
t

Pr
Bt

(xt) =
∏
t

Pr
St

(xt) = Pr
S

(x) (3.21)

where the first equation is due to the d-separation rule in BNs by noting that each
component Bt is disconnected from all other components. The second equation fol-
lows from the induction hypothesis. The last equation follows from the definition of
a product node.

– R is a sum node. In this case, due to the completeness of S, all the children of R
share the same scope as R. By the construction process presented in Alg. 6, 7 and 8,
there is a hidden variable H corresponding to R that takes l different values in B.
Let w1:l be the weights of the edges emanating from R in S . For the tth branch of
R, I use Ht to denote the set of hidden variables in B that also appear in Bt, and let
H−t = H\Ht, where H is the set of all hidden variables in B except H . First, I show
the following identity:

Pr
B

(x|H = ht) =
∑
ht

∑
h−t

Pr
B

(x,ht,h−t|H = ht) (3.22)

=
∑
ht

∑
h−t

Pr
B

(x,ht|H = ht,h−t) Pr
B

(h−t|H = ht) (3.23)

=
∑
ht

∑
h−t

Pr
B

(x,ht|H = ht) Pr
B

(h−t|H = ht) (3.24)

=
∑
ht

Pr
B

(x,ht|H = ht)
∑
h−t

Pr
B

(h−t|H = ht) (3.25)

=
∑
ht

Pr
B

(x,ht|H = ht) (3.26)

=
∑
ht

Pr
Bt

(x,ht) = Pr
Bt

(x) (3.27)
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Using this identity, I have

Pr
B

(x) =
l∑

t=1

Pr
B

(ht) Pr
B

(x|H = ht) (3.28)

=
l∑

t=1

wt Pr
Bt

(x) (3.29)

=
l∑

t=1

wt Pr
St

(x) (3.30)

= Pr
S

(x) (3.31)

Eq. 3.24 follows from the fact that X and Ht are independent of H−t given H = ht,
i.e., I take advantage of the CSI described by ADDs of X. Eq. 3.25 follows from the
fact that H−t appears only in the second term. Combined with the fact that H = ht is
given as evidence in B, this gives us the induced subgraph Bt referred to in Eq. 3.27.
Eq. 3.29 follows from Eq. 3.27 and Eq. 3.30 follows from the induction hypothesis.

Combing the base case and the induction step completes the proof for Thm. 13.

I now bound the size of B:

Theorem 14. |B| = O(N |S|), where BN B is constructed by Alg. 6, 7 and 8 from normal SPN
S over X1:N .

Proof. For each observable variable X in B, AX is constructed by first extracting from S the
induced sub-SPN SX that contains all nodes whose scope includes X and then contracting all
the product nodes in SX to obtain AX . By the decomposability of product nodes, each product
node in SX has out-degree 1 otherwise the original SPN S violates the decomposability property.
Since contracting product nodes does not increase the number of edges in SX , I have |AX | ≤
|SX | ≤ |S|.

For each hidden variable H in B, AH is a decision stump constructed from the internal sum
node corresponding to H in S. Hence, I have

∑
H AH ≤ |S|.

Now consider the size of the graph B. Note that only terminal nodes and sum nodes will have
corresponding variables in B. It is clear that the number of nodes in B is bounded by the number
of nodes in S . Furthermore, a hidden variable H points to an observable variable X in B iff X
appears in the sub-SPN rooted at H in S, i.e., there is a path from the sum node corresponding to
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H to one of the terminal nodes in X . For a sum node H (which corresponds to a hidden variable
H ∈ B) with scope size s, each edge emanated from H in S will correspond to directed edges in
B at most s times, since there are exactly s observable variables which are children of H in B.
It is clear that s ≤ N , so each edge emanated from a sum node in S will be counted at most N
times in B. Edges from product nodes will not occur in the graph of B, instead, they have been
counted in the ADD representations of the local CPDs in B. So again, the size of the graph B is
bounded by

∑
H scope(H)× deg(H) ≤∑H Ndeg(H) ≤ 2N |S|.

There are N observable variables in B. So the total size of B, including the size of the graph
and the size of all the ADDs, is bounded by N |S|+ |S|+ 2N |S| = O(N |S|).

I give the time complexity of Alg. 6, 7 and 8.

Theorem 15. For any normal SPN S over X1:N , Alg. 6, 7 and 8 construct an equivalent BN in
time O(N |S|).

Proof. First consider Alg. 6. Alg. 6 recursively visits each node and its children in S if they have
not been visited (Lines 6-10). For each node v in S, Lines 7-9 cost at most 2 · out-degree(v). If
v is a sum node, then Lines 11-17 create a hidden variable and then connect the hidden variable
to all observable variables that appear in the sub-SPN rooted at v, which is clearly bounded by
the number of all observable variables, N . So the total cost of Alg. 6 is bounded by

∑
v 2 ·

out-degree(v)+
∑

v is a sum node N ≤ 2V(S)+2E(S)+NV(S) ≤ 2|S|+N |S| = O(N |S|). Note
that I assume that inserting an element into a set can be done in O(1) by using hashing.

The analysis for Alg. 7 and 8 follows the same analysis as in the proof for Thm. 14. The time
complexity for Alg. 7 and Alg. 8 is then bounded by N |S|+ |S| = O(N |S|).

Proof of Thm. 2. The combination of Thm. 13, 14 and 15 proves Thm. 2.

Proof of Corollary. 3. Given a complete and consistent SPN S, I can first transform it into a
normal SPN S ′ with |S ′| = O(|S|2) by Thm. 5 if it is not normal. After this the analysis follows
from Thm. 2.

3.3 Bayesian Network to Sum-Product Network

It is known that a BN with CPDs represented by tables can be converted into an SPN by first
converting the BN into a junction tree and then translating the junction tree into an SPN. The
size of the generated SPN, however, will be exponential in the tree-width of the original BN
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since the tabular representation of CPDs is ignorant of CSI. As a result, the generated SPN loses
its power to compactly represent some BNs with high tree-width, yet, with CSI in its local CPDs.

Alternatively, one can also compile a BN with ADDs into an arithmetic circuit (AC) [5] and
then convert an AC into an SPN [21]. However, in [5]’s compilation approach, the variables
appearing along a path from the root to a leaf in each ADD must be consistent with a pre-
defined global variable ordering. The global variable ordering, may, to some extent restrict the
compactness of ADDs as the most compact representation for different ADDs normally have
different topological orderings. Interested readers are referred to [5] for more details on this
topic.

In this section, I focus on BNs with ADDs that are constructed using Alg. 7 and 8 from nor-
mal SPNs. I show that when applying VE to those BNs with ADDs I can recover the original
normal SPNs. The key insight is that the structure of the original normal SPN naturally defines
a global variable ordering that is consistent with the topological ordering of every ADD con-
structed. More specifically, since all the ADDs constructed using Alg. 7 are induced sub-SPNs
with contraction of product nodes from the original SPN S, the topological ordering of all the
nodes in S can be used as the pre-defined variable ordering for all the ADDs.

40



Algorithm 9 Multiplication of two symbolic ADDs, ⊗
Input: Symbolic ADD AX1 , AX2

Output: Symbolic ADD AX1,X2 = AX1 ⊗AX2

1: R1 ← root of AX1 , R2 ← root of AX2

2: if R1 and R2 are both variable nodes then
3: if R1 = R2 then
4: Create a node R = R1 into AX1,X2

5: for each r ∈ dom(R) do
6: Ar

X1
← Ch(R1)|r

7: Ar
X2
← Ch(R2)|r

8: Ar
X1,X2

← Ar
X1
⊗Ar

X2

9: Link Ar
X1,X2

to the rth child of R in AX1,X2

10: end for
11: else
12: AX1,X2 ← create a symbolic node ⊗
13: Link AX1 and AX2 as two children of ⊗
14: end if
15: else if R1 is a variable node and R2 is ⊗ then
16: if R1 appears as a child of R2 then
17: AX1,X2 ← AX2

18: AR1
X1,X2

← AX1 ⊗AR1
X2

19: else
20: Link AX1 as a new child of R2

21: AX1,X2 ← AX2

22: end if
23: else if R1 is ⊗ and R2 is a variable node then
24: if R1 appears as a child of R2 then
25: AX1,X2 ← AX1

26: AR2
X1,X2

← AX2 ⊗AR2
X1

27: else
28: Link AX2 as a new child of R1

29: AX1,X2 ← AX1

30: end if
31: else
32: AX1,X2 ← create a symbolic node ⊗
33: Link AX1 and AX2 as two children of ⊗
34: end if
35: Merge connected product nodes in AX1,X2
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Algorithm 10 Summing-out a hidden variable H from A using AH , ⊕
Input: Symbolic ADDs A and AH

Output: Symbolic ADD with H summed out
1: if H appears in A then
2: Label each edge emanating from H with weights obtained from AH

3: Replace H by a symbolic ⊕ node
4: end if

In order to apply VE to a BN with ADDs, I need to show how to apply two common opera-
tions used in VE, i.e., multiplication of two factors and summing-out a hidden variable, on ADDs.
For my purpose, I use a symbolic ADD as an intermediate representation during the inference pro-
cess of VE by allowing symbolic operations, such as +,−,×, / to appear as internal nodes in
ADDs. In this sense, an ADD can be viewed as a special type of symbolic ADD where all the in-
ternal nodes are variables. The same trick was applied by [5] in their compilation approach. For
example, given symbolic ADDs AX1 over X1 and AX2 over X2, Alg. 9 returns a symbolic ADD
AX1,X2 over X1, X2 such that AX1,X2(x1, x2) , (AX1 ⊗AX2) (x1, x2) = AX1(x1) × AX2(x2).
To simplify the presentation, I choose the inverse topological ordering of the hidden variables in
the original SPN S as the elimination order used in VE. This helps to avoid the situations where
a multiplication is applied to a sum node in symbolic ADDs. Other elimination orders could be
used, but a more detailed discussion of sum nodes is needed.

Given two symbolic ADDs AX1 and AX2 , Alg. 9 recursively visits nodes in AX1 and AX2

simultaneously. In general, there are 3 cases: 1) the roots ofAX1 andAX2 are both variable nodes
(Lines 2-14); 2) one of the two roots is a variable node and the other is a product node (Lines
15-30); 3) both roots are product nodes or at least one of them is a sum node (Lines 31-34). I
discuss these 3 cases.

If both roots of AX1 and AX2 are variable nodes, there are two subcases to be considered.
First, if they are nodes labeled with the same variable (Lines 3-10), then the computation related
to the common variable is shared and the multiplication is recursively applied to all the children,
otherwise I simply create a symbolic product node ⊗ and link AX1 and AX2 as its two children
(Lines 11-14). Once I findR1 ∈ AX1 andR2 ∈ AX2 such thatR1 6= R2, there will be no common
node that is shared by the sub-ADDs rooted atR1 andR2. To see this, note that Alg. 9 recursively
calls itself as long as the roots of AX1 and AX2 are labeled with the same variable. Let R be the
last variable shared by the roots ofAX1 andAX2 in Alg. 9. Then R1 and R2 must be the children
of R in the original SPN S. Since R1 does not appear in AX2 , then X2 6∈ scope(R1), otherwise
R1 will occur in AX2 and R1 will be a new shared variable below R, which is a contradiction to
the fact that R is the last shared variable. Since R1 is the root of the sub-ADD of AX1 rooted at
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R, hence no variable whose scope contains X2 will occur as a descendant of R1, otherwise the
scope of R1 will also contain X2, which is again a contradiction. On the other hand, each node
appearing in AX2 corresponds to a variable whose scope intersects with {X2} in the original
SPN, hence no node in AX2 will appear in AX1 . The same analysis also applies to R2. Hence no
node will be shared between AX1 and AX2 .

If one of the two roots, say, R1, is a variable node and the other root, say, R2, is a product
node, then I consider two subcases. If R1 appears as a child of R2 then I recursively multiply
R1 with the child of R2 that is labeled with the same variable as R1 (Lines 16-18). If R1 does
not appear as a child of R2, then I link the ADD rooted at R1 to be a new child of the product
node R2 (Lines 19-22). Again, let R be the last shared node between AX1 and AX2 during the
multiplication process. Then bothR1 andR2 are children ofR, which corresponds to a sum node
in the original SPN S. Furthermore, both R1 and R2 lie in the same branch of R in S. In this
case, since scope(R1) ⊆ scope(R), scope(R1) must be a strict subset of scope(R) otherwise I
would have scope(R1) = scope(R) and R1 will also appear in AX2 , which contradicts the fact
that R is the last shared node between AX1 and AX2 . Hence here I only need to discuss the two
cases where either their scope disjoint (Line 16-18) or the scope of one root is a strict subset of
another (Line 19-22).

If the two roots are both product nodes or at least one of them is a sum node, then I simply
create a new product node and link AX1 and AX2 to be children of the product node. The
above analysis also applies here since sum nodes in symbolic ADD are created by summing out
processed variable nodes and I eliminate all the hidden variables using the inverse topological
ordering.

The last step in Alg. 9 (Line 35) simplifies the symbolic ADD by merging all the connected
product nodes without changing the function it encodes. This can be done in the following way:
suppose⊗1 and⊗2 are two connected product nodes in symbolic ADDA where⊗1 is the parent
of ⊗2, then I can remove the link between ⊗1 and ⊗2 and connect ⊗1 to every child of ⊗2. It is
easy to verify that such an operation will remove links between connected product nodes while
keeping the encoded function unchanged.

To sum-out one hidden variable H , Alg. 10 simply replaces H in A by a symbolic sum node
⊕ and labels each edge of ⊕ with weights obtained from AH .

I now present the Variable Elimination (VE) algorithm in Alg. 11 used to recover the original
SPN S, taking Alg. 9 and Alg. 10 as two operations ⊗ and ⊕ respectively.

In each iteration of Alg. 11, I select one hidden variable H in ordering π, multiply all the
ADDs AX in which H appears using Alg. 9 and then sum-out H using Alg. 10. The algorithm
keeps going until all the hidden variables have been summed out and there is only one symbolic
ADD left in Φ. The final symbolic ADD gives us the SPN S which can be used to build BN B.
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Algorithm 11 Variable Elimination for BN with ADDs
Input: BN B with ADDs for all observable variables and hidden variables
Output: Original SPN S

1: π ← the inverse topological ordering of all the hidden variables present in the ADDs
2: Φ← {AX | X is an observable variable}
3: for each hidden variable H in π do
4: P ← {AX | H appears in AX}
5: Φ← Φ\P ∪ {⊕H ⊗A∈P A}
6: end for
7: return Φ

Note that the SPN returned by Alg. 11 may not be literally equal to the original SPN since dur-
ing the multiplication of two symbolic ADDs I effectively remove redundant nodes by merging
connected product nodes. Hence, the SPN returned by Alg. 11 could have a smaller size while
representing the same probability distribution. An example is given in Fig. 3.4 to illustrate the
recovery process. The BN in Fig. 3.4 is the one constructed in Fig. 3.3.

H = AX1

X1 X1

0.6 0.4 0.9 0.1

h1

h2
h3

x1 x̄1 x1 x̄1
⊗

HAX2 =

X2 X2

0.3 0.7 0.2 0.8

h1
h2

h3

x2 x̄2 x2 x̄2

H

⊗ ⊗ ⊗X2 X1 X2 X1

0.3 0.7 0.6 0.4 0.2 0.8 0.9 0.1

h1
h2

h3

x2 x̄2 x1 x̄1 x2 x̄2 x1 x̄1

Multiplication

+

× × ×

X2 X1 X2 X1

(0.3, 0.7) (0.6, 0.4) (0.2, 0.8) (0.9, 0.1)

4
7 6

35

9
35

Summing Out

Figure 3.4: Multiply AX1 and AX2 that contain H using Alg. 9 and then sum out H by applying
Alg. 10. The final SPN is isomorphic with the SPN in Fig. 3.3.

Note that Alg. 9 and 10 apply only to ADDs constructed from normal SPNs by Alg. 7 and 8
because such ADDs naturally inherit the topological ordering of sum nodes (hidden variables)
in the original SPN S. Otherwise I need to pre-define a global variable ordering of all the sum
nodes and then arrange each ADD such that its topological ordering is consistent with the pre-
defined ordering. Note also that Alg. 9 and 10 should be implemented with caching of repeated
operations in order to ensure that directed acyclic graphs are preserved. Alg. 11 suggests that
an SPN can also be viewed as a history record or caching of the sums and products computed
during inference when applied to the resulting BN with ADDs.

I now bound the run time of Alg. 11.

Theorem 16. Alg. 11 builds SPN S from BN B with ADDs in O(N |S|).
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Proof. First, it is easy to verify that Alg. 9 takes at most |AX1| + |AX2| operations to compute
the multiplication of AX1 and AX2 . More importantly, the size of the generated AX1,X2 is also
bounded by |S|. This is because all the common nodes and edges inAX1 andAX2 are shared (not
duplicated) in AX1,X2 . Also, all the other nodes and edges which are not shared between AX1

and AX2 will be in two branches of a product node in S, otherwise they will be shared by AX1

and AX2 as they have the same scope which contain both X1 and X2. This means that AX1,X2

can be viewed as a sub-SPN of S induced by the node set {X1, X2} with some product nodes
contracted out. So I have |AX1,X2| ≤ |S|.

Now consider the for loop (Lines 3-6) in Alg. 11. The loop ends once I’ve summed out all
the hidden variables and there is only one ADD left. Note that there may be only one ADD in
Φ during some intermediate steps, in which case I do not have to do any multiplication. In such
steps, I only need to perform the sum out procedure without multiplying ADDs. Since there
are N ADDs at the beginning of the loop and after the loop I only have one ADD, then there is
exactly N − 1 multiplications during the for loop, which costs at most (N − 1)|S| operations.
Furthermore, in each iteration there is exactly one hidden variable being summed out. So the
total cost for summing out all the hidden variables in Lines 3-6 is bounded by |S|.

Overall, the operations in Alg. 11 are bounded by (N − 1)|S|+ |S| = O(N |S|).

Proof of Thm. 4. Thm. 16 and the analysis above prove Thm. 4.
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Chapter 4

Discussion

Thm. 2 together with Thm. 4 establish a relationship between BNs and SPNs: SPNs are no more
powerful than BNs with ADD representation. Informally, a model is considered to be more
powerful than another if there exists a distribution that can be encoded in polynomial size in
some input parameter N , while the other model requires exponential size in N to represent the
same distribution. The key is to recognize that the CSI encoded by the structure of an SPN as
stated in Proposition. 3.20 can also be encoded explicitly with ADDs in a BN. I can also view an
SPN as an inference machine that efficiently records the history of the inference process when
applied to a BN. Based on this perspective, an SPN is actually storing the calculations to be
performed (sums and products), which allows online inference queries to be answered quickly.
The same idea also exists in other fields, including propositional logic (d-DNNF) and knowledge
compilation (AC).

The constructed BN has a simple bipartite structure, no matter how deep the original SPN is.
Indeed, my constructive algorithm gives us a way to relate the depth of an SPN and the tree-width
of the corresponding BN. Without loss of generality, let’s assume that product layers alternate
with sum layers in the SPN I am considering. Let the height of the SPN, i.e., the longest path
from the root to a terminal node, be K. By my assumption, there will be at least bK/2c sum
nodes in the longest path. Accordingly, in the BN constructed by Alg. 6, the observable variable
corresponding to the terminal node in the longest path will have in-degree at least bK/2c. Hence
after moralizing the BN into an undirected graph, the clique-size of the moral graph is bounded
below by bK/2c + 1. Note that for any undirected graph the clique-size minus 1 is always a
lower bound of the tree-width. I then reach the conclusion that the tree-width of the constructed
BN has a lower bound of bK/2c. In other words, the deeper the SPN, the larger the tree-width of
the constructed BN and the more complex are the probability distributions that can be encoded.
This observation is consistent with the conclusion drawn in [7] where the authors prove that there
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exist families of distributions that can be represented much more efficiently with a deep SPN
than with a shallow one, i.e. with substantially fewer hidden internal sum nodes. I reinforce this
observation and make it more precise by pointing out that the depth of an SPN has a direct impact
on the tree-width of the corresponding BN, which decides the set of probability distributions that
can be represented compactly.

In the literature, high tree-width is usually used to indicate a high inference complexity, but
this is not always true as there may exist lots of CSI between variables, which can help to reduce
inference complexity. CSI is precisely what enables SPNs and BNs with ADDs to compactly
represent and tractably perform inference in distributions with high tree-width.

Although I mainly focus on the relationship between SPNs and BNs, it is straightforward
to extend the conclusions obtained in this thesis to the broader family of probabilistic graphical
models, including both BNs and MNs. The key observation here lies in the fact that I can
always convert a given BN into an MN using moralization [11]. Again, for the potential function
associated with each maximal clique in MN, I can achieve it by multiplying the corresponding
ADDs using Alg. 9. Here I give the following algorithm used to create both the structure and the
potential functions of an MN given an SPN:

Algorithm 12 SPN to MN
Input: normal SPN S
Output: MNM

1: Apply Alg. 6, Alg. 7 and Alg. 8 to create an BN B from S
2: M← B
3: // Moralization
4: for each observable variable Xn ∈M do
5: HXn ← {H|H ∈MV , (H,Xn) ∈ME}
6: for Hi, Hj ∈ HXn , i 6= j do
7: Create an undirected edge between Hi and Hj

8: end for
9: end for

10: Change all the directed edges inM to undirected edges
11: // Build potential function
12: for each observable variable Xn ∈M do
13: AXn ← {AH |H ∈MV , (H,Xn) ∈ME}

⋃{AXn}
14: ψXn ← ⊗AXn

15: end for
16: return M with potentials represented in ADD ψXn , ∀n
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In summary, I create an MN from an SPN by first converting the SPN into a BN, and then
I convert the BN into an MN. Here again, the simple bipartite graphical structure of the corre-
sponding BN helps me to count and construct all the maximal cliques and their corresponding
potential functions by enumerating all the observable variables since there is a one-to-one corre-
spondence between maximal cliques and observable variables in the directed bipartite BN.

I now bound the size of the constructed MN, including both the size of all the potential func-
tions, ψXn ,∀n, and the size of the graph, |M|. Let’s first consider the size of all the potential
functions. Since there is a one-to-one correspondence between observable variables and max-
imal cliques in the graph, I count all the potential functions by enumerating all the observable
variables. Let Xn be an observable variable and AXn be its ADD. Lines 13-14 in Alg. 12 col-
lect both the ADD of Xn and its neighbors and then multiply them into a single ADD using
Alg. 9. As analyzed before, the size of the resulting ADD is bounded by the sum of sizes of the
individual ADDs, which is given by |AXn| +

∑
H AH ≤ |S| + |S| = 2|S|. Since there are N

observable variables, the total size of the potential functions encoded in ADDs is bounded by
N × 2|S| = O(N |S|). To bound the size of the graphM, I only need to consider the number
of undirected edges added during the moralization step since we know the size of B is bounded
by O(N |S|). Let VS be the total number of sum nodes in the original SPN. In the worst case,
there will be exactly VS + 1 nodes in each maximal clique inM, hence the edges added during
the moralization is V 2

S for each maximal clique, leading to a bound on the total number of edges
added of O(NV 2

S ). In all, the size of the graph M is O(N |S| + NV 2
S ). So the total size of

M, including both the size of the graph and the size of all potential functions, is bounded by
N |S| + N |S| + NV 2

S = O(N |S| + NV 2
S ). Again, I construct an MN whose size is bounded

by a polynomial function of the size of the original SPN, which indicates that SPNs are no more
powerful than MNs.

So far I have presented constructive algorithms to convert an SPN into a BN and/or an MN
whose size is bounded by a polynomial function of the original SPN. The other direction is clear:
given a BN or MN, we can first convert it into a junction tree and then translate the junction
tree into an SPN. The size of the resulting SPN is exponential in the tree-width of the origi-
nal BN/MN, which again, indicates that inference is equally efficient in SPNs and probabilistic
graphical models (PGMs).
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Chapter 5

Conclusion

In this thesis, I establish a precise connection between BNs and SPNs by providing constructive
algorithms to transform between these two models. To simplify the proof, I introduce the notion
of normal SPN and describe the relationship between consistency and decomposability in SPNs.
I analyze the impact of the depth of SPNs onto the tree-width of the corresponding BNs. My
work also provides a new direction for future research about SPNs and BNs. Structure and pa-
rameter learning algorithms for SPNs can now be used to indirectly learn BNs with ADDs. In the
resulting BNs, correlations are not expressed by links directly between observed variables, but
rather through hidden variables that are ancestors of correlated observed variables. The structure
of the resulting BNs can be used to study probabilistic dependencies and causal relationships
between the variables of the original SPNs. It would also be interesting to explore the opposite
direction since there is already a large literature on parameter and structure learning for BNs.
One could learn a BN from data and then exploit CSI to convert it into an SPN.
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