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Abstract

Recent years has seen a surge of interest in building learning machines through adver-
sarial training. One type of adversarial training is through a discriminator or an auxiliary
classifier, such as Generative Adversarial Networks (GANs). For example, in GANs, the
discriminator aims to tell the difference between true and fake data. At the same time, the
generator aims to generate some fake data that deceives the discriminator. Another type
of adversarial training is with respect to the data. If the samples that we learn from are
perturbed slightly, a learning machine should still be able to perform tasks such as classi-
fication relatively well, although for many state-of-the-art deep learning models this is not
the case. People build robust learning machines in order to defend against the attacks on
the input data.

In most cases, the formulation of adversarial training is through minimax optimiza-
tion, or smooth games in a broader sense. In minimax optimization, we have a bi-variate
objective function. The goal is to minimize the objective function with respect to one vari-
able, and to maximize the objective function with respect to another. Historically, such
a problem has been widely studied with convex-concave functions, where saddle points
are a desirable concept. However, due to non-convexity, results with convex-concave func-
tions would often not apply to adversarial training problems. It becomes important to
understand the theory of non-convex minimax optimization in these models.

There are mainly two focuses within recent minimax optimization research. One is
on the solution concepts: what is a desirable solution concept that is both meaningful in
practice and easy to compute? Unfortunately, there is no definite answer for it, especially
in GAN training. Besides, since non-convex minimax optimization includes non-convex
minimization as a special case, there is no known efficient algorithm that can find global
solutions. Therefore, local solution concepts, as surrogates, are necessary. Usually, people
use local search methods such as gradient algorithms to find a good solution. So such
concept must be at least stationary (critical) points. Based on the notion of stationarity,
a solution concept called local minimax points is recently proposed. Local minimax points
include local saddle points and they are stationary points at the same time. Moreover,
they correspond to the well-known Gradient Descent Ascent (GDA) algorithm to some
extent. I provide a comprehensive analysis of local minimax points, such as their relation
with global solutions and other local solution concepts, their optimality conditions and the
stability of gradient algorithms at local minimax points. My results show that although
local minimax points are good surrogates of global solutions in e.g. quadratic functions,
we may have to go beyond this minimax formulation since gradient algorithms may not be
stable near local minimax points.



Another focus of recent research in the area of minimax optimization is on the algo-
rithms. Including GDA, many old and new algorithms are proposed or analyzed for non-
convex minimax optimization. Convergence rates and lower bounds of gradient algorithms
are given, improved and compared. Compared to these noticeable contributions, my work
focuses more on the stability side of these algorithms, as it is widely-known that gradient
algorithms often exhibit some cyclic behaviour around a desirable solution in e.g. GAN
training. I use the simplest bilinear case as an illustrative model for understanding the
stability. I show that for a wide array of gradient algorithms, updating the two variables
one-by-one is often more stable than updating them simultaneously. My stability analysis
for bilinear functions can also be extended to general non-linear smooth functions, which
allows us to distinguish hyper-parameter choices for more stable algorithms.

Finally, I propose new algorithms for minimax optimization. Most algorithms use gra-
dient information for local search, with few exceptions that use the Hessian information as
well to improve stability. I give a synthetic view of the convergence rates of current algo-
rithms that use second-order information, and propose Newton-type methods for minimax
optimization. My methods alleviate the problem of ill-conditioning in a local neighbor-
hood, which is inevitable for gradient algorithms. This claim is proved by my theory and
verified in my experiments.
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Chapter 1

Introduction

Deep neural networks have become the default model for extracting features from data,
due to their power to approximate arbitrary functions. Deep models are versatile: people
use them to classify images, to embed words, to take actions and to generate samples.
In the recent decade, there has been successful frameworks that combine several deep
neural networks to perform a task, including Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) and Domain Adversarial Neural Networks (DANNs) (Ganin et al.,
2016). Such frameworks are known as adversarial training models: there is an auxiliary
adversarial network that rectifies the behavior of the main network of interest when it does
not perform well.

Another recent trend of modern machine learning is regarding its robustness w.r.t. data.
Since neural networks are often over-parametrized, there is a danger that they are over-
fitting and only memorizing the dataset. If the samples are slightly perturbed, then the
performance of a neural network could be severely degraded (Madry et al., 2018). This
limits the application of deep models into the real world: imagine a self-driving car can
distinguish pedestrians and stop signs during training, but if the performance decreases
quickly at a slightly different scene not met before, then such a system could not be used
in real applications. In order for a deep neural network to perform well with perturbation
of data, there has been a series of research works on robust deep models (e.g. Goodfellow
et al., 2015; Madry et al., 2018; Cohen et al., 2019).

Undoubtedly, optimization is the backbone of machine learning in terms of searching for
good model parameters. In deep learning, model parameters are often vectors in Euclidean
space, and thus continuous optimization is needed. Different from conventional optimiza-
tion where the focus is mainly on minimizing a single convex function, there are two new



challenges brought by modern machine learning: the objective function is non-convex and
the problem is minimax optimization. Specifically, for the applications I mentioned above,
different variables are competing with each other: for the same objective function, we may
want to maximize it w.r.t. one variable, and minimize it w.r.t. another. The non-convexity
of deep models adds to the difficulty of understanding such optimization, which is still a
popular research topic.

In this chapter, I will first introduce adversarial training models which are recently
proposed, including learning machines that are robust to sample perturbation. Then I
abstract away the exact formulation and define the general optimization problem. I will
study this problem in later chapters.

1.1 Adversarial Training Models

In this section I introduce a few adversarial training models, including Generative Adversar-
ial Networks and Domain Adversarial Training, and also an adversarial training procedure
for achieving robustness against perturbations of the input. For the first two types of mod-
els, there is an auxiliary adversary that helps the main task by doing some discrimination
or classification. For the adversarial training procedure, the adversary instead perturbs the
samples so as to make sure the model performs well against the worst case perturbation.

1.1.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have been a very popular model for generating
images from Gaussian noise (Goodfellow et al., 2014). The basic design of a GAN ar-
chitecture has a generator G(0,,-) and a discriminator D(fg, -), which are neural network
functions, with parameters 6, and ¢;. The generator takes a Gaussian noise as input and
outputs a synthetic image. The discriminator takes an image and determines whether it
is a real image or is generated from the generator. Through optimization, we want the
generator to generate some images that are very close to the real images such that the
discriminator cannot tell the difference. This is a minimax game, which can be formulated
as:

minmax V' (0,,04) := Eyp... [l0g D(84, )] + E,p. [log(1 — D(64, G(6,, 2)))], (1.1)

0y 04

where pqata 18 the real distribution and p, is a latent distribution such that the push-
forward G'#p. would approximate the distribution pgata. D(64, -), called the discriminator,

2



D

Real? Fake?

Figure 1.1: An illustration of GAN training. p, is a latent distribution and the generator
G takes a sample from p, and generate some image. The discriminator tells whether the
image is synthetic or real. The generated image sample is taken from StyleGAN (Karras
et al., 2019).

is a function from an image to a probability between 0 and 1. According to this objective,
for  ~ pgata, the discriminator would prefer D(6,, z) = 1 and for z ~ p, the discriminator
would prefer D (6,4, G(0,,2)) = 0. Therefore, the role of the discriminator is to distinguish
real data pgata from synthetic data G#p.. On the other hand, the generator tries to
fool the discriminator such that the discriminator cannot tell the difference. Figure 1.1
gives an illustration of this learning scheme. Ideally, a successful generator would give
D(84,2) = D(04,G(8,,2)) = 0.5 for any z ~ p, and & ~ Pdata-

If the discriminator is expressive enough, then the inner maximization problem has the
following solution(s):

D(63(0,), ) = pg(xf;djfjffw(x), (1.2)

where p, is the distribution of G(6,, z) with z ~ p, and x is on the support supp(pdata) U
supp(p,). We use 607(6,) to denote that the optimal value ¢ depends on the choice of 6,.
With this notation, we have

V(edaeg) < V(G;(@Q),Hg). (1-3)

Suppose the inner maximization problem is solved. We need to find parameter 6 such
that for any parameter ¢,, we have:

Vi(0a(8y),65) = V(64(6,),0,)- (1.4)



In fact, the minimization of V(#5(6,),0,) is equivalent to the minimization of the
Jensen-Shannon (JS) divergence between p, and pgata. It is possible to replace the JS
divergence with other discrepancy terms between two distributions, such as the broader
class of f-divergences (Nowozin et al., 2016), the Wasserstein distance (Arjovsky et al.,
2017), the maximum mean discrepancy (Li et al., 2017) and the Sobolev integral proba-
bility metric (Mroueh et al., 2018). These generalizations follow the same pattern as (1.3)
and (1.4), i.e., we first optimize a discriminator fixing the generator, and then minimize the
maximum over the generator. This can be interpreted as the problem of finding a global
minimax point, as I will demonstrate in Section 2.1.

1.1.2 Domain Adversarial Training

Similar to GANs, domain adversarial training of neural networks (DANN, Ganin et al.,
2016) is another type of adversarial training models that aims to solve the problem of
unsupervised domain adaptation. In this problem, there is a source domain (i.e. a source
distribution), for which we know the labels, and a target domain (i.e. a target distribution),
where we only have unlabeled samples. For example, we could have labeled synthetic
images generated from computer graphics as a source domain, and unlabeled real images
taken from the real world as a target domain. The goal of unsupervised domain adaptation
is to find a feature embedding G(f,, ), usually represented with a neural network, such
that the push-forwards of the source and target distributions are similar, i.e.,

where ps and pr denote the (joint) source and target distributions, and pg|, and pr|,
denote the marginal source and target distributions on the input. G#ps|. and G#pr|.
denote the push-forward distributions of pg|, and pr|, separately. Based on this feature
embedding, any classifier that performs well on the source domain should perform well on
the target domain.

Denote X as the input space and Z as the feature space (a subset of a Euclidean space).
The framework of DANN has three parts: a feature extractor G : X — Z as we mentioned
before; a classifier C' that takes a hidden vector in Z and outputs a label; a discriminator D
which tells whether a hidden vector in Z is from the source domain or the target domain.
Through optimization, we want the feature extractor to satisfy (1.5), and also the classifier
C to be able to predict the label from the input, no matter whether it is from the source
domain or the target domain. In such a case, the discriminator D would not be able to
tell whether a feature is from the source domain or the target domain. This is a minimax



Figure 1.2: An illustration of the DANN framework. The feature embedding G encodes
samples from the source and target domains in such a way that the discriminator D would
not be able to tell the difference. Therefore, a good source classifier C' based on the feature

embedding G can also be applied to the target domain. Images taken from Bermitdez-
Chacén et al. (2019).

game, which can be formulated as:

H;,Hcl rrszx V(0,0 0q) = E(z,y)~ps (y,C (6., G(0y,2)))]+
+ A (Eampg). [108(D(04, G0y, )))] + Eanpyp [log(1 — D(0a, G(6,, 2)))]) ,

where £(y,7) is a loss function that tells how good the prediction g is compared to the
ground truth y, and we use 04, 0., 0, to denote the parameters of the neural network
functions D, C' and G.

We note that the second line of (1.6) resembles the GAN formulation in (1.1). If the
discriminator is expressive enough, then the inner maximization problem has the following
solution(s):

(1.6)

(G#psla)(2)
(G#psl.)(2) + (G#prl.)(2)’
where G#ps|, and G#pr|, are the distributions of G(0,, ) with = ~ pg|, and = ~ prl,

respectively, and z is on the support supp(G#psl|.) U supp(G#pr|.). The optimal value
6% depends on the choice of 6, and we have:

V(04,0,,0.) < V(0:(6,),0,.0.). (1.8)

D(63(6,),2) = (1.7)



Suppose the inner maximization problem is solved. We need to find parameters 6 and 6
such that

V(03(65), 05, 0:) = V(65(0), 05, 62), (1.9)
for any parameters 6, and 6.. The minimization of V(05(6,),6,,6.) is equivalent to the
following problem:

Ienié)n E(wy)~ps [0y, C(0c, G(04, 2)))] + ADys(G#ps|a| | GHprla), (1.10)

where Djg is the Jensen—Shannon (JS) divergence between two distributions. Namely, we
are minimizing both the classification loss on the source domain, and the JS divergence
between the feature embedding of the source domain and the target domain. This has
close relation with the domain adaptation theory by Ben-David et al. (2010).

There are many follow-up works after Ganin et al. (2016) on unsupervised domain
adaptation, using adversarial training, such as Shu et al. (2018), Long et al. (2018), Hoffman
et al. (2018), Zhang et al. (2019), Acuna et al. (2021), and Shen et al. (2018). Specifically,
Acuna et al. (2021) consider generalizing the use of JS divergence to the more general f-
divergences, and Shen et al. (2018) consider replacing the JS divergence with Wasserstein
distance. In these works, the parameters are solved through a minimax game, similar to

(1.6), (1.8) and (1.9).

1.1.3 Adversarial Robustness

Deep neural networks have been more and more widely used in many areas of machine
learning, such as computer vision and natural language processing. They are powerful
models for feature embedding and classification. At the same time, they are fragile. It has
been observed that for many trained neural network classifiers (Szegedy et al., 2014), small
perturbations of the samples would decrease the performance significantly (see Figure 1.3),
which is undesirable for real-life tasks such as autonomous driving. Efficient attack methods
such as Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) and multi-step
projected gradient descent (Madry et al., 2018), and the corresponding defense methods
for robust neural networks have been designed. Specifically, Cohen et al. (2019) give
certified robustness through the method of randomized smoothing.

The attack and defense w.r.t. the sample perturbation can be formulated as a minimax
game, similar to (1.1) and (1.6). In such a game, the defender aims to find a robust neural
network that can classify samples for any small perturbations, and the attacker aims to find
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Figure 1.3: Deep neural networks are fragile under small adversarial perturbations in the
sense that the prediction label changes even though the image barely changes from human
eyes. Image taken from Madry (2019).

the worst small perturbations given a neural network. Mathematically, it can be written
as:

N By ) paea [ £y, O (6, 2 +9))], (1.11)

where pqata is the sample distribution, ¢(y,¢) is a loss function that tells how good the
prediction ¢ is compared to the ground truth y, C(0,z) is a classification neural network
with parameter § and sample x, and S is the set of allowed perturbations. Usually, S can
be ¢5 or ¢, norm balls.

The task of training a robust classifier can be treated as solving (1.11) in the following
way. For a given parameter ¢, we find the worst perturbation (possibly set-valued) function
0%(0,-) : supp(pdata) — S, such that:

E(x’y)NPdata [Iglggg(y’ C(g’ x + 5))] S E(mzy)’vpdata [E(y, 0(9, x + 6*<97 xz, y)))]? (112)

this is equivalent to saying that given 6, for any (x,y) € supp(pgata), we have:

max {(y, C(0,x +0)) < Uy, C (0,2 + (0, 2,y))). (1.13)

After the worst-case perturbation function is found, we want to find an optimal classifier
0* such that for any 6, the following holds:

E(%Z/)diata [6(% C<07 x + 5*(97 xz, y)))] Z E(m:y)’\’pdata [E(ya O(‘g*v T + 5*(9*7 z, y)))] (1'14)



What we have mentioned in the problem above is making a perturbation for each
sample. It is also possible to treat the samples as a distribution and study the distribution
shift. This is called distributional robust optimization (DRO). Sinha et al. (2018) proposed
measuring the perturbation with Wasserstein distance, and the formulation can be written
as:

mein max DRO(0,p) := E¢zy)~pll(y, C(0,x))] — YW (D, Pdata) (1.15)

where W is the Wasserstein distance (see e.g. Sinha et al. (2018)), C'(6,-) is the model
classifier given an input, and p > 0, v > 0 are hyperparameters. In such a formulation,
we first find an adversarially perturbed distribution and then find the parameter 6 for
(certified) robustness. Namely, we find the adversarial distribution p*(#) such that for any
distribution p, we have:

DRO(6, p) < DRO(0, p*(0)), (1.16)
and then we find a robust model parameter #* such that:

DRO(6, p*(#)) > DRO(6*, p*(9%)). (1.17)

1.2 Minimax Optimization

From the examples above, one can abstract away the exact task and focus on the opti-
mization problem. In general, we have a smooth function f : X x ) — R and the minimax
game is written as:

i . 1.1
min max f(z, y) (1.18)
The domains of variables X and ) can be polymorphic. For example, for GANs and
DANNSs, z and y are parameters of neural networks, and thus A and ) are Euclidean

spaces. For adversarial robustness in (1.11), ) is the set of functions whose values are
bounded.

While the problem (1.18) has been studied a long while ago for convex-concave functions
(Nemirovsky and Yudin, 1983), recent tasks impose new challenges for the non-convex
settings. Since neural network functions are non-convex, knowledge of optimization for
convex problems cannot be applied on the more general problem (1.18).

There are mainly two questions regarding the minimax game (1.18). One is:
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What is the solution we are trying to find?

From our examples in Section 1.1, the problem (1.18) is solved as bi-level optimization.
Given z, one finds the optimal variable y*(x) such that:

fla,y) < flz,y" (), Yy € D, (1.19)
and then f(x,y*(x)) is minimized so that the minimizer x* can be found:
fla,y™(2) = f(a®,y" (7)), Vo € X. (1.20)

As we will see in Section 2.1, the solution (z*,y*(z*)) is known as the global minimax
point. Another important question is:

What is a good algorithm for finding the solution?

If we constrain the definition of “a solution” to be global minimax points, there is no
efficient algorithm for it in general for nonconvex-nonconcave functions. This is because
even finding the optimal y*(z) given z is a non-convex maximization problem and thus
NP-hard (Murty and Kabadi, 1987). Therefore, one has to look for other surrogates of
global minimax points, and associated algorithms have to be designed and analyzed. I will
discuss these problems in following chapters.

1.2.1 General-Sum Games

We can also regard (1.18) as a zero-sum game: we can consider f(z,y) as a utility function
of y and —f(x,y) as a utility function of z. Each player aims to maximize its own utility
function, and the sum of utility functions is always zero. It is possible to extend zero-sum
games to general-sum games. Suppose the utility functions of x and y are — fi(x,y) and
fa(x,y), the general-sum game can be written as:

min f1(z,y"(x)), y*(z) € argmax fa(,y). (1.21)
reX yeY
This is also known as bi-level optimization (Anandalingam and Friesz, 1992). In such a
case, f; and fo do not have to be equal. This is a more general formulation than the zero-
sum minimax game, and thus finding (or even defining) a good solution is more difficult.
There are real applications where the problem can be formulated as a general-sum game
but not a zero-sum game. For example, in neural architecture search (Liu et al., 2018) and
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hyperparameter optimization (Maclaurin et al., 2015), the following problem needs to be
solved:

min Ly, (0%(a), ), 0" («) € argmin Ly (0, @), (1.22)
« 0

where a denotes the hyperparameters and 6 denotes the model parameters. Ly, and
L. are the training loss and the validation loss. We first train a model given some
hyperparameters, and then tune the hyperparameters automatically based on the validation
loss.

1.2.2 Roadmap

In the following chapters, I will focus on minimax optimization although parts of the results
can be extended to general-sum games as well. Chapter 2 talks about global and local
solution concepts in nonconvex minimax optimization; Chapter 3 is about the stability of
gradient algorithms; Chapter 4 describes second-order methods for minimax optimization.
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Chapter 2

Solution Concepts

In the first chapter we have seen several problems in machine learning where (nonconvex)
minimax optimization is relevant. In these problems, we have a bi-variate function f(z,y),
and the optimal solution is defined in the following way: first, we find y*(x) such that:

y*(x) € argmax f(x,y), 2* € argmin f(z,y"(x)). (2.1)
yey zeX

Such a solution is called a global minimax point, as we will see in Section 2.1.

In this chapter I further explore global minimax points and their relation with the
more widely-known global saddle points in Section 2.1. Since global minimax points are
difficult to find, I study local solution concepts in Section 2.2 as surrogates of the global
solutions. I explore optimality conditions of local solutions in Section 2.3. Since we used
local optimal solutions as surrogates, it is important to understand the relation between
local and global solutions, which I study in Section 2.4 for quadratic games. I find that
in quadratic games local and global solutions are in some sense equivalent, but this is not
true in general non-convex-non-concave cases.

We assume X C R™ and Y C R™ are subsets of Euclidean spaces.

2.1 Global Solution Concepts

In this section we study two global solution concepts for minimax optimization: global
saddle points and global minimax points. In game theory, they are also called Nash equi-
libria and Stackelberg equilibria. Saddle points are widely studied when the function f
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is convex-concave. However, in general non-convex-non-concave (NCNC) cases, they may
not even exist. Global minimax points are a broader solution concept. They include global
saddle points and are better suited for NCNC minimax optimization.

2.1.1 Global Saddle Point

In the convex setting, the following solution concept is well-known:

Definition 2.1.1 (global saddle point). We call (z,,y,) global saddle if for all x € X
andy € Y:

f(@e,y) < flre,ye) < f(@,04). (2.2)

In other words, we simultaneously have:

T, € argmin f(z,y,), s € argmax f(x,,y). (2.3)
reX yey

Global saddle points correspond to Nash equilibria (Nash, 1950), where each player has
no incentive to deviate from his/her current strategy even after knowing the opponent’s
strategy exactly.

2.1.2 Global Minimax Point

Definition 2.1.2 (global envelope function). Global envelope functions are defined as:

f(z) :=sup f(z,y), [(y) = nl [f(z,y). (2.4)

yey a

For envelope functions, we allow f to take value 400 and [ to take value —oo. Defini-
tion 2.1.2 occurs if one player is doing robust optimization. For example, x could minimize
the worst-case payoff, i.e., f(x), which is a nonconvex, non-smooth function (even when f
is itself smooth):

min  f(x). (2.5)

reX

On the other hand, player y simply maximizes f(z,-) given any € X. This leads imme-
diately to the following solution concept:
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Definition 2.1.3 (global minimax and maximin). (z*,y*) € X x Y is global minimaz
if

r* € argmin f(z), y* € argmax f(z*,y). (2.6)
zeX yey

In other words, for allz € X andy € Y:
fla*y) < fla*y") = f(a") < f(a). (2.7)
Similarly, we call (z.,y.) € X x Y global mazximin if

Y. € argmax f(y), . € argmin f(x,y,). (2.8)
yey zeX

In other words, for ally € Y and x € X:

FW) < fy) = fl@a,ye) < f2,90). (2.9)

The concept of global minimax points is used widely in adversarial training, as we have
seen in Section 1.1.

Remark 2.1.4 (difficulty of finding global minimax points). Although the notion of
global minimaz is well-defined, it suffers from some major issues once we enter the NCNC
world:

e We are not aware of an efficient algorithm (Murty and Kabadi, 1987) for finding a
global minimizer x* for the nonconvex function f. This can be mitigated by contending
with a local minimizer or even stationary point.

o Given x*, it is NP-hard to find a global mazximizer y* for the non-concave function
f(z*,y). While it is tempting to relax again to a local solution, this will unfortunately
affect our notion of optimality for x* in the first place. We will return to this issue
in the next section.

e The envelope function f is not smooth even when f is. Although we can turn to
non-smooth optimization techniques, it will be inevitably slow to optimize f.

If we define the “mirror” function \(y,z) = f(x,y), then (z.,y,) is global maximin
for f iff (y.,z.) is global minimax for —Y. For this reason, we will limit our discussion
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mainly to minimax. Such a definition arises in the optimization literature as well since
Definition 2.1.3 can be treated as a global solution to the minimax optimization problem:

mipmax f(z, y).

We note that the ordering of x and y, i.e. which player moves first, matters: for instance,
to get a global minimax pair (z*, y*), we must first find 2* and then conditioned on z* we
find the “certificate” y*. In game-theoretic terms, this is also known as a Stackelberg game
(von Stackelberg, 1934), where x is the leader while y is the follower.

It is well-known that weak duality, namely the inequality

max f(y) < min f(x) (2.10)

always holds. Strong duality, namely when equality is attained in (2.10), holds only under
stringent conditions. The following theorem easily follows from the definitions:

Theorem 2.1.5 (e.g. Facchinei and Pang 2007, Theorem 1.4.1). For any function f, the
pair (T4, y,) € X x Y is global saddle iff it is both global minimax and global maximin iff
strong duality holds and

z, € argmin f(z), y, € argmax f(y). (2.11)
Tz€EX yeY

Let us give some examples to digest the definitions. In general, it is possible to find a
game where both global maximin and minimax points exist, but there is no saddle point:

Example 2.1.6 (both global minimax and maximin points exist; no saddle
point). Consider the bivariate function

f(z,y) =2*/4 — 2?2 4+ 2y (2.12)

defined on R x R. Global minimax points are clearly {0} x R with value 0. On the other
hand, global mazimin points are (£1,0) with value —1/4. Indeed,

maxmin z*/4 — 2°/2 4+ zy < maxmin z*/4 —2*/2 < -1 (2.13)

) z Yy x
with equality attained at (£1,0). Note that we have vy < 0 in the first inequality since we
can always take x — —x to decrease the objective if xy > 0. The failure of strong duality

proves the non-existence of saddle points (Theorem 2.1.5).
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Note that given a global saddle pair (7.,ys), v« € Vi = argmax,y, f(z,,y) but not
every certificate y € ), forms a global saddle pair with z,. This is known as “instability,”
which is the reason underlying the non-convergence of the gradient descent ascent (GDA)
algorithm (Golshtein, 1972; Nemirovsky and Yudin, 1983).

Example 2.1.7 (instability of GDA). Consider the bilinear (hence convex-concave)

f(z,y) =2y

defined on R x R. It is easy to verify that global minimax points are precisely the set
{0} x R while global mazimin points are R x {0}. Taking the intersection we have the
unique global saddle point (0,0). This bilinear function is unstable, since given x* =0, not
every global minimaz certificate (namely the entire R) forms a global saddle point with x*.
The last iterates of GDA do not converge to the unique global saddle point for this function
with any (constant or not) step size, provided that it is not initialized at the saddle point
(Nemirovsky and Yudin, 1983, p. 211).

Another interesting example consists of quadratic games, which we completely classify
in Section 2.4. Below we give a one-dimensional example where there is no global maximin
or saddle point, but global minimax points exist.

Example 2.1.8 (global minimax points exist; no global maximin or saddle
points). Let f(z,y) = ax® + by*> + cxy with a < 0,0 < 0 and ¢ > ab. According to
the characterization in Theorem 2.4.1, f only admits global minimaz points. Note that
for quadratic games, the existence of both global minimazx and maximin points implies the
existence of a saddle point, in sharp contrast with Example 2.1.6.

From the example above, we see that even for simple quadratic games, saddle points
may not exist. In fact, unconstrained quadratic games are often given as typical examples
for NCNC minimax optimization (Jin et al., 2020; Daskalakis and Panageas, 2018; Ibrahim
et al., 2020; Wang et al., 2020). Locally, they can also be regarded as second-order ap-
proximations of any smooth function, and thus seem to be good representatives of NCNC
games. However, we will show in Section 2.4 that they are special in many aspects.

2.2 Local Solution Concepts

In the last section I studied global solution concepts. The biggest problem is that we do not
know efficient algorithms for finding them. Therefore, we have to resort to local solution
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concepts. The main concepts I present are local versions of saddle points and minimax
points in Section 2.1. Our results extend Jin et al. (2020). Specifically, we show that local
saddle points are a special subclass of local minimax points called uniformly local minimax
points. I will also discuss the relation between local and global minimax points.

Let us study definitions of local optimal points based on envelope functions and in-
finitesimal robustness (in the same spirit as Hampel (1974)). Compared to global optimal
points, for local versions, we assume that we only have access to local information of f,
i.e., given a point (x,y), we only know f over a neighborhood N (z) x N(y). Therefore,
each player can only evaluate its current strategy by comparing with other strategies in
the current neighborhood, corresponding to the notion of a local minimum (maximum).
This can be achieved with the following local envelope functions. In the definition below,
we denote

Ny e)={yeY:|y—y <e} (2.14)

as the intersection of ) with a ball of radius € surrounding y* in R™, and similarly for
N (x*,¢). The exact form of the ball depends on the norm we choose.

Definition 2.2.1 (local envelope function). Fix a reference point y* € Y and radius
e > 0, we localize the envelope function:

fo(@) = fey(z) == max  f(z,y). (2.15)

YyEN (y*,€)

The definition for f(y) = feo+(y) is similar if we fix some v € X.

2.2.1 Stationary Point

Perhaps the easiest way to define a local optimal solution for a differentiable function is to
say that it is a fixed point of gradient algorithms. In other words, (z*,y*) in the interior
of X x Y is locally optimal if:

O f(2",y*) = 0y f (2", y") = 0. (2.16)

This shares similarity with the stationary point x* of a differentiable uni-variate function
h(z), which satisfies:

Vh(z*) = 0. (2.17)
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For the constrained minimization problem min,cy h(z), a stationary point (Bertsekas,
1997) z* € X is defined such that:

Vh(z*) (z — 2*) >0, Vo € X. (2.18)

This condition is equivalent to being a global minimum in the case when X and h are
convex. Similarly, we can define the stationary point for the minimax problem (1.18):

Quf(@*,y" ) (x—2*) > 0> 9, f(a*,y") (y—y"), Ve € X, y €Y. (2.19)

The only difference with (2.18) is that the problem is a minimax game, and we are also
maximizing over y. If f is convex-concave, and both X and ) are convex, then a stationary
point is equivalent to a global minimax/global saddle point.

2.2.2 Local Saddle Point

In the NCNC setting, it is natural to consider local versions of saddle points (c.f. Defi-
nition 2.1.1) by localizing around neighborhoods N (z,,€) and N (y,,€). Below, when we
mention the local envelope functions fe(z) and f.(y) (see Definition 2.2.1) the centers and
the neighborhoods are often omitted since they are clear from the context.

Definition 2.2.2 (local saddle). We call the pair (x4, y,) € X x Y local saddle if there
exists € > 0, such that for all x € N (x4, €) andy € N(yx, €), f(1s,y) < f(xe,y%) < f(2,5).
In other words,

o Fizing x, then y, is a local mazimizer of fo., (y) = f(xs,y);
e Fizing y, then , is a local minimizer of fo,. (z) = f(z,v.).

In the above definition, each player contends with the local optimality of its strategy
by comparing with other strategies in a neighborhood. For local saddle points, we can
WLOG take the norm || - || in the neighborhood definition (see (2.14)) to be Euclidean.

2.2.3 Local Minimax Point

We can now generalize the definition above. One player may not be aware of the exact
strategy of the opponent, and thus doing robust optimization, given a certain range of the
opponent’s strategy. If x is doing (a sequence of) local robust optimization and y is doing
usual optimization given the strategy of x, we have the following definition:
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Definition 2.2.3 (local minimax). We call (z*,y*) € X x Y a local minimax point if

o Fizing x* then y* is a local mazimizer of fo.-(y) = f(z*,vy);

e Fizing y* then x* is a local minimizer of f., ,(z) for all €, in some sequence 0 <
€, — 0.

Furthermore, if the neighborhood over which x* is a local minimizer of f., can be chosen
to be independent of €,, then we call (x*,y*) uniformly local minimax.

In the definition above, we defined uniformly local minimax points. By uniformity we
meant that the neighborhood A does not depend on the element in the sequence. We will
show a close relation between local saddle points and uniformly local minimax points in
Proposition 2.2.7.

Definition 2.2.3 reveals the asymmetric position between the two players x and y: y
needs only be a local certificate to testify the local optimality of x, but x only has an
inexact estimate of  and thus minimizes the envelope function f.(z) as the worst-case
payoff. By switching the role of x and y we obtain a similar notion of local maximin.

In Proposition 2.2.6 we will see that Definition 2.2.3 has a seemingly stronger but
equivalent form. To help digesting the somewhat complicated definition, we mention the
following interpretation (e.g. Wang et al., 2020):

Theorem 2.2.4 (sufficient and necessary condition of local minimax when Ggy fis
invertible). Let X = R", Y = R™ and f : R" — R™ be twice continuously differentiable.
Suppose 8§yf(:c*,y*) is invertible, then (z*,y*) is local minimax iff

o 0,f(x",y") =0, 95, f(«",y") < 0, and

e =* is a local minimizer of the total function f(x,y(x)) where the domain of y is an
open set that contains x* through the nonlinear equation

Oy f(z,y) =0. (2.20)

Proof. Given that 8§y f(z*,y*) is invertible, the first condition is clearly equivalent to y*
being a local maximizer of f(z*,-). Consider the nonlinear equation (2.20), whose solution
is determined by the implicit function theorem as a continuously differentiable function
y(x) defined near z*. Fix any e. Since y(z*) = y*, shrinking the neighbourhood around z*
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if necessary we may assume y(z) € N(y*, €) so that f.(z) = f(z,y(z)). Thus, if (z*,y*) is
local minimax, then for x near z*:

fla®,y(z) = f@",y") = fe(@") < fe(z) = f(z,y(2)), (2.21)
so, x* is a local minimizer of the total function. Reversing the argument proves the converse.
O

We emphasize that, unlike the definition in Jin et al. (2020), we do not allow ¢, to take
0 in Definition 2.2.3 for two reasons: (a) This allows us to better separate local saddle from
local minimax; (b) It is unnecessary to have ¢, = 0, which we will see in Proposition 2.2.9.

We now show how to simplify Definition 2.2.3, starting with the following key lemma:

Lemma 2.2.5. Suppose y* mazimizes f(x*,y) over some neighborhood N'(y*, o). If x* is
a local minimizer of fe,- (for some 0 <e< €o), then it remains a local minimizer (even
over the same local neighborhood) of fn(x) = maxyen f(x,y) for any N(y*,e) C N C
N(y*7 60)'

Proof. We first note that since y* maximizes f(z*,y) over N (y*, €y), we clearly have for
all y* € N C N (y*, e):

(™) = fla*,y"). (2.22)
Moreover, for any N 2 N (y*,€) and any = € X
(@) > foy(z) = fo(2). (2.23)

Since z* is a local minimizer of f., say over the neighborhood M, we have for all z € M

and N (y*,¢€) CN C N (y*, €0):
fn(@) > fo(a) > fo(z™) = f(@*,y") = fwr(a), (2.24)

i.e., 2* is a local minimizer of fy(z) over the same local neighborhood M. O

Note that in the lemma above we allow € = 0. Lemma 2.2.5 reveals a key property of
the local minimax point in Definition 2.2.3: the norm in the neighborhood definition (see
(2.14)) is immaterial (since we can shrink the neighborhood using Lemma 2.2.5 without
impairing local minimaximality). In other words, the definition of local minimax points is
topological and it does not depend on the norm we actually choose.

Using Lemma 2.2.5 we can “strengthen” the notion of local minimax even more. In
particular, if Definition 2.2.3 holds for one sequence such that ¢y > ¢, — 0 then it auto-
matically holds for all sequences that satisfy this same condition. We can even extend the
sequence to an interval of €’s:
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Proposition 2.2.6 (equivalent definition of local minimax). The pair (z*,y*) €
X x Y is a local minimaz point iff

o Fizing x* then y* is a local mazimizer of fo.-(y) = f(z*,y);

e Fizing y* then x* is a local minimizer of f.,(z) for all € € (0, €] with some ey > 0.

Proof. We need only prove if (z*,y*) is local minimax according to Definition 2.2.3, then
there exists some €y > 0 such that z* is a local minimizer of f.(z) for all ¢ € (0, €].
Indeed, from Definition 2.2.3 we know f(x*, y) is maximized at y* over some neighborhood
N (y*, €y) for some €y > 0. For any 0 < € < €, one can find 0 < ¢, < € since the promised
sequence ¢, — 0. By definition z* is a local minimizer for f. , hence by Lemma 2.2.5 it
remains a local minimizer for f.. O]

From Definition 2.2.3, every uniformly local minimax point is local minimax. In fact,
much more can be said between uniformly local minimax and local saddle:

Proposition 2.2.7 (local saddle and uniformly local minimax). Every local saddle
point is uniformly local minimax. If for any x € X, f(x,-) is upper semi-continuous, then
every uniformly local minimazx point is local saddle.

Proof. Let (x4, y,) be local saddle, i.e., y, maximizes f(z,, -) over the neighborhood N (y,, €)
and x, minimizes fy,, = f(-, ) over the neighborhood N (z,, €). We fix the neighborhood
N (xy) = N (x4, €) and choose any sequence {€,} C (0,¢]. Applying Lemma 2.2.5 we know
7, remains a minimum for all f., over the (fixed) neighborhood N (x,). Thus, (,,y,) is
uniformly local minimax.

Conversely, let f be upper semi-continuous (in y for any x) and (z*, y*) uniformly local
minimax over the fixed neighborhood NV (z*). By definition y* maximizes f(x*,-) over some
neighborhood N (y*, €), and 2* minimizes all f,, over the fixed neighborhood N (z*), where
the positive sequence ¢, — 0. Fix any x € N (z*). Since f(z,-) is upper semi-continuous
at y*, we have for any 0 > 0, there exists €, € (0, ¢] such that:

f@y) = fe,(2") < fe,(@) < fl,y7) +6. (2.25)
Letting 0 — 0 we know f(z,y*) > f(z*,y*) for any x € N (a*). O

Thus, for upper semi-continuous functions (in y), surprisingly, local saddle points coin-
cide with uniformly local minimax points. We cannot drop the semi-continuity assumption:
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t M
Figure 2.1: The relationship among different notions of local optimality. usc: upper semi-
continuity and lsc: lower semi-continuity. The arrow and the bracket signs mean “to

imply.” For example, a uniformly local minimax point is bona fide local minimax, and if a
point is both local minimax and local maximin, it is local saddle.

Example 2.2.8 (uniformly local minimax does not imply local saddle without
semi-continuity). Fiz any y* € ) and consider the lower semi-continuous function

—2?, y=y* = —2?, =0
)= Cwith foe(e) =4 " . 2.26
Jew) {5027 gty fear (@) 22, e#£0 (2:26)

(0,y*) is uniformly local minimaz but not local saddle.

Figure 2.1 shows the relation between local saddle and (uniformly) local minimax (max-
imin) points. Finally, we prove our Definition 2.2.3 coincides with the seemingly different
one in Jin et al. (2020, Definition 14). Effectively, we manage to remove the continuity
assumption in their Lemma 16 (c.f. Proposition 2.2.6).

Proposition 2.2.9 (equivalence with Jin et al. (2020)). The pair (z*,y*) is local
minimazx w.r.t. the function f iff there exists 69 > 0 and a nonnegative function h satisfying
h(0) — 0 as 6 — 0, such that for any § € (0, 0] and any (x,y) € N(z*,0) x N(y*,0) we

have

Jaty) < [ty < | max o fla,y)| = Fuo (@). (2.27)

Proof. (<=) Suppose (z*, y*) satisfies (2.27). Then clearly, y* maximizes f(z*,-) over the

neighborhood N (z*,d). Take an arbitrary positive sequence {4, } with 4, — 0 and let
€n = SUDP,,>, P(6,). Since h(5) — 0as & — 0, we may assume WLOG that ¢, is well-defined
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and bounded from above. If h(d,) = 0 for some n then (z*,y*) is local saddle and hence
local minimax thanks to Proposition 2.2.7. Otherwise we have €, > 0 for all €, and €, — 0
since lims_,o h(0) = 0. WLOG we assume €; < g (for otherwise we may discard the head
of the sequence {e,}). From (2.27) we know for any = € N (z*,4,):

Fuon (@) = f(2*y%) = faen) (), (2.28)

since h(d,) < e < do and y* maximizes f(z*,y) over N(z*,dy). Therefore, z* is a local
minimizer of fjs,) hence also of f., thanks to Lemma 2.2.5.

(=) Suppose (z*,y*) is local minimax (see Definition 2.2.3). Then, y* maximizes
f(z*,-) over some neighborhood N (y*, €y) where ¢y > 0. Since z* is a local minimizer
of f.,, it minimizes f., over some neighborhood N(z*,d") with &/ > 0. From {d’} we
construct another positive sequence {d, } where dp = min{d},1,¢} ; 0 and

0, =min{d,, 0, 1,1/n}, n=1,2,..., (2.29)

which is diminishing by construction. Define h(d) = €, if 6,41 < § < J,,. Since €, — 0,
lims o h(0) = 0. WLOG we assume €; < ¢ and by definition dy < €. For any ¢ € (0, o]
there exists some n such that § € (0,41, d,]. Thus, for any (z,y) € N(z*,0,) x N(y*, €0):

fu) (@) = feu(2) > fo, (a7) = f(z",y7) > fa",y). (2.30)
Since § < 6, < ¢/, and § < ¢, the above still holds over the smaller neighborhood N (z*, §) x
N (y*,9), which is exactly (2.27). O

From this equivalence, we can also derive that every local saddle point is local minimax
(Jin et al., 2020, Proposition 17). However, our Proposition 2.2.7 gives a more detailed
depiction of local saddle points. For functions that are convex in x and concave in y, we
naturally expect that local optimality is somehow equivalent to global optimality:

Theorem 2.2.10 (local and global minimax points in the convex-concave case).
Let the differentiable function f(x,y) be convex in x and concave in y. Then, an interior
point (x,y) is local minimaz iff it is stationary, i.e., O, f(x,y) =0 and 0, f(x,y) = 0 iff it
15 saddle. In particular, local minimaz implies global minimaz.

Proof. Suppose (z*,y*) is stationary. For any small € > 0,

fe(z) = e f(z,y) (2.31)
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is convex by our assumption. To see that z* is a local (hence global) minimizer of f., we
need only verify that 0 € dfc(z*). Since y* maximizes f(z*,-) by assumption, we know
from Danskin’s theorem that 0f (2*) 3 0, f(x*,y*) = 0 since (z*,y*) is stationary.

Now suppose (z*,y*) is local minimax. Then, y* is a local hence global maximizer of
f(z*,-). Also, 2* is a local hence global minimizer of f.. Thus,

f@) > f(@) = f@") = f(=",y") = f("), (2.32)

i.e., #* is a global minimizer of f. O

However, non-stationary global minimax points cannot be local minimax, see Exam-
ple 2.1.7 and Proposition 2.3.1 (below). Even with stationarity, the convex-concave as-
sumption in Theorem 2.2.10 cannot be appreciably weakened, as illustrated in the following
example:

Example 2.2.11 (stationary global minimax points are not local minimax in the
nonconvex case). Let f(x,y) = x3y which is nonconvex in x but linear in y. The point
(x*,y*) = (0,1) is clearly stationary and global minimaz. We verify that

s Ja+ezt, x>0
Jele) = {(1 —e)a’, <0’ (2:33)

hence x* = 0 is not a local minimizer of f. (for any e < 1) and (0,1) is not local minimaz.
This counterezample is constructed by performing the C' homeomorphic transformation
(z,y) — (23,y) of the bilinear game b(x,y) = zy. We can verify that (separate) home-
omorphisms transform local/global minimax points accordingly. However, C' homeomor-
phisms can turn non-stationary points into stationary (which is not possible in presence of
convexity since in convex settings stationarity equates minimality which s preserved under
homeomorphisms).

Nevertheless, for quadratic games, we can remove the convexity-concavity assumption, as
will be shown in Theorem 2.4.1 below.

2.2.4 Other Notions of Local/Global Optimality

Besides stationary points, saddle points, and minimax points, there are also other defini-
tions of local/global optimality, which we will briefly introduce here for completeness.

Evtushenko (1974a) proposed a different notion of local minimax points:
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Definition 2.2.12 (Evtushenko’s local minimax). We call 2z* = (z*,y*) € X x Y a
local optimal solution of f if there exists a neighborhood N (x*) x N (y*) such that z* is a
global minimazx point of the problem

min  max f(z,y). 2.34
(i max f(,y) (2.34)

However, different from Definition 2.2.3, this definition may not always satisfy station-
arity, as we can adapt Example 2.1.7 to construct such a counterexample. Interestingly,
the sufficient condition for Definition 2.2.3 (see Corollary 2.3.14):

02, f <0and &2, f — 92, f(02, ) 92 f = 0,

is also sufficient for Definition 2.2.12 (Evtushenko, 1974a). Such points are called strict
local minimaz points. Several methods using second-order information have been proposed
for finding strict local minimax points, including the ones we will see in Chapter 4.

The next two definitions are proposed for GAN training, but can also be written for
general settings. In Farnia and Ozdaglar (2020), the authors proposed an interpolation
between global saddle points and global minimax points:

Definition 2.2.13 (A-proximal equilibrium). We call z* = (2*,y*) € X X Y a A-
prozimal equilibrium (with X > 0) if

fla*,y) < flz*,y") < r;lgf(x,y) —AMly —y*|I°, Vo € X,y € V. (2.35)

Since the right hand side satisfies:
fla,y) < max f(z,y) — My — y*||* < max f(z,y), (2.36)
yeY yey

we know that every global saddle point is a A-proximal equilibrium and every A-proximal
equilibrium is a global minimax point. Based on this definition, they proposed a new
algorithm for training GANs, which improves the state-of-the-art in terms of inception
scores.

Finally, to define a computable solution concept, some people use the dynamics of
gradient algorithms as a definition. For example, Mazumdar et al. (2018); Berard et al.
(2020) define local stable stationary points, by computing the Jacobian of the vector field
v(z,y) = (0. f(z,y), =0, f(z,y)) and analyzing the spectrum of the Jacobian:
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Definition 2.2.14 (local stable saddle point). We call z* = (z*,y*) € X x Y a
locally stable stationary point (LSSP) if we have v(z,y) = (0, f(z,y), =0y f(z,y)) = 0 and
R(A) > 0 for any X in the spectrum of the Jacobian:

VO = 88 )~ f ()] (2:37)

It can be shown that if at a stationary point z* = (z*,y*) € X x ) such that

0uf(2",y") = 9y f(a",y") = 0,05, f (", y") = 0 = 9, (2", y"), (2.38)

then it is an LSSP (Mazumdar et al., 2018). Such a stationary point is also a saddle point.
Berard et al. (2020) shows that in GAN training, the final solution we want to converge to
can be an LSSP but not a saddle point.

2.3 Optimality Conditions

Optimality conditions are an indispensable part of optimization (Bertsekas, 1997) since
they help us identify local optimal points and design new algorithms. In this section,
we provide first- and second-order necessary and sufficient conditions for local minimax
(maximin) points. Our results extend existing ones in Jin et al. (2020) to cases where
the domains X and ) are constrained and where the Hessian for the max-player 8§y fis
not invertible. We assume X and Y are closed and thus NV (y*, €) is compact. We build on
some classical results in nonsmooth analysis, for which we provide a self-contained review in
Appendix A.1, including the definition of the directional derivative D f(z;t) of an envelope
function f at x along direction ¢:

Df(z;t) = lim flrtat) = f(x)

a—0+ (6]

(2.39)

Specifically, if f and 0,f are jointly continuous (continuous w.r.t. (z,y)), then the di-
rectional derivative Df(x;t) always exist (Theorem A.1.9). In the following subsections,
f € CP means that f is p'® continuously differentiable.

2.3.1 First-order Optimality Conditions

Theorem 2.3.1 (first-order necessary, local minimax). Let f € C'. At a local mini-
maz point (x*,y*), we have:

Ouf(x,y) > 0> 9,f(x*,y)t, (2.40)
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for any directions t € Kq(X,2*), t € Kq(V,y*), where the cone

X _
Kg(X,x) :=lim i{rlf T {t :V{ar} = 0" g} — 01, {tr,} — ¢,
a—0
such that © + ay,ty, € X'}
and Kq(V,y) is defined similarly.
Proof. Use Theorem A.1.3, Theorem A.1.9 and the assumption that f € C!. m

In the theorem above, K4(X', x) is known as the derivable cone (Rockafellar and Wets, 2009,
p. 198), which may strictly include the feasible tangent cone. When the set X is closed and

convex, Kq4(X,x) is the same as the tangent cone (Hiriart-Urruty and Lemaréchal, 2004,
p. 65):

Ke(X,z) =cone(X —z) :=cl(deR":d=a(y—z),ye X, a > 0), (2.41)

with cl denoting the closure of a set. We can derive a similar reduction when ) is closed
and convex. If both X and ) are closed and convex, then (2.40) reduces to:

Ouf (@, y") (x —2*) > 02> 0, f(z*,y") (y — y*), forany z € X, y € V. (2.42)

This can be regarded as a bi-variate version of first-order (necessary) optimality condition
for a local minimum (Bertsekas, 1997, Prop. 2.1.2). Solutions that satisfy (2.42) are often
called stationary points (c.f. Section 2.2.1). It extends the result in Jin et al. (2020) to the
constrained case. Specifically, if (z*,4*) is in the interior, in particular when X = R" and
Y = R™, then Proposition 2.3.1 simplifies to

d:f(z",y*) =0, 0,f(xz",y") =0, (2.43)

which agrees with Jin et al. (2020). Local minimax points have the same necessary con-
ditions, (2.40), (2.42) and (2.43), as local saddle points (e.g. Barazandeh and Razaviyayn,
2020, Definition 2). It also implies that in the convex-concave case, all notions of optimality
agree:

Corollary 2.3.2 (local optimal solutions in the convex-concave case). Let X' and
Y be convexr and the function f(x,y) be conver in x and concave in y. A point is local
(global) saddle iff it is local minimaz (mazimin) iff it is a stationary point.

Proof. In convex cases, stationarity is equivalent to optimality (Bertsekas, 1997, Prop. 2.1.2).
]
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However, this corollary does not hold in the non-convex setting, see Examples 2.4.3.

Let us define the active sets of the zeroth order (by “zeroth” we mean that only the
function values are involved):

Vola*se) ={y e N(y*,€) : fe(a™) = f(z*, )}, (2.44)

We derive the first-order sufficient conditions for local minimax points (which follow from
the sufficient condition in Theorem A.1.5 and Danskin’s theorem in Theorem A.1.9):

Theorem 2.3.3 (first-order sufficient condition, local minimax). Assume 0, f(z,y)
is continuous. If f(x*,-) is maximized at y* over a neighborhood around y*, and there
exists €9 > 0 such that for any € € (0, €),

0#tcK(X,2*) = Df.(2*;t) = max 0.f(z*,y)'t >0, (2.45)

y€Vo(z*;€)

where the contingent cone is defined as:
X —
K (X, z) := limsup ’

a—0t

= {t: Hax} — 0%, {tr} —t, such that x + ayt), € X},

then (z*,y*) is a local minimaz point.

In the case when X is a convex set. K.(&X, z) reduces to:
Kc(X,z) =cone(X —z) :=cl(deR":d=a(y—z),y € X, «a >0). (2.46)
(2.45) thus becomes that for any z* # = € X
max : Ouf(z*,y) (x —2%) >0, Vo € X. (2.47)

y€Vo(x*;e
Let us demonstrate the first order condition with the following example:

Example 2.3.4 (application of the first-order sufficient condition of local mini-
max points). Suppose f(x,y) = zy is bilinear. At (z*,y*) = (0,0), we have:

fe@*) = f(a*,y) =0, Vy € R, (2.48)
Therefore, according to (2.44), Yo(z*;€) = N (y*,€). Also, O.f(z*,y) =y and
Df(x*;2 — 2*) = Ar/?ax)y(x — ") = €lx| > 0,Vx # 2", (2.49)
y*.e

According to Theorem 2.3.3, (x*,y*) is a local minimaz point.
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2.3.2 Second-order Optimality Conditions

We now turn to the second-order necessary condition of local minimax points. We some-
times use 02, f as a shorthand for the second-order derivative 92, f(z*,y*), and similarly
for other second-order partial derivatives. For a local minimax point (z*, y*), y¥* maximizes
f(z*,-) locally, and thus we have the property that f.(z*) = f(z*,y*) for any small ¢, from
which we can make significant simplifications. The following technical lemma, when com-
bined with the necessity condition in Theorem A.1.3, allows us to classify the directions:

Lemma 2.3.5 (directional derivatives for different f.). Suppose f and 0, f are jointly
continuous and thus the directional derivative exists. If y* is a local maximizer of f(x*,-)
over a neighborhood N (y*, €), then for any 0 < e; < €3 < €y, Vo(z*;€1) C Vo(2*;€2) and
for each t € Kg(X,1*), Dfe,(x*;t) > Df., (z%;t).

Indeed, for a local minimax point (z*,y*) and any direction t € Kq(X,z"), we know
from the necessity condition in Theorem A.1.3 that Df.(z*;t) > 0 for all small €, which,
combined with Lemma 2.3.5 above, leaves us with two possibilities:

1. Df.(x*;t) > 0 for all € > 0 smaller than some ¢(t);

2. Df.(z*;t) = 0 for all € > 0 smaller than some €(t).

We call the direction t a critical direction in the second case above. With this distinction
among directions, we derive the second-order necessary condition for local minimax points:

Theorem 2.3.6 (second-order necessary condition, local minimax). Suppose f, 0, f
and 0%, f are all (jointly) continuous. If (x*,y*) is a local minimax point, then for each
direction t € Kyq(X,z*), one of the following holds:

1. Df.(x*;t) > 0 for all € > 0 smaller than some e(t);

2. Df(a*;t) = 0 for all e > 0 smaller than some €y(t) (i.e. t is critical), in which case
we further have

(702, (e )t + Slimsup [max{0, f(2°, 2) e, OP(F (@, y7) — f(a", 2))] >0

(2.50)

where t' =1/t if t # 0 and 0 otherwise.

28



The important point to take from Theorem 2.3.6 is that we should test the second order
condition (2.50) only for critical directions, and the second-order derivatives of f may not
fully capture the second-order derivatives of the envelope function f., which can be clearly
demonstrated from the following examples:

Example 2.3.7 (the importance of critical directions). Let

flz,y) = —2° + zy’

be defined over X =Y =R and consider the local minimaz point (x*,y*) = (0,0). Indeed,
for any € > 0, x* is a local minimizer of f.(x) = |z|e® — x2. However, 02, f = —2 while
fla*,y*) = f(a*,2) = 0 for any z. Thus, the second-order condition (2.50) fails at the
directions t = £1. However, there i1s no contradiction since these directions are not critical:
Indeed, using Theorem A.1.9 we can verify that Df.(z*; £1) = € > 0.

Example 2.3.8 (the importance of critical directions; high dimensional). Let

flz,y) = =3 + 2295 — (1 + 32)° + 231 (y1 + ¥2)

be defined over X =Y = R? and consider the local minimaz point (z*,y*) = (0,0): Indeed,
f(z*,+) is clearly mazimized locally at y* = 0 and upon choosing y; = w1 — sgn(x2)€/2,ys =
sgn(xa)e/2 and considering |x1| < €/2 and |z3| < (¢/2), we have

ly = zlloo < €/2+ (/2)%, fe(w) = f(z,y) = 21 +|22|(€/2)° — 25 > 0 = fe(a"),  (2.51)

where we choose WLOG the Ly, norm in our neighborhood definition (2.14). The second-
order derivatives are:

o, (20 o, [-2 -2] . Jo 0
We have Yo(z*;€) = {y € Noo(2*,€) : y1 + y2 = 0} and for any direction t,
Df.(z*;t) = max t'd,f(z*,y) = éets] > 0. (2.53)
yEVo(z*;€)

It follows that the critical directions satisfy to = 0. Take a non-critical direction t = (1,3),
we easily verify that (95, f)t = (2,2) lies in the range space of 0, f. However,

lim sup [max{&pf(x*, 2)'t, 0F2(f (™, y*) — f(a7, Z))W

z—=y*
2 3 312
= limsup 20 +20) + 3] =4, (2.54)
2—0,214227#0 (Zl + 22)2
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so that the second-order condition in (2.50), which in this case coincides with

does not hold (—18 +2 = —16 # 0). Newvertheless, along a critical direction t (where
tg == 0)
o2 flar, y" )t =0, f(a*,2) = —(21 + 2)%, Ouf(2%,2) 't = 2t1(21 + 22), (2.55)

and thus the left-hand side of (2.50) simplifies to 2t3 > 0. In other words, the second-order
condition indeed holds for critical directions.

Example 2.3.9 (high order derivatives might be involved in Theorem 2.3.6).
The second term in (2.50) may involve higher order information of f, rather than the
standard second-order optimality condition for the minimizer of a smooth function that
only relies on second order derivatives. The higher order term comes from the difference
of function values. Let f(x,y) = —a® — y* + 4xy? and consider the local minimax point
(x*,y*) = (0,0). We have Yo(x*;¢€) = {y*} hence every direction is critical. In the direction
t =1, the L.h.s. of (2.50) becomes —2 + max{42%t,0}?/(22*) =6 > 0.

Under the condition that 8§y f is invertible, we show the following as in Jin et al. (2020):

Corollary 2.3.10 (second-order necessary condition, invertible). Let f € C®. At a
local minimaz point (x*,y*) in the interior of X x Y, if Gsyfﬁ 15 invertible, then

ajyf <0 and 0, f — 8§yf(8§yf)‘18§xf > 0. (2.56)

Proof. Tt is easy to prove 95, f =< 0 and since 0;,f is invertible, we have 97, f < 0. By
expanding f(z*, z) to the second order, the second term in (2.50) becomes:

 maxl(e =) @R 0F
im sup .
aoyr (2= y) (=05, 0)(z — y*)

With a change of variables z — y* = (=92, f)""*(w — y*) and using Cauchy—Schwarz
inequality, we obtain —t"92, f(92 f)~'(9;,f)t. 1t follows that 92, f — 82, f (92, f) 00, f =
0. ]

(2.57)

Finally, we can compare our second order necessary condition with Jin et al. (2020,
Proposition 19), which applies to quadratic functions (cf. Example 2.4.2). The difference
is that Jin et al. (2020, Proposition 19) did not take the critical directions and higher order
derivatives into consideration, as demonstrated by Examples 2.3.7 and 2.3.9.
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Second-order sufficient conditions

We introduce two second-order sufficient conditions for local minimax points, with the help
of results from non-smooth optimization literature (Seeger, 1988; Kawasaki, 1992). Our
results extend Jin et al. (2020) to a case when 8§y f is not invertible, which may happen in
real applications.

In the following theorem, we define z; = max{z,0} and the first order activation set:

Vi(z*set) = {y € Voo™, €) : Dfe(a™5t) = 0o f (2", y) "¢} (2.58)

Theorem 2.3.11 (second-order sufficient condition, local minimax). Assume X =
R" and Y is conver and f, O.f, 0.f are (jointly) continuous. At a stationary point
(x*,y*), if there exists eg > 0 such that:

o f(x*,-) is mazimized at y* on N(y*, €o);

e along each critical direction t # 0:

* * 1 : * * * *

05 f @yt + S limsup (((9: (27, 2) ") )*(f (", 7) = (2%, 2))T) >0, (259)
z—=y*

and in any direction d € R™, there exist a, 8 # 0 and p,q > 0 such that for every

y € Vi(x*; €05 t), the following Taylor expansion holds:

f(z*,y 4 6d) = f(z*,y) + ad®? 4+ o(67), O f(x*,y + dd) "t = B6T 4+ 0(67),  (2.60)
then (z*,y*) is a local minimaz point.

Proof. Tt follows from Theorem A.1.17. From Danskin’s theorem Df.(z*;¢) > 0 for any
small € > 0. Besides, for any small enough €, (A.72) is satisfied since y* € Vi (x*;€o;t).
Noting that f.(z*) = f(z*,y*) = f(a*,y) for any 0 < € < ¢ and y € V;(2%; €03 1), (2.60)
follows from Assumption A.1.16. O]

Note that in the statement above, the variables «, 5 and p, g may depend on the direction
d. If f € C* is smooth and both f(z*,-) and 9, f(z*,-) "t have non-zero Taylor expansions,
then (2.60) is always true for every y € Vi (2*; €p;t). Here by “critical direction” we mean
that Df.(z*;t) = 0 for some ¢ > 0 and any € € [0,¢)]. Another second-order sufficient
condition for f € C? is:
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Theorem 2.3.12 (second-order sufficient condition, local minimax). Assume f €
C? and let X be convex. Suppose y* is a local mazimizer of f(z*,-) and that (x*,y*) is
an interior stationary point. If there is g > 0 such that for any € € (0, €], there exists
R,7 > 0 such that for any feasible direction ||t| = 1 such that 0 < Df(x*;t) <,

2 * 2 * t t
max max max <{6%xf(x*,y) %yf(l’*,y)} ( ), < >>+
yEYVo(x*35€) vEV (2™, y5t) weK4(R,y;v), ayxf(x ) ayyf(x Y|\ v

ll<R <R
+(0yf(z", y),w) >0, (2.61)

then this point is local minimaz, where V(z,y;t) := {v € Kg(Q,y) : Dfc(x;t) = 8,f (x,y) t+
8yf(x,y)Tv}, Q:= N(y*a 6) and

L =y =t
Ka(Q2, y;v) := hmmf# ={g :V{te} 4 0 3H{tr,} 1 0,{gx,} — g,

t—0t

Y+t v+ 13 gi, /2 € Q. (2.62)

Proof. Since y* € Yp(2*;€), from Danskin’s theorem (Theorem A.1.9) we know that
Dfc(z*;t) > 0 for any e small enough. We then combine Theorem A.1.6 with Theo-
rem A.1.11. Note that all the directions t, v, w are bounded. O

The definition of feasible directions for convex sets can be seen in Hiriart-Urruty and
Lemaréchal (e.g. 2013). We used the standard notation that if we are maximizing over an
empty set, then the maximum is —oo. Specifically, if there exists y € Vo(z*,€) such that
it is in the interior of )/, Theorem 2.3.12 can be simplified as:

Corollary 2.3.13 (second-order sufficient condition, interior version). Assume
f € C? and let X be convex. Suppose y* is a local mazimizer of f(x*,-) and that (z*,y*) is
an interior stationary point. If there is eg > 0 such that N'(y*,ey) C Y C R™, and for any
¢ € (0,€), there exist R,r > 0 such that for any feasible direction ||t| = 1 that satisfies
0 < Df.(z*;t) <7, we have:

Vi f (@ y) Vi fle )] () (1 :
yess%;a@vef@w%qv;f(x*,m v, )] \o) Ao ) ) Tl = 0

(2.63)

then this point is local minimaz, where V(z,y;t) == {v € R™ : Df.(z;t) = fo(x,y)Tt +
Vyf(x,y) v}
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Proof. It y € N(y*, €), then we have K4(Q,y) = Kq(Q, y;v) = R™. O

In the special case when Gjy f(x*,y*) < 0, we have the following corollary. This special
type of local minimax points that satisfy (2.64) are also known as strict local minimaz
points (Jin et al., 2020).

Corollary 2.3.14 (second-order sufficient condition, invertible, Jin et al. (2020)).
Let f be twice continuously differentiable. At an interior stationary point (z*,y*) € X x Y,

if
02, f <0 and 02, f — 02, f(02,f) 02, f >~ 0, (2.64)

then (x*,y*) is a local minimax point.

Proof. The active set Vo(x*;¢) = {y*} is a singleton. From Danskin’s theorem (Theo-
rem A.1.9) all directions are critical. The Lh.s. of (2.61) becomes t " (02, f—02, (02, ) 92, f)t
if we choose R = [|(95,f) 102, f||. O

However, Corollary 2.3.14 does not fully cover Theorem 2.3.12 when 8§y is not invertible:

Example 2.3.15 (Theorem 2.3.12 strictly includes Corollary 2.3.14). Take

f(z,y) = 2y + 2

and a stationary point (x*,y*) = (0,0). Df.(z*;t) = €2 if t = 1 and Df.(z*;t) = 0 if
t = —1. Take r = €*/2. Along the critical direction t = —1, the Lh.s. of (2.61) becomes
2> 0, since Oy f(z*,y) =0, and V(z*,y;t) =@ if y #0 and R if y = 0. So, (0,0) is local
minimazx from Theorem 2.5.12. Note that Corollary 2.3.11 does not apply since f(z*,y)
does not have a non-zero Taylor expansion.

We also give an example when Theorem 2.3.12 is not applicable but Corollary 2.3.11 is:

Example 2.3.16 (application of Theorem 2.3.11 where Theorem 2.3.12 cannot
be applied). Take

fla,y) = 2y’ —o°
and a stationary point (z*,y*) = (0,0). Fizing x* =0, f(z*,-) is mazimized at 0, and for
any t # 0, Df.(z*;t) = maxye—o vyt = 0. Since d,f(z*,2) = 23 and f(z*,y*) — f(z*,2) =
28, the Lh.s. of (2.59) is t?/2 > 0. Moreover, Y1 (z*;€0;t) = {y*} for any ¢ > 0, and

f(z*,y* +6d) = —=65d°, O, f(z*,y* + 6d) "t = &3d>t.

So, (0,0) is a local minimax point. Note that Theorem 2.3.12 does not apply since Yo(x*; €) =
{0} and all second-order derivatives are zero.
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2.4 Quadratic Games: A Case Study

In this section we study quadratic games with the following form:

T

e A C al |z
glz,y) == ly| |CT B bl |y|, (2.65)
2 1 a bl ¢ 1

where z € X = R” and y € Y = R™. In particular, a game is bilinear if A, B vanish and
homogeneous if a,b vanish. Since quadratic games are continuous, local saddle points are
the same as uniformly local minimax points (see Proposition 2.2.7).

Our first result completely characterizes stationary, global minimax and local minimax
points for homogeneous quadratic games:

Theorem 2.4.1 (sufficient and necessary conditions for optimality in quadratic
games). For (homogeneous) unconstrained quadratic games, a pair (x,y) is

e stationary iff

A C| |z
4 9] -0 20
e global minimaz iff B <0, PH(A — CB'C")Pt = 0 where L = CPg, and
P A C| =]
e 5B o)

(Recall that P+ =1 — LL' is the orthogonal projection onto the null space of L'.)

e local minimaz iff B < 0, P{-(A—CB'CT)P{t = 0, and stationary (i.e. (2.66) holds).
In particular, local minimaz points are always global minimazx.

Proof. The first claim follows directly from the definition of stationarity.

To prove the second claim, we note that fixing z, ¢(z, -) is clearly quadratic in y. Thus,
it admits a local (hence also global) maximizer y iff

B =0, (2.68)
C'x+ By =0. (2.69)
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Note that there exists some y to satisfy (2.69) iff C"x belongs to the range space of B iff
P:CTz =0, ie. L'z =0, (2.70)

or equivalently # = Pz for some z € R™. Therefore, we have the envelope function:

(2) = {%ZL‘T(A —~CB'CNz, L'z=0 2.71)

0, otherwise

Thus, the quadratic function ¢ (when restricted to the null space of L") admits a local
(hence also global) minimizer iff

PH(A—CB'CTPf =0, (2.72)
in which case the minimizer x satisfies
L'z =0=P}(A—-CB'C"z, (2.73)

whereas the maximizer y satisfies (2.69). It is easy to verify that (2.73) and (2.69) are
equivalent to (2.67). For the last claim, note first that we have proved in Theorem 2.3.1
that any local minimax point is stationary. Moreover, if (z*, y*) is local minimax, then z*
locally minimizes g, ,~ (for all small €), i.e., for  close to z*, we have

4(%) 2 ey (7) 2 ey (27) = (27, ") = q(27), (2.74)

where the last equality follows since fixing x*, y* is a local hence also global maximizer of
the quadratic function g(z*,-). We have shown above that any local minimizer of g(z) is
necessarily global. Therefore, (z*,y*) is global minimax.

Lastly, we prove the converse of the last claim. Let B < 0, PX(A — CB'CT)Pi+ = 0,
and (z*,y*) be stationary, i.e. they satisfy (2.66). Fixing y* we have for all small € > 0:

20e) =20 (0) = |2 T ERAIM (2.75)

We are left to prove x* is a local minimizer of g, for all small e.! Let ¢ = max{||B'C"||,||A—
CB'CT||}. We assume first ¢ > 0 and L # 0. Let o be the smallest positive singular value
of L = CPg. Consider any z such that ||z — 2*|| < e(0 A 1)/(3¢). We decompose

r—a" =& + 8., where 8, = Pi(z — %), (2.76)

!Unfortunately we cannot use the sufficient conditions in Section 2.3.2 since z* may not be an isolated
local minimizer.
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and define
y—y =—B'CT(z—a")+eL (x—a")/2ILT(x — z")]), (2.77)

where by convention 0/0 := 0.  Clearly, |ly — y*|| < €/3 +¢/2 < e. Thus, using the
stationarity of (z*,y*):

c—2]'[A O] [x—2a*
2. (z) > 2q(z,y) = [y B y*l [CT B] LJ B y*} (2.78)
(note BLT =0) = (z —2") " (A= CB'C")(x — 2*) + €| L (x — 2*)|| (2.79)
=6/ (A—=CB'CT)é+26[ (A—CBICT)o,+
+0[(A—CB'CT)o, +¢€|LT6 (2.80)
> —colldy1/3 — 2e00)[1/3+ 0+ colli = 0 = 24.("). (2.8

where we used the fact that ||§)]] V ||6.]| < eo/(3c) and Pi-(A— CB'CT)Pf = 0. Finally,
we note that if ¢ = 0, then A — CBTCT = 0 hence the proof still goes through (with ¢
replaced by 1 say). Similarly, if L = 0, then §; = 0 hence the proof again goes through
(with o replaced by 1 say). O

Comparing Theorem 2.4.1 with Theorem 2.2.10, we find that in both cases, local min-
imax points are global minimax, which is not true in general (Example 2.4.9). This shows
that there exists some “hidden convexity” in quadratic games when local/global minimax
points exist: fixing any x, ¢(z, ) is concave in y; ¢(z) is convex in z (c.f. (2.71)).

Remark 2.4.2 (application of Theorem 2.3.6 in quadratic games). We could also
use Theorem 2.3.6 to obtain the necessary condition of local minimaz points for quadratic
games. First write

fa*,y") — f(x*,y) = —y ' By/2 and — 0, f(z*,y) 't =—y C't

and Df.(x*;t) > §|PACTt|| for some § > 0. The critical directions are t € N(P5CT).
If BCT =0, then 0,f(z*,y)"t = 0 for any y and thus the second term in (2.50) is zero.
So, we have P+ AP+ = 0 with L = CPg. Otherwise, take critical directions t such that
t € N(PgCT). The second term in (2.50) becomes —t' CBYC "t (using Cauchy—-Schwarz).
Combining with the case BCT = 0, we have P{(A — CBTCT)Pt = 0.

We remark that the last claim of Theorem 2.4.1 does not follow from Theorem 2.2.10:
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Example 2.4.3 (quadratic games can be nonconvex). Let A= —1,C =1,B=0,a =
b= 0. Then, from Theorem 2.4.1 (z,y) = (0,0) is local and global minimaz. However,
q(z,y) = =22 + xy is clearly non-convez in x (although q is convez). Also, (0,0) is not
local saddle since q(x,0) > q(0,0) does not hold.

Theorem 2.4.4 (equivalence between global and local minimax in quadratic
games). An unconstrained quadratic game admits a global minimax point iff it admits a
local minimax point iff

B =0, Pr(A-CB'C"P; =0, and m ER <[é4T gD : (2.82)

For such quadratic games, local minimazx coincides with stationarity and are global mini-
maz.

Proof. 1f (2.82) holds, let

A C| |x* a
s -
Then, performing the translation (z,y) + (x — z*,y — y*) we reduce to the homogeneous
case and applying Theorem 2.4.1 we obtain the existence of a local (or global) minimax

point. If a local minimax point exists, then stationarity yields the range condition. Per-
forming translation and applying Theorem 2.4.1 again establishes all conditions in (2.82).

All we are left to prove is when a global minimax point (z*, y*) exists the range condition
holds. Indeed, fixing z*, y* maximizes the quadratic g(z*,-) hence from stationarity:

CTa* + By* =b. (2.84)

The above equation has a solution y* iff PACTa* = Pgb, i.e. LTx* = Pxb (recall that
L := CPg). Solving y and plugging back in ¢ we obtain: for all z such that LTx = Pgb,

g(z) = 22" (A—CB'CT )z +2'CBb —a'x. (2.85)
Since x* is a global minimizer of ¢, we obtain the stationarity condition:
PH[(A—-CB'C"az* + CB'b—a] = 0. (2.86)
Combined with (2.84) we obtain:
P}Ar* 4+ CB'By* —a] =0 <= Az* 4+ CB'By* —a = Lz = CPgz for some z (2.87
<« Az*+ C(B'By* + Pjz) =a (2.88
From (2.84) and (2.88) we deduce (z*, BT By*+ Pg 2) satisfies the range condition (2.83). [

~— —
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In this theorem we used R(-) to denote the range of a matrix. It is clear that stationary,
global minimax, and local minimax points are characterized in the same way as in Theo-
rem 2.4.1: we need only replace 0 on the right-hands of (2.66) and (2.67) with the vector
[a; b]. These points always form an affine subspace for quadratic games.

Theorem 2.4.4 allows us to completely classify (unconstrained) quadratic games:

no stationary points (hence no local or global minimax points);

exist stationary points but no global or local minimax point;

exist local minimax points which coincide with global minimax points.

exist local minimax points which are strictly contained in global minimax points.

Clearly, for homogeneous (unconstrained) quadratic games, stationary points always exist
hence only the last three cases can happen. For (nontrivial) bilinear games, only the last
case can happen:

Corollary 2.4.5 (bilinear games). For (homogeneous) unconstrained bilinear games
(A =0,B=0,C # 0,a=0,b=0), global minimaz points are null[CT) x R"™ while
local minimaz points (i.e. stationary points) are null(CT) x null(C).

It is thus clear that even in bilinear games, there exist global minimax points that are not
local minimax. From Theorem 2.4.4, we can derive that:

Corollary 2.4.6 (saddle points in quadratic games). For (unconstrained) quadratic
games, the following statements are equivalent:

1. Local saddle points exist.
Local mazximin and minimaz points exist.
Global saddle points exist.

Global mazimin and minimaz points exist.

bl (e 5)) -
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I l

global minimax local minimax

global saddle <«——> local saddle

global maximin local maximin

l J

Figure 2.2: The relation among definitions in quadratic games. A <— B means A exists
iff B exists. The brackets also show the existence relation. For example, global saddle
points exist iff both global minimax and maximin points exist.

6. stationary points exist and they are all local (global) saddle.

A summary of Corollary 2.4.6 and Theorem 2.4.1 can be visualized at Figure 2.2. Note
that we used R(-) to denote the range of a matrix. We remark that Theorem 2.4.6 does
not follow from typical minimax theorems (such as Sion’s) since our domain is unbounded
and we do not assume convexity-concavity from the outset. Thus, Theorem 2.4.6 reveals
strong duality under weaker assumptions than the usual convexity-concavity. This is in
stark contrast with generic NCNC games (see Example 2.1.6).

Remark 2.4.7 (non-uniformly local minimax in quadratic games). Since quadratic
functions are continuous (and thus upper semi-continuous), from Prop. 2.2.7 we know
that local saddle points are equivalent to uniformly minimaz points. By comparing Theo-
rem 2.4.6 and Theorem 2.4.4, whenever A = 0 = B and (2.89) holds, local saddle points
and thus uniformly local minimax points exist. However, if (2.82) holds but A = 0 does not
hold, local saddle points/uniformly local minimaz points do not exist from Theorem 2.4.0,
but local minimax points still exist from Theorem 2.4.4 which are hence non-uniform. We
can see it more clearly from Exammple 2.4.3. One can compute ¢ (x) = €|lz| — 122, and
obtain that q.(z) > q.(0) = 0 iff |x| < 2¢. According to Definition 2.2.3 the point (0,0) is
non-uniformly local minimazx.

Theorem 2.4.6 reveals some fundamental and surprising properties of quadratic games.
On the one hand, quadratic games consist of an important theoretical tool for understand-
ing general smooth NCNC games (through local Taylor expansion) (e.g. Daskalakis and
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Panageas, 2018; Jin et al., 2020; Ibrahim et al., 2020; Wang et al., 2020). On the other
hand, they are really special and many of their unique properties do not carry over to
general smooth NCNC games, as we demonstrate in the following examples:

Example 2.4.8 (stationary/global minimax points exist, no local minimax points).
For general NCNC' games, the existence of a global minimazx point may not imply the ex-
istence of local minimax points. Indeed, consider

f(x,y):_y4/4+y2/2_$y, ZBGR, yGR (290)
We claim (£1,0) are the only global minimax points. Indeed,
f(z) =max —y*/4 +y*/2 — 2y = max —yt A+ 7 )2 + |y > max —y'/A+y?)2 =1/4,
y y> y>
Clearly, the inequality is attained only at x, = 0 and y, = £1. Its only stationary point is
(z,y) = (0,0). However, d;,f(0,0) =1 hence y = 0 cannot be a local mazimizer of f(0,-).

Note that in this example the global minimax points are not stationary. For an example
where a stationary and global minimaz point exists with no local minimaz point, please
refer to Example 2.2.11.

Example 2.4.9 (local minimax exists, no global minimax). This is possible even for
separable functions, such as f(x,y) = 2* —x — y* defined on R x R. Clearly, it has a local
minimaz point at (1//3,0) but no global minimaz points exist.

Example 2.4.10 (local minimax and local maximin points exist; no local saddle).
We can also construct an example when both local minimax and local mazximin points exist
but there is no local saddle point. Take fi(x,y) = g(x,y)h(z,y), where

1 1
g(x,y) =xy — 2, and h(z,y) = exp <—m> 1;<1 exp (— T y2> 1y)<1

15 a bump function that smoothly interpolates between the unit box and the outside. By
numerically computing the stationary points and checking the second order conditions, we
found there is no such a point where 92, f; > 0 and Ozyfl < 0 in the open box By = {(x,y) :
lz| <1, ly| < 1}. In other words, local saddle points do not exist. There is a local minimax
point (0,0) since

fe(x) > (e|lz| — 2*) exp(=1/(1 — 2%)) exp(=1/(1 = €*)) > 0

when |z| < € and €& < 1. Similarly we can construct fo(x,y) = —g(y — 10,z — 10)h(z —
10,y — 10) where there is a local mazximin point but no local saddle point in the open box
By = {(z,y) : |[v — 10| < 1, |y — 10| < 1}. Therefore, f(z,y) = fi(z,y) + fo(z,y) has both
local minimax and local mazimin points, but there is no local saddle point on By U Bsy.
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Chapter 3

Stability of Gradient Algorithms

In minimax optimization, it is well-known that gradient algorithms may not always be
stable at a desirable optimal solution. It is important to understand if a gradient algorithm
would even converge before we prove some convergence result. In this chapter we study
the stability of gradient algorithms. With a powerful tool from control theory called
Schur’s theorem, we are able to characterize exactly the hyper-parameter choices (e.g. step
size, momentum coefficient) with which a gradient algorithm could (locally and linearly)
converge. For instance, in bilinear games, we show that adding momentum to simultaneous
Gradient Descent Ascent would not yield convergence; in general cases, we find that having
a more aggressive extra-gradient step could enhance stability.

3.1 Linear Dynamical System and Schur’s Theorem

In this section, we study linear dynamical systems (LDSs, a.k.a. matrix iterative processes,
Varga (1962)). We define a general k-step LDS as follows:

20 =% A ) (3.1)

where d € R, 20 € Rb for i = 1,2,..., and A; € R for i = 1,2,...,k. On the
Lh.s. of (3.1), t > k and we initialize from {z(© ... 2=V} As we will see later, iterative
gradient algorithms can be reduced to linear dynamical systems in terms of bilinear games
as well as local dynamics. Understanding the stability of gradient algorithms reduces to
understanding the stability of LDSs.
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Define the characteristic polynomial of our LDS (3.1), with Ay = —1I:
p(A) == det(32F, AN, (3.2)

The following well-known result decides when such a k-step LDS converges for any ini-
tialization:

Theorem 3.1.1 (e.g. Gohberg et al. (1982)). The LDS in eq. (3.1) converges for any
indtialization (2, ... 2F=V) iff the spectral radius r := max{|\| : p(\) = 0} < 1, in which

case {2} converges linearly with an (asymptotic) exponent r.

Therefore, understanding the dynamics of an LDS reduces to root analysis of the char-
acteristic polynomial.

3.1.1 Schur’s Theorem

The (sufficient and necessary) convergence condition in Theorem 3.1.1 reduces to that
all roots of the characteristic polynomial p(\) lie in the (open) unit disk, which can be
conveniently analyzed through the celebrated Schur’s theorem (Schur, 1917):

Theorem 3.1.2 (Schur (1917)). The roots of a real polynomial p(\) = ag\"+a; A" 1+ - -+
a, are within the (open) unit disk of the complex plane iff Vk € {1,2,...,n}, det(PPf —
QRQr) > 0, where Py, Q. are k x k matrices defined as: [Pilij = ai—j1li>;, [Qklij =
Qp—itj 1i§j-

In the theorem above, we denoted 1g as the indicator function of the event S, i.e. 1 =1
if S holds and 15 = 0 otherwise. The superscript H denotes the Hermitian conjugate of a
matrix. For a nice summary of related stability tests, see Mansour (2011). We therefore
define Schur stable polynomials to be those polynomials whose roots all lie within the
(open) unit disk of the complex plane. For real polynomials, Schur’s theorem has the
following corollary:

Corollary 3.1.3 (real polynomial, e.g. Mansour (2011)). A real quadratic polynomial
A2+ aX + b is Schur stable iff b < 1, |a| < 1+ b; A real cubic polynomial X3 + aA® + b\ + ¢
is Schur stable iff |c| < 1, [a+¢c| < 1+b, b—ac < 1—c* A real quartic polynomial
A+ a)d® + bA2 + e\ + d is Schur stable iff |c —ad| < 1 —d? |la+c| <b+d+ 1, and
b< (1+d)+ (c—ad)(a—c)/(d—1)>.
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Proof. 1t suffices to prove the result for quartic polynomials. We write down the matrices:

P = (1], Q. = [d], (3.3)
1 0 d c

P2: a 1 7@2: |:0 d:|7 (34)
[1 0 0 d ¢ b

P3: a 1 0 ,ng O d C R (35)
_b a 1 0 0 d
1 0 0 0 d ¢ b a
a l 00 0 dc b

Pi=1y 01 0@~ |0 0 d ¢ (3.6)
¢ b a 0 00 0 d

We require det(P, P, — Ql Qr) =: 6 > 0, for k = 1,2,3,4. If k = 1, we have 1 — d*> > 0,
namely, |d| < 1. d, > 0 reduces to (¢ — ad)? < (1 — d?)? and thus |c — ad| < 1 — d?* due to
the first condition. d, > 0 simplifies to:

—((a+e)’ = (b+d+1)*)((b—d—1)(d—1)* = (a — ¢)(c — ad))* <0,
which yields |a + ¢| < |b+ d + 1|. Finally, d3 > 0 reduces to:
(b—d—1)(d—1)> = (a—c)(c—ad)((d®>—1)(b+d+ 1)+ (c —ad)(a+c)) > 0. (3.8)

Denote p(A) := A+ a3+ b\ + cA +d, we must have p(1) > 0 and p(—1) > 0, as otherwise
there is a real root A\g with |[Ag| > 1. Hence we obtain b+ d+1 > |a + ¢| > 0. Also, from
lc —ad| <1 — d? we know that:

(3.7)

lc—ad|-la+c| <|b+d+1|(1—d*) = (b+d+1)(1—d?. (3.9)
So, the second factor in (3.8) is negative and the positivity of the first factor reduces to:
—ad)(a —
b<(1+d)+ (¢~ ad)fa = ¢) (3.10)

(d—1)?

To obtain the Schur condition for cubic polynomials, we take d = 0, and the quartic Schur
condition becomes:

lef <1, la+c|<b+1,b—ac<1—c (3.11)

To obtain the Schur condition for quadratic polynomials, we take ¢ = 0 in the above and
write:

b<1,lal <1+0b.

The proof is now complete.

43

(3.12)
0



We may also encounter complex polynomials in the study of local dynamics, and we give
a corollary for complex quadratic polynomials:

Corollary 3.1.4 (complex polynomial). For complex quadratic polynomials \>+a\+b,
the exact convergence condition is:

b] < 1, (1 —[b]*)? + 2R(a®b) > |a)*(1 + |b]?). (3.13)
Proof. For quadratic polynomials, we compute
Py =], Qi = [0], (3.14)

e R [ (3.15)

We require det(P,Pf' — QUQy) =: 0, > 0, for k = 1,2. If k = 1, we have 1 — [b|*> > 0. If
k = 2, we have:
H  AH _ 1-— ‘b’Q a— CLB

where a means the complex conjugate. The determinant should be positive, so we have:
(1 —|b]*)? 4 2R(a®b) > |a|*(1 + |b]?). (3.17)

[]

3.1.2 Solving Stability Conditions through Mathematica

In later sections we will study the stability conditions of gradient algorithms using Corol-
lary 3.1.3 and Corollary 3.1.4. This requires simplification of polynomial inequality arrays.
Although there are systematic ways for it using tools in algebraic geometry (Collins, 1975),
they will be inevitably tedious computation. For this regard, we will rely on Mathematica
code in our proofs (mostly with the built-in function Reduce) and in principle the code
can be verified manually using cylindrical algebraic decomposition.!

!See the online Mathematica documentation https://reference.wolfram.com/language/tutorial/
SomeNotesOnInternalImplementation.html.
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3.2 Bilinear Games

In the study of GAN training, bilinear games are often regarded as a simple yet important
example for theoretically analyzing and understanding new algorithms and techniques (e.g.
Daskalakis et al., 2018; Gidel et al., 2019a,b; Liang and Stokes, 2019). It captures the diffi-
culty in GAN training and can represent some simple GAN formulations (Arjovsky et al.,
2017; Daskalakis et al., 2018; Gidel et al., 2019a; Mescheder et al., 2018). Mathematically,
bilinear zero-sum games can be formulated as the following minimax optimization problem:

Mingegn MaxX,egn = By +b'z+c'y. (3.18)
The set of all saddle points (Definition 2.1.1) is:
{(z,y)|Ey +b=0, ET2 4+ c = 0}. (3.19)

Throughout, for simplicity we assume E to be invertible. We also assume z and y to have
the same dimension. The analysis is not fundamentally different if z and y have different
dimensions or FE is non-invertible (Zhang and Yu, 2020). The linear terms are not essential
in our analysis and we take b = ¢ = 0 throughout this section?. In this case, the only saddle
point is (0, 0). For bilinear games, it is well-known that simultaneous gradient descent as-
cent does not converge (Nemirovsky and Yudin, 1983) and other gradient-based algorithms
tailored for minimax optimization have been proposed (Korpelevich, 1976; Daskalakis et al.,
2018; Gidel et al., 2019a; Mescheder et al., 2017).

3.2.1 Gradient Algorithms

We define some popular gradient algorithms for finding saddle points in the general un-
constrained minimax optimization problem

i . 2
min max f(z,y) (3.20)

We present gradient algorithms for a general (bivariate) function f. Note that we intro-
duced more “step sizes” for our refined analysis, as we find that the enlarged parameter
space often contains choices for faster linear convergence. All hyperparameters below in-
cluding oy, as, 71, Y2, B1, B2 are positive.

2If they are not zero, one can translate z and y to cancel the linear terms, see e.g. Gidel et al. (2019b).
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Gradient Descent Ascent The generalized GDA update has the following form:
2 =20 —,0, (@, yY), Y =y a8, f(2W,y W) (3:21)

When «; = ag, the convergence of averaged iterates (a.k.a. Cesari convergence) for
convex-concave games is analyzed in (Bruck, 1977; Nemirovski and Yudin, 1978; Nedié
and Ozdaglar, 2009). Recent progress on interpreting GDA with dynamical systems can
be seen in, e.g., Mertikopoulos et al. (2018a); Bailey et al. (2019); Bailey and Piliouras
(2018).

Extra-Gradient We study a generalized version of EG, defined as follows:

204D = 20— 310, f (2, y ), y D = y<t> £/ (3:22)
2 = 20 _ 0,8, f(z t+1/2 Ly D — O o9, f( T 2 (3.23)

EG was first proposed in Korpelevich (1976) with the restriction a; = ay = 71 = 7,
under which linear convergence was proved for bilinear games. Convergence of EG on
convex-concave games was analyzed in Nemirovski (2004); Monteiro and Svaiter (2010),
and Mertikopoulos et al. (2019) provides convergence guarantees for specific non-convex-
non-concave problems. For bilinear games, a slightly more generalized version was proposed
in Liang and Stokes (2019) where oy = g, 71 = 72, with linear convergence proved. For
later convenience we define 81 = asy; and By = a17s.

Optimistic Gradient Descent We study a generalized version of OGD, defined as
follows:

2D = 20 _ o5, fla ®) (t))+618 flx (t=1) =1y, (3.24)
Y =y asd, f(20,y ) — 820, f(a, D). (3.25)

The original version of OGD was given in Popov (1980) with a; = ay = 26, = 20, and
rediscovered in the GAN literature (Daskalakis et al., 2018). Its linear convergence for
bilinear games was proved in Liang and Stokes (2019). A slightly more generalized version
with oy = ap and ) = f was analyzed in Peng et al. (2020); Mokhtari et al. (2020), again
with linear convergence proved. The stochastic case was analyzed in Hsieh et al. (2019).

It has been observed recently in Mokhtari et al. (2020) that for convex-concave games,
EG (a1 = a3 =9 = v =n) and OGD (a1/2 = ay/2 = 51 = 2 = 1) can be treated as
approximations of the proximal point algorithm (Martinet, 1970; Rockafellar, 1976) when
n is small. With this result, one can show that EG and OGD converge to saddle points
sublinearly for smooth convex-concave games (Mokhtari et al., 2019).
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Momentum Methods Generalized heavy ball method was analyzed in Gidel et al.
(2019b):

2 = 2O — 0,0, f(2W,y D) + By (2 — 27D, (3.26)
y Y =yt ad, f(@y ) + Ba(y —y ). (3.27)

This is a modification of Polyak’s heavy ball (HB) (Polyak, 1964), which also motivated
Nesterov’s accelerated gradient algorithm (NAG) (Nesterov, 1983). Note that for both z-
update and the y-update, we add a scalar multiple of the successive difference (e.g. proxy
of the momentum). For this algorithm our result below improves those obtained in Gidel
et al. (2019b), as will be discussed the next section.

3.2.2 Simultaneous and Alternating Updates

In the last subsection we have introduced a few gradient algorithms. In fact, they are
all algorithms with simultaneous updates, i.e., the variables x and y are updated simulta-
neously. In numerical linear algebra this is also known as the Jacobi update. There is a
different way to update the variables, called the alternating update, which means updating
the variables one after another. For instance, the alternating update version of GDA (3.21)
is:

2D — () alﬁxf(x(t),y(t)), YD = y® 4 0, f (x (t+1) ())7 (3.28)
where we update y**t1) based on z**1 rather than 2. In this way, we hope the algorithm
is more stable. Alternating updates are also called Gauss Seidel updates. A well-known
result is the Stein-Rosenberg theorem (Stein and Rosenberg, 1948), which shows that

Gauss—Seidel (GS) updates converge faster than Jacobi updates if the update matrices are
entry-wise non-negative.

Let us formally define Jacobi and GS updates. Suppose Jacobi updates take the form
= Ty (2%, T A G Y=y = 7y (), T N G YRy,
Then Gauss-Seidel updates replace £~ with the more recent 2=+ in operator Th:

Y

where Ty, T, : R x R"* — R" can be any update functions. We can apply this replacement
to all algorithms in Section 3.2.1. Inspired by Stein—Rosenberg theorem for element-wise
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non-negative matrices, our goal is to understand the relation between Jacobi and GS
updates for gradient algorithms in bilinear games. Note that all gradient algorithms in
Section 3.2.1 can be written as linear dynamical systems (Varga, 1962).

We find a nice relation between the characteristic polynomials of Jacobi and GS updates
in Theorem 3.2.1, which turns out to greatly simplify our subsequent analyses:

Theorem 3.2.1 (Jacobi vs. Gauss—Seidel). Let p(\,7) = det(32F o(YLi + Up) N9,
where A; = L; + U; and L; is strictly lower block triangular. Then, the characteristic
polynomial of Jacobi updates is p(A\, 1) while that of Gauss—Seidel updates is p(\, \).

Proof. Let us first consider the block linear iterative process in the sense of Jacobi (i.e., all
blocks are updated simultaneously):

th) k Zétii) k

b
= =S | =Y Z A2+ A 4, (3.29)
j=l

Z{Et) i=1 Zét—i) i=1 Lj=

where A, ; is the j-th column block of A;. For each matrix A;, we decompose it into the
sum

where L; is the strictly lower block triangular part and U; is the upper (including diagonal)
block triangular part. Theorem 3.1.1 indicates that the convergence behaviour of (3.29) is
governed by the largest modulus of the roots of the characteristic polynomial:

k
det (—A’“I +) Ai)\’“‘i> = det ( NI+ Z i+ U™ ) (3.31)
=1

Alternatively, we can also consider the updates in the sense of Gauss—Seidel (i.e., blocks
are updated sequentially):

ko[i-1
=2 Z “+”+ZAU AN wd, =10 (332
i=1 Lj=1 .
We can rewrite the Gauss—Seidel update elegantly® as:
k
(1= L1)2" = (Lia+ U2 + 4, (3.33)
i=1

3This is well-known when k = 1, see e.g. Saad (2003).
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ie.,

k
2 = Z([ — L) M (Li + U)2") + (I — L)', (3.34)

=1

where L;1 := 0. Applying Theorem 3.1.1 again we know the convergence behaviour of
the Gauss—Seidel update is governed by the largest modulus of roots of the characteristic
polynomial:

k
det <—)\’“I +) (1= L) (Lo + Ui))\’“‘i> (3.35)
=1

— det (([ - Ll)‘1< NN L+ S (L + Ui)A’H)) (3.36)

i=1
k
=det(I — Ly)™" - det (Z(/\Li + Ui)/\’“") (3.37)
=0
Note that Ay = —I and the factor det(l — L;)~! can be discarded since multiplying a

characteristic polynomial by a non-zero constant factor does not change its roots. ]

Compared to the Jacobi update, in some sense the Gauss—Seidel update amounts to
shifting the strictly lower block triangular matrices L; one step to the left, as p(\, ) can be

rewritten as det (Z?ZO(LHI + Ui))\k_i>, with Lg,1 := 0. This observation will significantly
simplify our comparison between Jacobi and Gauss—Seidel updates.

3.2.3 Stability Analysis of Gradient Algorithms

We are now ready to compare Jacobi and Gauss—Seidel updates for gradient algorithms.
The following lemma is well-known and easy to verify using Schur’s complement:

Lemma 3.2.2. Given M € R A ¢ R™™ and

g (3.38)

v=15 o)
If C and D commute, then we have det M = det(AD — BC).
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We formulate necessary and sufficient conditions under which a gradient-based algo-
rithm converges for bilinear games (3.18). We use “J” as a shorthand for Jacobi style
updates and “GS” for Gauss—Seidel style updates. For each algorithm, we first write down
the characteristic polynomials for both Jacobi and GS updates, and present the exact con-
ditions for convergence. We used the term “convergence region” to denote a subset of the
parameter space (with parameters «, § or ) where the algorithm converges. We show
that in many cases the GS convergence regions strictly include the Jacobi convergence
regions. Our result shares similarity with the celebrated Stein—Rosenberg theorem (Stein
and Rosenberg, 1948), which only applies to solving linear systems with non-negative ma-
trices. In this sense, our results extend the Stein—Rosenberg theorem to cover nontrivial
bilinear games.

Gradient descent ascent (GDA) From (3.21) the update equation of Jacobi GDA can
be derived as:

o] e T3] (3.39)

and with Lemma 3.2.2, we compute the characteristic polynomial as in eq. (3.2):

A=1)I wE

det ) BT (A= 1)1

} = det[(A — 1)*I + a1, EET], (3.40)

With spectral decomposition we obtain (3.41). Taking ay — Aay and with Theorem 3.2.1

we obtain the corresponding GS updates. Therefore, the characteristic polynomials for
GDA are:

J: (A= 1)* + ajan0? =0, GS: (A — 1)2 + agap0? ) = 0. (3.41)

Scaling symmetry From Section 3.2.3 we obtain a scaling symmetry

(Oél, OéQ) — (tOéh ()[2/t>,

with ¢ > 0. With this symmetry we can always fix a; = as = «. This symmetry
also holds for EG and momentum. For OGD, the scaling symmetry is slightly different
with (aq, B1, a0, B2) — (tay,tfr, an/t, Ba/t), but we can still use this symmetry to fix
] = Qg = Q.

Theorem 3.2.3 (GDA). Jacobi GDA and Gauss-Seidel GDA do not converge if the
initialization is not a saddle point. However, Gauss—Seidel GDA can have a limit cycle
while Jacobi GDA always diverges.
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Proof. With the notations in Corollary 3.1.3, for Jacobi GDA, we have b = 1 + a?0? > 1.
For Gauss—Seidel GDA, we have b = 1. The Schur conditions are violated. n

In the constrained case, Mertikopoulos et al. (2018a) and Bailey and Piliouras (2018)
show that Follow-The-Regularized-Leader, a more generalized algorithm of GDA, does not
converge for polymatrix games. When a; = «s, the result of Gauss—Seidel GDA has been
shown in Bailey et al. (2019).

Extra-gradient From eq. (3.22) and eq. (3.23), the update of Jacobi EG is:

[—BEET  —oE
A = { anET - BllETE} L, (3.42)

and the characteristic polynomial is:

(3.43)

—OéQET ()\ — 1)[ + ﬂlETE

Since we assumed s > 0, we can left multiply the second row by fsFE /s and add it to
the first row. Hence, we obtain:

()\ — 1)] O[lE + (/\ — 1)52E/042 + 6152EETE/042
det |:—CY2ET (A=D1 +BETE . (3.44)
With Lemma 3.2.2 the equation above becomes:
det[(A — 1)1 + (B1 + B)ETE(\ — 1) + (ayauE"E + B3 ETEET E)], (3.45)

which simplifies to (3.46) with spectral decomposition. Note that to obtain the GS poly-
nomial, we simply take as — Aaw in the Jacobi polynomial as shown in Theorem 3.2.1.
For the ease of reading we copy the characteristic equations for generalized EG:

J: A= 1)+ (81 + Ba)d® (A — 1) + (anano? + B10?) = 0, (3.46)
GS: ()\ — 1)2 + (061062 + 51 + 52>0'2</\ — ].) + (&1@20’2 + /61/820-4) =0. (347)
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Theorem 3.2.4 (EG). For generalized EG with oy = s = v and v; = B/, Jacobi and
Gauss—Seidel updates achieve linear convergence iff for any singular value o of E, we have:

J:|B10° + o0 = 2| < 14 (1 = B10°)(1 = fa0?) + a’0?,

(1= B10%)(1 — pyo?) + a?o® < 1, (3.48)
GS :|(B1 + B+ a?)o? — 2| < 1+ (1 — p10?)(1 — Beo?),
(1= B10%)(1 = Byo?) < 1. (3.49)

If B1 + By + a* < 2/0?, the convergence region of GS updates strictly includes that of
Jacobi updates.

Proof. Both characteristic polynomials can be written as a quadratic polynomial A\24-a\+b,
where:

Jia= (B + B2)o? =2, b= (1 - B10*)(1 — Bac?) + a’0?, (3.50)
GS:a= (B + B+ a)o? =2, b= (1 — B10%)(1 — Ba5?). (3.51)

Compared to Jacobi EG, the only difference between Gauss—Seidel and Jacobi updates
is that the a®0? in b is now in a, which agrees with Theorem 3.2.1. Using Corollary 3.1.3,
we can derive the Schur conditions (3.48) and (3.49).

More can be said if 3; + 3, is small. For instance, if 8 + (2 + a? < 2/0?, then (3.48)
implies (3.49). In this case, the first conditions of (3.48) and (3.49) are equivalent, while
the second condition of (3.48) strictly implies that of (3.49). Hence, the Schur region of
Gauss—Seidel updates includes that of Jacobi updates. The same holds true if 8145, < %.

More precisely, to show that the GS convergence region strictly contains that of the
Jacobi convergence region, simply take $; = o = . The Schur condition for Jacobi EG
and Gauss—Seidel EG are separately:

J: o?o? + (Bo* —1)* < 1, (3.52)

GS: 0 < Bo?* < 2 and |ac| < 2 — B> (3.53)
It can be shown that if 8 = o?/3 and o — 0, (3.52) is always violated whereas (3.53) is
always satisfied.

Conversely, we give an example when Jacobi EG converges while GS EG does not.
Let 102 = fs0? = 3, then Jacobi EG converges iff a?0? < 2 while GS EG converges iff
a?o? < i. O
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Optimistic gradient descent We can compute the LDS for OGD with eq. (3.24) and
eq. (3.25):

I —a B 0 6L E
(t+2) _ 1 (t+1) 1 )
z = [QQET 7 } z + {_BZET 0 ] 2\ (3.54)

With eq. (3.2), the characteristic polynomial for Jacobi OGD is

()\2 — )\)] ()\Oél — Bl)E:| .

det {(_AOZQ +A)ET (M= NI

(3.55)

Taking the determinant and with Lemma 3.2.2 we obtain (3.56). The characteristic poly-
nomial for GS updates in (3.57) can be subsequently derived with Theorem 3.2.1, by taking
(v, B2) = (Aaa, ABy). The characteristic equations can be computed as:

J: N =1)* + (Aar — B1)(Aag — B2)o” =0, (3.56)

GS: X2(A = 12 + (Aay — B1)(Aag — B2)Aa? = 0. (3.57)

Using the characteristic polynomials and Corollary 3.1.3, we obtain the following the-
orem, with the detailed proof in Appendix B.1.

Theorem 3.2.5 (OGD). For generalized OGD with oy = as = «, Jacobi and Gauss—
Seidel updates achieve linear convergence iff for any singular value o of E, we have:

J- |61620'2| < 17 (04_61)(03_52) > 07 4+(a+61)(a+52)02 > 07 (3 58)
| @ (Bio? +1) (8302 + 1) < (B1820% + 1) (2a(B1 + B2) + BiBa(Bifac? —3));
: (= Bi)(a = f2) > 0, (a+ fi)(a + f2)o? < 4,
G5 {(aﬁla2 + 1) (aBe0? + 1) > (1 + B1B20?)% (3.59)

The convergence region of GS updates strictly includes that of Jacobi updates.

Momentum method With eq. (3.26) and eq. (3.27), the LDS for the momentum
method is:

o) _ A+ BT —aE | gy AL 0|
z [ BT (14 B z + 0 —Bl PARS (3.60)
From eq. (3.2), the characteristic polynomial for Jacobi momentum is
(/\2 —/\(1—’—51) —I—Bl)] /\alE
. .61
det { A BT (X2 = AL+ B) + Bo)] (3:61)
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Taking the determinant and with Lemma 3.2.2 we obtain (3.62), while (3.63) can be derived
with Theorem 3.2.1, by taking s — Aay. For the ease of reading we copy the characteristic
polynomials from the main text as:

Jo (A= 12\ = B1)(\ = B2) + aano?X? = 0, (3.62)
GS: ()\ - 1)2(/\ - /31)<)\ - 52) + a1a202)\3 =0. (363)

Using the characteristic polynomials and Corollary 3.1.3, we obtain the following the-
orem, with the detailed proof in Appendix B.1.

Theorem 3.2.6 (momentum). For the generalized momentum method with a1 = ay = «,
the Jacobi updates never converge, while the GS updates converge iff for any singular value
o of E, we have:

B1Ba] < 1,] — 0 + B1 + B2+ 2| < f1fa+ 3, 4(B1 + 1) (B2 + 1) > a?0?,
a?0®B1B < (1= 132) (26182 — Br — Bo). (3.64)

This condition implies that at least one of (31, B2 is negative.

Prior to this work, only sufficient conditions for linear convergence were given for the
usual EG and OGD. For the momentum method, our result improves upon Gidel et al.
(2019b) where they only considered specific cases of parameters. For example, they only
considered 1 = 2 > —1/16 for Jacobi momentum (but with explicit rate of divergence),
and f; = —1/2, B = 0 for GS momentum (with convergence rate). Our Theorem 3.2.6
gives a more complete picture and formally justifies the necessity of negative momentum.

The stability regions of EG, OGD and the momentum method can be visualized in
Figure 3.1. In this figure, we take a; = ap = a and 7 = B2 = f in these algorithms. It
can be seen that the stability regions for Gauss—Seidel updates are generally larger than
Jacobi updates, and thus verifies the statement that Gauss—Seidel updates are more stable.

3.3 General Local Stability

From Theorem 2.3.1 we know that local minimax points are fixed points of gradient al-
gorithms. In this section, we extend our stability analysis in Section 3.2 and study the
following problem:

min max f(z,y), (3.65)
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Figure 3.1: Stability regions of Extra-gradient (EG), Optimistic gradient descent (OGD)
and the Heavy ball method (HB). We take oy = as = «, 51 = fo = ( for illustration
purpose.

with f twice continuous differentiable. We use z; instead of 2 in this section for the
iterative updates.

We focus on local linear convergence at stationary points z* using spectral analysis, by
which we mean that when initialized in a neighborhood of z*, an iterative method would
give:

[ze41 = 2"l < rflze = 27, (3.66)

where 0 < r < 1. Spectral analysis of a matrix A mainly involves two types of quantities:
the spectrum of A, Sp(A) := {\ : A is an eigenvalue of A}, as well as the spectral radius,
p(A) = maxyesp(a) |A|. An algorithm is ezponentially stable if the spectral radius of its
Jacobian matrix is less than one, which guarantees local linear convergence (Polyak, 1987).
A more rigorous definition uses the Hartman—Grobman theorem (Katok and Hasselblatt,
1995). Below when we refer to convergence, we always mean local linear convergence.

To obtain convergence near local minimax points, we consider two-time-scale (2TS)*
gradient algorithms, as proposed in Heusel et al. (2017) to train GANs. Also, Jin et al.
(2020) proved the “equivalence” between the stable points of 2T'S-GDA and strict local
minimax points (see Corollary 2.3.14). The intuition is that 2TS algorithms help the
convergence by taking a much larger step w.r.t. the maximization variable y. We denote
2 = (x4, y;) and define the vector field for the gradient update

U(’Z) = (_alazf<z>7 a2ayf(z))'

4This terminology comes from analogy with the continuous training dynamics. In our paper we simply
mean choosing two different step sizes.
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Local stability results can be obtained by analyzing the Jacobian of v(z) at a stationary
point (z*,y*):

_Oélai:pf _Oq@:%yf
0428596 f agﬁsy f
Define ay = vay, and Hy, o, = a1H;,. Note that H,, o,(f) may not be symmetric, hence

its spectrum lies on the complex plane. We also define H := H, ,/« which is independent
of a. To characterize the stable set of an algorithm, we ask the following question:

Heyop = Hay o (f) = (3.67)

Given hyper-parameters {u;}¥_, (e.g. step size, momentum coefficient) of an
algorithm A, what exactly are the geometric conclusions on the spectrum of
H,, o, such that A is exponentially stable at z*?

Similar questions have been asked in Niethammer and Varga (1983) for problems of linear
equations, where the Jacobian is a constant matrix. Such geometric characterizations allow
us to analyze the convergence near local saddle, local minimax and local robust points.

Note that in this section we are mostly considering one type of algorithmic modifi-
cation in sequential games using two-time-scale (except in Prop. 3.4.5) and simultaneous
updates. For non-convex sequential smooth games, it is possible to use alternating updates
in algorithms as studied in the previous section for bilinear games.

3.3.1 Stable Sets of Extra-gradient (EG) and Optimistic Gradi-
ent Descent (OGD)

We consider the generalized extra-gradient method EG(ay, as, 5) (Korpelevich, 1976) (the
original version has § = 1):

Zt+1 = 2t + U(Zt_:,_l/z)/ﬁ, Rt41/2 = At + U(Zt). (368)
and the generalized optimistic gradient descent (Peng et al., 2020), which we denote as
OGD(k, a1, a9)):

zir1 = 2+ ko(z) — v(zi1). (3.69)

EG has recently been studied in e.g. (Mertikopoulos et al., 2019) for special NCNC games,
and in Azizian et al. (2020a,b) for convex-concave settings using spectral analysis. OGD
was originally proposed in Popov (1980) as the past extra-gradient method, and recently
studied in the GAN literature (e.g. Daskalakis et al., 2018). We show a close connection
between EG and OGD, as observed recently (Hsieh et al., 2019; Mokhtari et al., 2019):
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Lemma 3.3.1 (equivalence between past extra-gradient and OGD). The past extra-
gradient method

Zipr = 2+ U(21/2) /By 2412 = 2+ 0(2-1)2) (3.70)
can be rewritten as z ; = 2, + kv(z;) —v(z,_;) with k =14+ 1/8 and 2, = z_1/5.
Proof. From the second equation of (3.70) we obtain

Zi43/2 = Zig1 + V(Ze41)2)

1
= Zt + (1 + —> U(Zt+1/2) + U(Zt_l/g) — U(Zt_l/g)

B
1
— Zt+1/2 + (1 + E) U(Zt+1/2) — U(Zt_l/z). (371)
In the second line we used the first equation of (3.70) and in the third line we used the
second equation of (3.70). O

Due to this correspondence, we will only consider OGD with £ > 1. We now charac-
terize the stable sets of EG and OGD, or the necessary and sufficient conditions for local
convergence:

Theorem 3.3.2 (stability of EG/OGD). At (z*,y*), EG(ay,aq, ) is exponentially
stable iff for any X € Sp(Ha,.ay), |11+ N/ B+ N?/B| < 1. OGD(k, a1, a2) is exponentially
stable iff for any A € Sp(Ha, .0y), [N < 1 and [M*(k — 3+ (K + 1)|A?) < 2R\ (kA2 —1).

Proof. From (3.68) the update of EG can be rewritten as z;.1 = 2z; + v(z + v(2)) /8. We
compute the Jacobian matrix of this update:

J — J(f) - I"’ Hal,ag/ﬂ + Hozzl,az/ﬂ'

It then follows that Sp(J) = 1+ Sp(Ha,.s)/8 + SP(Hay 0, )?/B, where the operation is
element-wise. Therefore, p(J(f)) < 1 iff

max )]1+)\/ﬂ+)\2/5\ <1.

AESP(Hay 0
Similarly for OGD, the spectrum can be computed as:

Sp(Joap) = {x:px) =2 —(1+kN2+A=0, N\ € Huy 0y} (3.72)
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Figure 3.2: The blue region is where EG/OGD is exponentially stable. The green region
represents where the eigenvalues of Sp(H,, ,) at local saddle points may occur (Sec-
tion 3.4.1). (left) EG(ay, ag, 8) with 8 € {1.0,4.0,6.0, cc}; (middle) OGD(k, a1, ap) with
ke {1.1,2.0,3.0}. (right) Comparison between EG(aq, az, 1) (blue) and OGD(2, ay, o)
(yellow).

With Corollary 3.1.4, we obtain the necessary and sufficient conditions when the roots of
p(z) are in the unit circle:

A <1, (k= DAk =3+ (k+ DIAP) < 20k — DR KNP — 1), VA € Ha, o,
]

From this theorem, we can plot the stable region of EG and OGD with the original
parameters, and find that EG and OGD are indeed similar, as shown on the right of
Figure 3.2. For EG, we note that Azizian et al. (2020b) used the spectral shapes of the
support of Sp(Ha, a,) to give upper and lower bounds of the convergence rates of EG, but
our results are orthogonal to it since we do not assume a geometric shape of the support
of Sp(Ha1,a2)'

When g — oo, k — 1., and the step size of extra-step is much larger than the step
size of the gradient step. In Zhang and Yu (2020) it was found that for bilinear games,
taking 8 — oo gives the best convergence rate among all hyperparameters. We show that
larger § increases the local stability as well (see also Hsieh et al. (2020) for saddle point
problems):

Theorem 3.3.3 (more aggressive extra-gradient steps, more stable). For 5 >
Bo > 1, whenever EG(ay, o, B2) is exponentially stable at (z*,y*), EG(ay, ag, B1) is ex-
ponentially stable at (x*,y*) as well. For ky > ky > 1, whenever OGD(ky, a1, as) is
exponentially stable at (x*,y*), OGD(kq, a1, 2) is exponentially stable at (x*,y*) as well.
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Proof. Rewriting A = x4y with z,y € R for A € H,, 4, and using Theorem 3.3.2, we run
the following Mathematica code (by = 1, by = fa):

Reduce [ForAll[{x, y, b1, b2}, ((y + 2 x y)/b2)"2 +
1+ (x+x"2-y72)/b2)"2 <1 && bl > b2 > 1,
((y+2xy/p)"2+ (1 + (x+x"2-y°2)/b1)"2 < 1]]

The answer is True. For the second part, we rewrite the stability condition for OGD as:
EIAP(L+ A2 = 2R(N)) < 3[A2 = [AI* = 2R(N). (3.73)
Since R(A\) < |A[, 1+ [A? — 2R(\) > 0. The left hand side increases with k. O

In the limit when 8 — oo, the stable region is R(\ + A?) < 0 whose boundary is a
hyperbola. Similarly, when & — 1., OGD has the largest convergence region: {\ € C :
Al <1, |A—1/2| > 1/2}. Figure 3.2 gives a visualization for the stable sets of EG/OGD.
Their convergence regions strictly include that of GDA, and thus these algorithms are more
stable:

Corollary 3.3.4. Given |A| < 1 with A\ € Hg,a,, whenever GDA(ay,as) converges,
EG(ay, a9, 1) converges as well. Given |\| < 1/v/3 with X € Hy, o,, whenever GDA(ay, o)
converges, OGD(2, a1, ) converges.

Proof. When /8 = 0, (3.80) becomes |1 + A| < 1. The first part follows from:
[T+ M <land A\ <1=[1+A+N|<1 (3.74)
Taking k = 2, from Theorem 3.3.2, the stability condition for OGD is:
IM2(=1 4 3A1%) < 2R\ (2]A* = 1). (3.75)

We want to show that for all |1+ A| < 1 and |\| < 1/4/3, (3.75) holds, and thus we define
A =u+iv (u,v € R) and use the following Mathematica code:

Reduce[ForAll[{u, v}, (1 +u)™2+v'2<1&& u2+v2<1/3,
(w2 +v'2) (-1 +3 W2+v2))<2ul-1+2 W2+v2)]]

This result is True. O
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3.3.2 Momentum Algorithms

We study the effect of momentum for convergence to local saddle points, including heavy
ball (Polyak, 1964) and Nesterov’s momentum (Nesterov, 1983). They are similar to GDA
and do not converge even for bilinear games, as proved in Theorem 3.2.6. In the following
two subsections, we study the effect of momentum for convergence to local saddle points.
GDA is a special case if we take the momentum parameter g = 0.

Heavy Ball (HB)

We study the heavy ball method HB(ay, g, 8) (Polyak, 1964) in the context of minimax
optimization, as also studied in Gidel et al. (2019b):

zip1 = 2+ 0(2) + B(2e — 221),v(2) = (—a10, f(2), a20, f(2)). (3.76)
Theorem 3.3.5 (HB). HB(o, as, ) is exponentially stable iff VX € Sp(Ha, 0,), 18] < 1,
2BR(N%) — 2(1 = B)* (1 + B)R(N) > (1 + %) A%
Proof. With state augmentation z; — (2141, 2¢), the Jacobian for HB(ay, ae, 8) is:

(1 + ﬁ)Iner + Hal,az _BIn+m

Jup(f) = I o "l (3.77)

The spectrum can be computed as:
Sp(Jus(f)) ={w :p(w) == (w —1)(w =) —wA =0, € Hy, 0}  (3.78)
This quadratic equation can be further expanded as:
w*— (B+1+Nw+8=0. (3.79)

With Corollary 3.1.4, we obtain the necessary and sufficient conditions for which all the
roots are within a unit disk:

8] < 1,2BR(N?) — 2(1 = B)*(L + B)R(A) > (1+ B%)[A]%. (3.80)

]

60



This theorem can also be derived from Euler transform as in (Niethammer and Varga,
1983, Section 6) which is used in analyzing methods for solving linear equations. The
first inequality || < 1 can be easily used to guide hyper-parameter tuning in practice.
The second condition in fact describes an ellipsoid centered at (—3 — 1,0). If we define
A =u+ 1w and (u,v) € R? then this condition can be simplified as:

(u+B8+1)° v?
+ < 1. 3.81
CESTEARCESIE 350
As shown on the left of Figure 3.3, if the momentum factor S is positive, the ellipsoid
is elongated in the horizontal direction; otherwise, it is elongated in the vertical direc-
tion. This agrees with existing results on negative momentum (Gidel et al., 2019b) and
Theorem 3.2.6 on bilinear games.

Corollary 3.3.6 (HB). For any |f| < 1, HB(a, «, B) is exponentially stable for small
enough o at a local saddle point iff at such a point R(N\) # 0 for all X € Sp(H).

Proof. From Lemma 3.4.1, for any A € Sp(H), ®(A) < 0. If R(N\) # 0 for all A € Sp(H),
then (3.81) holds for small enough «. If R(\) = 0 for some A\ € Sp(H), we cannot have
(3.81). O

Nesterov’s Accelerated Gradient (NAG)

Nesterov’s accelerated gradient (Nesterov, 1983) is a variant of Polyak’s heavy ball, which
achieves the optimal convergence rate for convex functions. It has been widely applied in
deep learning (Sutskever et al., 2013). In Bollapragada et al. (2019), the authors analyzed
the spectrum of NAG using numerical range in the context of linear regression, which is
equivalent to the case when Sp(H) C R (c.f. Bollapragada et al. (2019, p. 11)).

The key difference between HB and NAG is the order of momentum update and the
gradient update. We study Nesterov’s momentum for minimax optimization:

zip1 = 2+ av(zy), 2, = 2+ Bz — 2-1), (3.82)
which we denote as NAG(a, ag, 3). We have the following stability result for NAG:

Theorem 3.3.7 (NAG). NAG(ay, as, B) is exponentially stable iff for any A € Sp(Hay o) -
T+ A2 >14+28(82 = 8= DR + B AP(1+28), 18] |1+ A < 1. (3.83)
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Figure 3.3: Convergence regions of momentum methods with different momentum param-
eter 5: (left) HB(«, 5); (right) NAG(a, 8). We take 8 = 0,£0.4,4+0.6 (as shown in the
figure). The green region represents the one where the eigenvalues of Sp(Hg, «,) at local
saddle points may occur (Section 3.4.1).

Proof. With state augmentation z; — (2441, 2¢), the Jacobian for NAG is:

(1 + ﬂ)([n—i-m + Ha1,a2) _B(In—km + Hahaz)
Inim 0

The spectrum can be computed as:
Sp(J(f)) = {w:pw) :=w’ —w(l+B)1+A)+B(1+N) =0,\€ Hapa}-

Comparing with (3.79), we find that the two characteristic polynomials are different only
by O(a3). With Lemma 3.1.4, the condition for local linear convergence is:

T+ A2> 142662 —8—-1DRWN) + B2A1Q +20), (3.84)
Bl -1+ A\ < 1. (3.85)
O

From Figure 3.3, the convergence region of NAG is better conditioned than HB. How-
ever, NAG is still similar to HB and GDA in terms of the local convergence behavior:
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Corollary 3.3.8 (NAG). If R(\) > 0 for some X\ € H,, o,, then NAG(aq, az, ) is not
exponentially stable.

Proof. Take X\ € H,, o, and assume A = u + iv with u,v € R. (3.83) can be translated to
the following Mathematica code:

Reduce[b™2 ((1 + u)"2 +v™2) <1 && ((1 + w2+ v2) (1 +
2b (b2-b-1)u+b2 (UW2+v2 (1+2Db) <1&& u>= 0],

and the result is False. ]

According to Lemma 3.4.1, NAG(ay, as, ) never converges on bilinear games.

3.4 Stability at Local Optimal Solutions

After characterizing the stable sets of gradient algorithms, we move on to see the spectral
behavior of local optimal points (c.f. Chapter 2). For local saddle points, the spectrum of
H,, o, is on the left closed half plane. However, the spectrum of local minimax points can
be quite arbitrary. With these results we can study how gradient algorithms (GDA with
momentum, EG/OGD) converge to local optimal points.

3.4.1 Local Saddle Points

Even though H,, ,(f) is non-symmetric, it is still negative semi-definite near local saddle
points®. Therefore, we can prove that its spectrum lies on the left (closed) complex plane:

Lemma 3.4.1 (local saddle). Suppose ay,as > 0 are fized. For f € C?, at a local saddle
point, VA € Sp(Huy0,(f)), R(A) < 0. Vz € C with R(z) < 0, there exists a quadratic
function q and a local saddle point (x*,y*) such that z € Sp(Ha, a,(q)). For bilinear
functions, at a local saddle point R(N) =0 for all X\ € Sp(Ha, a,)-

Proof. The convergence analysis reduces to the spectral study of H; ,. With the similarity

transformation:
. R — 7 f] {z 0 ]
H =U"'H U= vz wl | U= , 3.86
S NG NN 0 VAl (350

5A real n x n matrix A is negative semi-definite if for any z € R”, T Az < 0. See e.g. Wang et al.
(2010).
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It suffices to study the spectrum of H’. For any local saddle point (z*,y*), we have:
02, f(z*,y") = 0,0, f(z*,y") 2 0. (3.87)

From this necessary condition, R(H') := (H' + H'")/2 is negative semi-definite, and with
the Ky Fan inequality (Fan (1950)) we have R(Sp(H’)) < Sp(R(H’)) < 0, with “<”
meaning majorization (Marshall et al., 1979). The second part can be proved by assuming

z = —u+iv with u > 0 and v € R. The quadratic function can be
ur?  uy? n v
q=— — 5 +—=y,
2 2y

since one can verify that (0,0) is a local saddle point where:

Hiy = L}_j% _U_/f] : (3.88)

whose two eigenvalues are z and z. For bilinear games f = 2'Cy+a'2z+b'y, at any local
saddle point, the Jacobian matrix of the vector field is:

0o -C
Hy, = LCT o } (3.89)
The eigenvalues are A = 4i,/7y0, with o a singular value of C. [

This result is a slight extension of Daskalakis and Panageas (2018, Lemma 2.4). Com-
bined with Lemma 3.4.1, we can show that EG/OGD converges for any local saddle points
where the Jacobian H(f) is non-singular, and also the feasible range of k for OGD:

Theorem 3.4.2 (stability of EG/OGD at local saddle points). EG(a,a,1) is ex-
ponentially stable at any local saddle point if at such a point, 0 < |A| < 1/« for every
A € Sp(H). OGD(k,«, ) is exponentially stable at any local saddle point if 1 < k < 2
and 0 < |A| < 1/(ka) for every A € Sp(H). If k > 3, OGD(k, a1, as) is not exponentially
stable for bilinear games.

Proof. At a local saddle point, from Lemma 3.4.1, for any A € Sp(H), R®(A) < 0. The
corollary follows with 0 < |A| < 1/« for every A € Sp(H) and Theorem 3.3.2, since if
B =1, we can show:

RA) <0and 0 < [N <1=|1+A+)\| <1, (3.90)

with the following Mathematica code (rewrite A = u + v with u,v € R):

64



Reduce[ForAll[{u, v}, u<=0&& 0<u™2+v2<1, (v+2uvwv)2
+ (1 +u+u2-v'272<1]],

and the result is True. For OGD, if 1 < k£ < 2, we use Theorem 3.3.2, Lemma 3.4.1, and
the following Mathematica code (rewrite A = u + v with u,v € R):

Reduce [ForAll[{u,v,k}, 0 < u™2+v"2<1/k"2 && u<=0 && 1<k<=2,
(u"2+v~2) (=3+k+(1+k) (u"2+v~2)) <2u(-1+k(u~2+v~2))]1].

The result is True. If £ > 3 and the game is bilinear, from Theorem 3.3.2, Theorem 3.3.3
and Lemma 3.4.1 we must have 4|A\|* < 0 to obtain local convergence, which is obviously
false. [

3.4.2 Local Minimax Points

Now we study how gradient algorithms converge to local minimax points. We do not have
the results in Theorem 3.4.2, since different from local saddle points, the spectrum of the
Jacobian H,, 4,(f) is quite arbitrary:

Lemma 3.4.3 (spectrum of local minimax can be arbitrary). Given oy, as > 0, for
any z € C, there ezists a quadratic function q and a local minimax point (z*,y*) where

z € Sp(Hay,0,(q))-
Proof. Let us assume z = u + iv with (u,v) € R?. We first construct a real polynomial:
A=2)A=2) = = 2uA +u? + 02 = 0. (3.91)

On the other hand, the characteristic polynomial of H,, o,(¢) with ¢(z,y) = ax?/2 +
by?/2 + cxy is:

M+ (aqa — asb) A + aan(c® — ab) = 0. (3.92)
Comparing (3.91) and (3.92), it suffices to require that:
a1a — agh = —2u, ayan(c® — ab) = u? + v (3.93)

which always has real solutions given (a; > 0, an > 0, u,v). O
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This result shows that local minimax points are a more general class than the class of
local stable stationary points (LSSPs) as proposed recently in Berard et al. (2020) (see also
Definition 2.2.14), in terms of zero-sum games, since LSSPs are defined such that #(\) < 0
for any A € Sp(H, ) and o > 0 (note the slight change of signs due to the difference of
the notations). Under certain assumptions, 2TS gradient algorithms can converge to local
minimax points. The following result slightly extends Jin et al. (2020) where only GDA is
analyzed:

Theorem 3.4.4 (stability of EG/OGD at strict local minimax points). Assume at
a stationary point (x*,y*),

02,f <0 and 02, f — 02, (92, )02, f - O. (3.94)

Then 39 > 0 and o > 0 such that Vv > 7,0 < as < ag and oy = az/y, EG and OGD
(with k > 1) are ezponentially stable.

Proof. Assume x € R™ and Using Lemma 36 of Jin et al. (2020), for any 6 > 0, there exists
Yo > 0, when v > 7, the eigenvalues of H(1/v,1), A,..., Ay Aas1, - - - Amin, are:

N+ iyl <8/, Vi=1,...,n, Ain — i <6, Vi=1,...,m, (3.95)

where p1; € Sp(02,f — 02, f(92,f) 10z, f) and v; € Sp(d;,f). From our assumption, p; > 0
and v; < 0. With (3.95), there exists vy such that for every v > 7o, R(\;) < 0 for all
Ai € H(1/~,1). From Theorem 3.4.2, EG (8 = 1) and OGD (1 < k < 2) are exponentially
stable if a4 is small enough. O]

In fact, the theorem above can be extended to the momentum methods as well (see
Section 3.3.2). As we have seen in Corollary 2.3.14, (3.94) is sufficient for being local
minimax (see also Fiez et al. (2019); Wang et al. (2020); Zhang et al. (2021) for applications
in GANs). However, without the assumption (3.94) (see also Jin et al. (2020, Theorem 28)
for GDA), the convergence is more difficult:

Proposition 3.4.5 (stability of gradient algorithms at general local minimax
points). There exists a quadratic function (e.g., q(z,y) = —x* + xy) and a global (thus
local, from Theorem 2.4.4) minimaz point z* = (z*,y*) where

e GDA (with momentum or alternating updates) does not converge to z*, for any hyper-
parameter choice.

e EG/OGD do not converge to z* given a; = g, or as — 0; otherwise there exist
hyper-parameter choices such that EG/OGD converge to z*.
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o Alternating OGD does not converge to z* given cg — 0.

Proof. We consider q(z,y) := —2%+zy as the example, with X = Y = R. From (2.4.1) we
know that (0, 0) is a global minimax point. (0, 0) is also local minimax since it is stationary
(cf. Theorem 2.4.4). H;, at (0,0) is:

Hiy = [,QY _01} : (3.96)

If 0 < v < 1, the two eigenvalues are 1 £ /1 — v which are both real and positive. One
can read from Theorem 3.3.5 (or Figure 3.3) and Theorem 3.3.2 (or Figure 3.2) that GDA
(with momentum) and EG/OGD do not converge to (0, 0), locally and globally. Specifically,
when v =1, ay = .

If v > 1, the eigenvalues are A\; 5 = 1 &1/ — 1, which have positive real parts. From
Theorem 3.3.5 (or Figure 3.3), GDA (with momentum) do not converge to (0,0). Now let us
study 2TS-EG and 2TS-OGD, which corresponds to the second point of Proposition 3.4.5.

2TS-EG  Taking 8 — oo we require that (X + A?) < 0, which simplifies to:
a+af —aj(y—1) <0, (3.97)
and thus
oy > 14207 > 1. (3.98)

We cannot take as to be arbitrarily small.

2TS-OGD For 2TS-OGD, we need as to be (1) as well. From Theorem 3.3.2, we take
k — 1, so that the convergence region is the largest:

Al <1, |A—=1/2| > 1/2. (3.99)
Bringing in the eigenvalues «;(1 4 iy/y — 1), we obtain:
ap <1, 1/ay <y <1/ai. (3.100)

In other words, 1 < as < 1/c;. We could take o infinitesimal but not as.
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Alternating updates Now let us study alternating updates on this example. We use the
same framework as Section 3.2.2. We only study GDA and OGD for illustration purpose
and other gradient algorithms follow similarly. The alternating GDA can be written as
(a1 >0, g > 0):

Ty = 2y — 10 f (T4, Yt), Yer1 = Yo + @20y f(Te11, 1), (3.101)

and the alternating OGD can be written as (c.f. (3.69))(a; > 0, as >0, k > 1):
Tip1 = T — ka10p f (04, Y1) + 1 Op f(Te1, Y1), (3.102)
Yerr = Yo + koo, f(Tey1, yt) — @20, f (24, Y1) (3.103)

Let us denote A = 92, f(z*,y*), B = 0;,f(z*,y*) and C' = 03,f(z*,y*). Locally, we
can treat the gradient algorithms as a linear dynamical system. For instance, the linear
dynamical system of simultaneous GDA and simultaneous OGD can be written as:

Ty — * T — x* - A —oC\ [z —z*
GDA.: L] = L]+ < 3.104
<yt+1 -y ) <yt -y ) (Oéch @B ) (yt -y ) ( )
Ty — T T — x* - A —oC\ [z —a*
OGD: L] = .| Tk .-
<yt+1 -y ) <yt -y ) (OQCT a B > (yt -y )
—iA —oC\ [z —
_ ) 3.105
(Oéch ayB ) (ytl - y*> ( )

With Theorem 3.1.2, the characteristic equations for alternating GDA and alternating
OGD are:

) B A —a O
GDA: det <()\ I (Oég/\CT s >) =0, (3.106)
' _ _ _ —aA —ayC B
OGD: det (()\ DA — (kA —1) (Oéz)\CT 0B >) = 0. (3.107)
For the quadratic example ¢(z,y) = —z% + 2y we are considering, we have A = —2, B =

0,C = 1. Bringing it to (3.106), we obtain:

GDA: X\ + (ayay — 204 — 2)A + 20, + 1 =0, (3.108)
OGD: )\4 + (0610é2k32 - 20&1]{ — 2) )\3 + (2061 - 20(10(2k' + 20(1]4? + 1)/\2 + (OélOéQ - 20&1))\ =0.
(3.109)

From Corollary 3.1.3, alternating GDA is stable ift:

20é1+1 < 1, ‘051042—2041—2‘ <20(1+2. (3110)
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Note that the first condition can never hold since a; > 0. Hence, alternating GDA cannot
converge to the local minimax point (0, 0) if the initialization is not at (0, 0). For alternating
OGD, the second equation of (3.108) can be simplified as A = 0 or:

AN+ (qonk® — 200k — 2) A 4 (204 — 20q00k + 200k + 1A + aq(a — 2) = 0. (3.111)
Using Corollary 3.1.3 again we know that alternating OGD is stable iff:
el <1, lat+c <14+bb—ac<1—c (3.112)

where a = ajank? — 201k — 2, b = 20y — 20000k + 200k + 1, ¢ = oy (ap — 2). We simplify
it on Mathematica:

Reduce[Abs[c]l<1 && Abs[atc] < 1 + b & b -ac <1 -c2&k>1
&% \alpha_1 > 0 && \alpha_2 > 0, {\alpha_1, \alpha_2}]

and obtain that:

4
k>1and 0 < a;y < ——— and

k% —1
-2 2k2+1 2 kE—1 4 dank + 4
a12+ ajk* + a1+ o <y < oy + 4ok + ‘ (3.113)
ai(k+1)2 ar(k+1) ay + a1k? 4+ 201k
Since k£ > 1 and
—2a1+a%k2—|—1+2a1+a1k—1> —2@1"‘0&%"‘1_{_20[14-0&1]{3—1
a?(k+1)2 ar(k+1) a?(k+1)2 ar(k+1)
. C(1k+2@1—1+’041—1’
N O{1<k—|— 1)
a1k+2a1—1+1—a1
- Oél<k+ ].)
=1, (3.114)
we have oy > 1 for alternating updates of OGD. O]

Prop. 3.4.5 extends Jin et al. (2020) by studying the degenerate case of ajy f and
gradient algorithms other than GDA. The implication is two-fold:
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e On the algorithmic aspect, we may not always rely on the usual ODE analysis
(Mescheder et al., 2017; Mertikopoulos et al., 2018b; Fiez et al., 2019) when try-
ing to find global/local minimax points, as such analysis relies on approximating
gradient algorithms with their continuous versions, by taking the step sizes to be
arbitrarily small. For EG/OGD, the step size of the follower (as) has to be large
while the step size of the leader can be arbitrarily small, reflecting the asymmetric
position of players in Stackelberg games (Jin et al., 2020).

e We may also need new solution concepts in addition to global/local minimax points in
machine learning applications (e.g. Farnia and Ozdaglar, 2020; Schaefer et al., 2020),
even though many machine learning applications, including GANs (Goodfellow et al.,
2014) and adversarial training (Madry et al., 2018) are essentially based on the notion
of global minimax points. This is because when applying standard gradient-based
algorithms to do local search on machine learning applications, we cannot always
expect the final solutions the algorithms find to cover all global/local minimax points.

3.5 Experiments

In this section, we present experimental results on simultaneous (Jacobi) and alternating
(Gauss-Seidel) updates in bilinear games and GAN training.

Density plots We show the density plots (heat maps) of the spectral radii in Figure 3.4.
We make plots for EG, OGD and momentum with both Jacobi and GS updates. These
plots are made when 31 = 55 =  and they agree with our theorems in §3.2.3.

Wasserstein GAN As in Daskalakis et al. (2018), we consider a WGAN (Arjovsky
et al., 2017) that learns the mean of a Gaussian:

min¢ maxy f(¢, (9) = EINN(W,z]) [S(QTZ')] — EZNN((]’Uz[) [S(@T(Z’ + ¢))], (3.115)

with s(z) := 1/(14e~*) the sigmoid function. We study the local behavior near the saddle
point (0*, ¢*) = (0,v), which depends on the Hessian:

[afxﬁf 0o f ]
02, f 03 f

[—EQS[S”(QTZ)@QT] —Ey4[s"(072)02" + ' (0" 2)I]
((93)91}”)T E,[s"(0 x)zxT] — Eys" (07 2)22"]|
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Figure 3.4: Heat maps of the spectral radii of different algorithms. We take ¢ = 1 for
convenience. The horizontal axis is « and the vertical axis is 5. Top row: Jacobi updates;
Bottom row: Gauss—Seidel updates. Columns (left to right): EG; OGD; momentum.
If the spectral radius is strictly less than one, it means that our algorithm converges. In
each column, the Jacobi convergence region is contained in the GS convergence region (for
EG we need an additional assumption, see Theorem 3.2.4).
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Here E, is a shorthand for E, w025y and Eg is for E, zg021). At the saddle point, the
Hessian is simplified as:

P%J a%ef} :{ /0 —s'(o)l] :l 0 —1/4}

guf  Oof —s'(0)I 0 —I1/4 0

Therefore, this WGAN is locally a bilinear game. With GS updates, we find that Adam
diverges, SGD goes around a limit cycle, and EG converges, as shown in Figure 3.5. We
can see that Adam does not behave well even in this simple task of learning a single
two-dimensional Gaussian with GAN.

Our next experiment shows that GS updates are more stable than Jacobi updates.
In Figure 3.6, we can see that GS updates converge faster and they converge even if the
corresponding Jacobi updates do not.

Mixtures of Gaussians (GMMs) Our last experiment is on learning GMMs with a
vanilla. GAN (Goodfellow et al., 2014) that does not directly fall into our analysis. We
choose a 3-hidden layer ReLLU network for both the generator and the discriminator, and
each hidden layer has 256 units. We find that for GDA and OGD, Jacobi style updates
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Figure 3.5: Comparison among Adam, SGD (or GDA) and EG in learning the mean of a
Gaussian with WGAN with the squared distance.
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Figure 3.6: Jacobi vs. GS updates. y-axis: Squared distance ||¢ — v||?. x-axis: Number
of epochs. Left: EG with v = 0.2, = 0.02; Middle: OGD with a = 0.2, 5; = 0.1,

By = 0; Right: Momentum with o = 0.08, 8 = —0.1. We plot only a few epochs for
Jacobi if it does not converge. The setting is the same as Figure 3.5.
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Figure 3.7: Test samples from the generator network trained with stochastic GDA (step
size « = 0.01). Top row: Jacobi updates; Bottom row: Gauss-Seidel updates.
Columns: epoch 0, 10, 15, 20.
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Figure 3.8: Test samples from the generator network trained with stochastic OGD
(o = 26 = 0.02). Top row: Jacobi updates; Bottom row: Gauss—Seidel updates.
Columns: epoch 0, 10, 60, 100.

converge more slowly than GS updates, and whenever Jacobi updates converge, the cor-
responding GS updates converges as well. These comparisons can be found in Figure 3.7
and 3.8, which implies the possibility of extending our results to non-bilinear games.
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Chapter 4

Newton-type Algorithms

In this chapter we study Newton-type algorithms for unconstrained minimax optimization:

i : 4.1
min max f(x,y) (4.1)

In conventional minimization (Bertsekas, 1997), a Newton algorithm requires the invert-
ibility of the Hessian. Similarly, for minimax optimization we need additional assumptions.
We mostly focus on strict local minimax points (SLmMs, see Corollary 2.3.14). an SLmM
(x*, y*) satisfies:

amf(x*7y*) - ayf(x*?y*> = 07
Opy (2™, y7) =0, O f 2™, y7) — 05, f (2™, y") (0, f (2", y")) T 05, f (2", y") = 0.

We will use the shorthand notations for total derivatives:

Dof 1= 0uf — 05y f - (05, f) " - 0, f,
2 p._ o2 2 2 -1 92
The meaning of D, f and D?_f will be apparent in (4.9). The partial derivative operators

can be distributed, e.g., ((07,)"" - 9,)f = (9;,f)" - 9,f, where the - sign means matrix
multiplication.

In fact, many existing algorithms can be treated as inexact implementations of Uzawa’s
approach (Arrow et al., 1958), i.e., fast follower F and slow leader L. One could use Gradient

Ascent (GA) with a large step size for F and Gradient Descent (GD) with a small step
size for L, known as two-time-scale (Borkar, 2008; Heusel et al., 2017; Jin et al., 2020);
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or perform k steps of GA update for F after every step of GD update of L (Goodfellow
et al., 2014; Madry et al., 2018). Following Uzawa’s approach, we use a Newton step for
F and a GD update for L, that we call the Gradient-Descent-Newton (a.k.a. GD-Newton,
GDN) algorithm. Although the method sounds simple and natural, surprisingly, it has not
been well studied for non-convex-concave minimax problems, especially for the solution
concepts such as the differential Stackelberg equilibrium (Fiez et al., 2019) and strict local
minimax points (Evtushenko, 1974a; Jin et al., 2020). We compare GDN with similar
algorithms that use the Hessian inverse, such as Total Gradient Descent Ascent (TGDA,
Evtushenko, 1974b; Fiez et al., 2019) and Follow-the-Ridge (FR, Evtushenko, 1974b; Wang
et al., 2020). Although the three algorithms share the same complexity, GDN has faster
local convergence when the follower problem is ill-conditioned. A similar conclusion can
be drawn by comparing with GDA methods.

Algorithms above achieve local linear convergence and still suffer from the ill-conditioning

of the leader problem (and the follower problem except our GDN). Fortunately, in §4.3.2
we show that the Hessian for the leader is also well-defined and we propose the Complete
Newton (CN) algorithm that performs Newton updates for both the leader and follower.
CN enjoys local quadratic convergence and evades the ill-conditioning of both leader and
follower problems in a local neighborhood. To the best of our knowledge, this is the first
genuine second-order algorithm for nonconvex-nonconcave minimax optimization that (lo-
cally) converges super-linearly to (strict) local minimax solutions.! Rather surprisingly, we
show that CN, being a second-order algorithm, can be implemented in similar computation
complexity as the first-order alternatives such as TGDA, FR, and GDN. In §4.4, we ver-
ify theoretical properties of our Newton-type algorithms through experiments on training
GANS.

In this chapter, we propose two Newton-type algorithms (GDN and CN) for minimax
optimization that share similar complexity as existing alternatives but locally converge
much faster, especially for ill-conditioned problems. To implement the Newton update, we
take a Hessian-free approach (Martens, 2010) using only Hessian-vector products and Con-
jugate Gradient (CG), for which the per iteration complexity and memory usage are linear.
Our results are summarized in Table 4.1. We also perform experiments on training GANs
to complement our theoretical results which offer empirical insights on the aforementioned
algorithms.

Newton-type methods have also been studied for other related problems such as vari-
ational inequalities (Han and Sun, 1998; Izmailov and Solodov, 2014) and bi-level opti-

In Evtushenko (1974b), a superlinear algorithm was proposed, but its convergence was not formally
proved.
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Table 4.1: Comparison among algorithms for minimax optimization. p and p’ are the
numbers of conjugate gradient (CG) steps to solve (0;,)7'0, f and (D2,)'0, f respectively.
pL and pr are the asymptotic linear rates defined in Thm. 4.2.3. n and m are dimensions
of the leader and the follower. The convergence rates of TGDA/FR/GDN/CN are exact
when we take enough CG steps (p = m and p’ = n + m). By solving ill-conditioning we
mean that the convergence rates are not affected by the condition numbers.

Algorithm Time per step Memory Convergence rate
GDA O(n+m) O(n+m) linear; p. V pr at best
TGDA/FR  O(n+ mp) O(n+m) linear; pp V pg
GDA-k O(n + mk) O(n+m) linear; py at best
GDN O(n + mp) O(n+m) linear; pp

CN O((n+m)p’+mp) O(n+m) quadratic

mization (Fliege et al., 2021). However, our work focuses on using Newton methods to
find strict local minimax points in nonconvex-nonconcave minimax optimization, which is
different from the previous settings.

4.1 Strict Local Minimax Points

We first point out that SLmMs are more general than the strict local Nash equilibrium
Fiez et al. (2019), by which we mean

(9§yf(x*,y*) < 0and 92 f(z*,y*) = 0. (4.6)

Example 4.1.1. (0,0) is an SLmM of the function f(x,y) = —32* + xy? — 4> + 4y on
R? but not a saddle point, since

8§xf<07 0) - _67 ag%yf«)u O) = 47 6§yf(07 0) = _27

and thus D2, f(0,0) = 2. This function is nonconver-nonconcave, because 8§yf(x,y) =
2z — 2 1is not always negative for (z,y) € R?, and 9%,f(0,0) < 0. It can also be verified
that f(0,y) < f(0,0) < maxyer f(x,y), i.e., (0,0) is a global minimaz solution (Defini-
tion 2.1.3).
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At an SLmM (z*,y*), from
0,f(2",y") =0, 0, f(2",y") < 0

and the implicit function theorem, we know that for f € C2, there are neighborhoods
N(z*) C R*, N(y*) C R™ and a continuously differentiable function

r:N(@*) = N(y") st. 9y f(z,r(x)) =0 (4.7)
and r(x) is a local maximizer of the function f(x,-). Also, we have
(@) = =((0) " - O f(z,7(2)) (4.8)

for any = € N(x*). We call this function the local best-response function. The local best
response function leads to our definition of total derivatives. Define the “local maximum
function” ¥(x) := f(z,r(x)) on N(z*), from (4.8) we can derive from implicit function
theorem that:

V' (2) = Do f (2, 7(2)), ¥(2) = D, f(x,r(x)). (4.9)

This is because from the chain rule and (4.8), we have:

(x) = Opf(z,r(2)) + ’( )"0, f(fﬁar(x))

= 0uf(x,r(2)) = (03, - (05,) ") f (@, 7(x)) - By f(x,7(2))
= (05 — 05y ()" )f(ffw“(x))
=D, f(z,r(z)). (4.10)
Taking the total derivative of z again and using 0, f(z,r(x)) = 0, we have:
0(r) = oD, f(r, ()
= 20,1 r(x)
=02, f(z,r(x)) + '( )Téymf(x,r(@)
= 00w, r(0) = (2, (95,)")Fw,7(2) - O3, f (0,7 (x)
= (05, — Oy (Ty,)” 3 +0y) [ (.7 ())
— 02, f(2,r(x)). (4.11)

The practical relevance of SLmMs becomes important when training generative adver-
sarial networks (GANs) and distributional robustness models, and we present our analysis
in the following subsections.

7



4.1.1 GAN Training

Consider the following GAN training problem, where we minimize over generator G with
parameter 6 and maximize over discriminator D with parameter ¢:

ming max, £(0,¢), where
(0, ¢) = Eanp, [f(Dg(2))] + By [f (= Do (Go(2)))].

Under some mild assumptions (Nagarajan and Kolter, 2017), at a stationary point the
partial Hessians satisfy:

ool = 0, 0yl = 2f"(0)Eynp, [0 Dy() - 96Dy ()],
sl = —1'(0) - OpEanp, [05Go(Dy())].
Typically, f/(0) # 0 and f”(0) < 0. For example, for vanilla GAN (Goodfellow et al.,
2014),
f(x) - lOg(l + eix)a
giving f'(0) = 1 and f”(0) = —3. Therefore, under full rank assumptions (Nagarajan and

Kolter, 2017), , ) ) 5 2 \21 A2

i.e. the stationary point is an SLmM. The loss ¢ is typically not a convex function of the
generator parameter 6.

4.1.2 Distributional Robustness

Given N data samples {&}Y,, the Wasserstein distributional robustness model can be
written as:
N

minmax f(6,2) = D ,w) = Allws = &l (4.12)

=1

where we denote = {w;}, as the collection of adversarial samples. Here § denotes the
model parameters, and £ is the loss function. The goal of this task is to find robust model
parameters  against adversarial perturbation of samples, w;. At a stationary point (6*, %),
Sinha et al. (2018) shows that for large 7, 03 f(0*, Q*) is negative definite. Moreover, the
total Hessian D, f (6%, Q%) is:

N
D 9507, wp) — My(D2,0(0",wp) — 2y1) 7 M (4.13)
=1
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where M; := 92 ((6*,w}). Under assumptions that 0* is a local minimum of the adversarial
training loss > °.", (-, w}) and that M is full row rank for at least one adversarial example
wy, we can show that (6%, ") is an SLmM for large . Moreover, (6*,Q*) is not necessarily
a strict local Nash equilibrium since 93,¢ > 0 may not hold.

Proposition 4.1.2. Suppose (0*, Q) = (6*,wi,...,wk) is a stationary point of
N
= U0,wi) —Ylw: — &I, (4.14)
=1

where { is twice differentiable. If at this point, 6* is a local minimum of S"r  €(-,w?) and
there exists at least an adversarial sample w; such that

M; = 95 0(0%,w;) (4.15)
15 full row rank, and
1 2 * *
V> 5 mmax Anax (00,007, w7)), (4.16)

with Amax(+) being the largest eigenvalue of a matriz, then (0*,Q*) is an SLmM of f but
not necessarily a strict local Nash equilibrium.

Before we move on to the proof, let us first interpret the stationary point. Solving the
condition that:

A f (67, 0) Za(,g =0, 0, 0(0%,w) — 2y(w; — &) = 0, (4.17)

ie.,

Z(%ﬁ )0, W= &4 17 ) (4.18)

For large v, this tells us that 6* is a stationary point of the original training loss given
the adversarial examples w;, and w; is a perturbation of the original samples §;. We
furthermore want 6* to be a local minimum of the loss S~ | ¢(-,w?), and thus from the
second-order necessary condition, we have:

N
> 95067, W) = 0. (4.19)
=1
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Note that it is very common in deep learning that the matrix Zfil 02,0(0*,w?) is singular
Sagun et al. (2016), and thus (6*,Q*) is not a strict local Nash equilibrium (see (4.6)).
However, we can show that (6*,Q*) is an SLmM under mild assumptions. We note that
(4.16) can be guaranteed if v is greater than some Lipschitz smoothness constant of ¢, as
shown in Sinha et al. (2018).

Proof. We compute from (4.14) that:
aw*w*f(e* *) 282 qca >‘k>_2’y]7

D@Bf ‘9* * 26906 ) z (af)w ( * >'k) _271)_1M1T' (420)

If v > Tmax;— .. v Amax(02,0(0%,w})), then for any i =1,--- | N,

851_,%]0(9*, ) = aiwﬁ(e*, wi) —2v1
= (/\maX(ain(e*aW%)) - Hllax >‘ma>c<a O W)
J

) ) J

<0, (4.21)

where in the second line, we used the fact that for a symmetric matrix A, we have A <
Amax(A)I. Hence we obtain that 92, f(6*,Q*) < 0. We now compute Dg, f(6*,2*) as:

Dgo.f (67, €") Zaeeg — M(92,0(0%,w7) — 291) ™M
N
= Z Oaall0", ) = D M0, 0, (07, 27)) 7 M. (4.22)
=1 =1

We assumed that 6* is a local minimum of the training loss and thus the first term is
positive semi-definite. We note that the second term is negative semi-definite because for
any model parameter ¢, and any sample w;, we can write:

0 Mi(02, ., (07, Q) 7'M 0 = (M 00) (9, ., f(07, Q7)) ™' M 6, < 0, (4.23)

since 02, f(6*,9Q%) < 0. Furthermore, if M; has full row rank, (4.23) is always nega-
tive for all 6 # 0, and hence the second term of (4.22) is negative definite, resulting in
Djyf (6%, €2*) = 0. Assume otherwise. Since (92 ,, f(6*,€2*))~" is also negative definite (this
can be proved from the spectral decomposition), we must have:

M, 6y = 0. (4.24)
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Since M; is full row rank, the row vectors of M; are linearly independent, and thus we must
have 6, = 0. This is a contradiction. So we have proved that

Ml(ail,wlf(e*? Q*))ilMiT <0

and thus DZ, f(6*, Q*) = 0. Therefore, (4.21) and (4.22) tell us that under our assumptions,
(6*,*) is an SLmM but not necessarily a strict local Nash equilibrium. O

4.2 Existing Algorithms

In this section we study local convergence rates of some existing algorithms at strict local
minimax points.

4.2.1 GDA and its Variants

One of the first algorithms for the minimax problem (2.7) is gradient-descent-ascent (GDA)
(Arrow et al., 1958), where we adopt GD as L for updating the leader while we use GA as
F for updating the follower:

Tip1 = Ty — Qg ° axf(xtayt)a

4.25
Y1 = Y + QF - ayf(xta Yt). ( )

We consider two different scales of the step sizes (Heusel et al., 2017; Jin et al., 2020), i.e.
ar, = o(ag), as is typical in stochastic approximation (Borkar, 2008), to converge linearly at
a SLmM. However, in practice two-time-scale GDA (2TS-GDA) is hard to tune, especially

when the follower problem is ill-conditioned, as we will verify in our experiments below.
2TS-GDA (locally) converges slower than TGDA and FR, hence also slower than GDN.

Using results from Jin et al. (2020) and similar notations as in Theorem 4.2.3, we derive
the following result for 2TS-GDA:

Theorem 4.2.1. Around a SLmM (z*,y*), for any 6 > 0, Iy > 0 such that for any v >
Yo, ar > 0 and ap = ag/y, 2TS-GDA has asymptotic linear convergence rate p = pr V pr,
where pr = (|1 — ar | + @) V (|1 — aph,| + ard) and pr = (|1 — appa| + apd) V (|1 —
Qpfim| + apd), with Ay and A, (resp. p1 and p,,) being the largest and smallest eigenvalue
of D2, f(a".y") (resp. of 02, F(a" ")),
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Proof. The Jacobian of 2TS-GDA (4.25) at (z*, y*) is:
-0 =0, f

I+« =1+ arH. 4.26

L e F 20

Using Jin et al. (2020, Lemma 36), for any § > 0, there exist v > 0 large enough, such
that the eigenvalues of H, vy, ...,V Vnit, .- Vi satisfy:

i+ N/ < /v, Vi=1,...,0,|[Vjyn + | <, Vi =1,...,m, (4.27)

where \; € Sp((De — 02, (02,) 7" - 02,) f) and p; € Sp(—0;, f). The spectral radius is then:

max |1 + arvg| = max |1 + aryy| V max |1 4+ apvji,|. (4.28)
k€[n+m] i€[n] jE[m]

We can use triangle inequality and (4.27) to obtain that for any v > ~o:
11+ ary;| < |1 — agp;/v] + agd/y = |1 — app| + and, Vi € [n]. (4.29)

Similarly, |1 + apvjin| < |1 — arp;| + axd. O

k-step gradient descent ascent We also study k-step gradient descent ascent (GDA-
k) as proposed in Goodfellow et al. (2014). After each GD update on the leader, GDA-k
performs £ GA updates on the follower:

T4l = Ty — O - 5a:f($t7 yt)v
Yrrr = 9" (y) with g(y) =y + a - 0, f (2441, Y),

where ¢ means composition for k times. Letting & — oo amounts to solving the follower
problem exactly by gradient ascent steps (see (4.85)). Continuing with the notation in
Thm. 4.2.3, we derive the following result:

Theorem 4.2.2 (GDA-00). GDA-k achieves an asymptotic linear convergence rate
pr =11 —aX| V|1 —a),

at an SLmM (x*,y*) when k — oo and o < 2/py. If iy < M+ Ay,, choosing oo = 2/( A1+ \,)
we obtain the optimal convergence rate

l‘iL—l
K)L—i—l’

otherwise with « approaching 2/ we obtain a suboptimal rate 1 — 2\, /1.
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Proof. The Jacobian matrix of the simultaneous version (replacing z;1; with z; in the
update of y) update at (z*,y*) is:

I—ad? f —ad? f
J, — B zzt zy 4.30
P a4 ad? f)0%f (I + ad? f)F (4:30)
This is because ¢g¥)(y), the update in GDA-k, can be written iteratively:
g(l) :g(xtay)a 7g(k) :g(mtag(kil))a (431)

where g(x4,y) := y + ady, f(z,y). We verify that the total derivative follows dg®z =
0rg + 0,9 - dg* Dz, and prove the derivative over x; by induction.

[e.e]

> (T +adl,f)

1=0

(—ad2,f)7", and (I +ad.,f)* — 0. (4.32)

Note that the series converges iff |1 — ap;| < 1 for all p; € Sp(—f}’;yf) (e.g. Meyer, 2000,
Chapter 7), i.e. a < 2/max; p; = 2/p. Under this condition,

I — ad? —ad?
T = L((Qﬁ;,)al ?ma]:%gc)f aoxyf} - (4.33)

Using Theorem 3.2.1, the characteristic polynomial of GDA-oo is:

(4.34)

_ 2 2
et [()\ DI + ad?, f a@xyf} L

(@) 20 M
Solving the eigenvalues yields 1 — a\; with \; € Sp(DZ, f).

The optimal convergence rate is achieved by optimizing max; |1 —a);|, which is achieved
at @ = 2/(A\; + \,). However, we also impose av < 2/p;, which yields the assumption that
p1 < A1+ A,. Otherwise, a suboptimal rate is obtained via taking o — 2/ .

We note that it is possible to modify GDA-k to be two-time-scale as well, i.e.,

Tor = — o Ouf (@, y)y Y = ¢ (w) with g(y) =y + ap - 0y f (ve41,y).  (4.35)

With this modification, it suffices that ar < 2/uy and the optimal rate is 1 — 2/(ky + 1)
with ap = 2/(A1 + A,). We do not need the constraint that pu; < A\; + A, and there is no
suboptimal rate. However, when ajy f is ill-conditioned the number of follower steps might
be very large to approximate GDA-oo. n
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4.2.2 Total Gradient Descent Ascent (TGDA) and Follow-the-
Ridge

After studying the local convergence of GDA, we present two algorithms that use the
Hessian inverse information, Total Gradient Descent Ascent (TGDA) and Follow-the-Ridge
(FR). TGDA takes a GA step for the follower and a total gradient ascent step for the leader:
Fiez et al. (Fiez et al., 2019) proposed TGDA with F being gradient descent for the follower
and L being total gradient ascent for the leader:

Tiy1 = T — Qg - Da:f(ﬂﬁt, yt)7 Yt+1 = Yt + OF - ayf(%:, yt)v (4-36)

where we use the total gradient D instead of the partial derivative d, for the update on
the leader x. Its continuous dynamics was studied in Evtushenko (1974b) with linear
convergence proved. More recently, the stochastic setting and the two-time-scale variant
are studied in Fiez et al. (2019) for general sum games.

Follow the ridge (FR) Follow-the-ridge was proposed in Evtushenko (1974b) and its
variant is recently studied by Wang et al. (2020). In this algorithm, F is a pre-conditioned
gradient update for the follower and L is the usual gradient update for the leader:

Top1 = Ty — o - Op f (T4, Y1), Yer1 =Yt + (ap - Oy + ay - (asy)q : (953; - Op) f (1, Ye)-
(4.37)

In fact, it is not a coincidence that both TGDA and FR can be derived as first-order
approximations of GDN—the two are in some sense “transpose” of each other. Indeed,
denote z = (x,y) and

_ [moud aw(05, - (95,)7N)f _|0.f
P = 0 anl ,0.f = d,7| " (4.38)

Then, we can equivalently rewrite TGDA and FR respectively as:
TGDA : 2+l = 2t -+ P- (9Zf(zt), (439)
FR: 2z =2 +P"-0.f(%). (4.40)

In other words, the two algorithms amount to performing some pre-conditioning on GDA,
and their preconditioning operators are simply transpose of each other. Since the precon-
ditioning operator P is (block) triangular, it follows that TGDA and FR have the same
Jacobian spectrum around a SLmM. We now present their asymptotic local convergence:
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Theorem 4.2.3. TGDA and FR achieve the same asymptotic linear convergence rate
p=pLV prat an SLmM (z*,y*),

where pp = |1 — agA| V|1 — agh,|

and pr = |1 — appr| V [1 — appi],
with Ay and N\, (resp. uy and pi,,) being the largest and smallest eigenvalue of D2 f(x*, y*)
(resp. of =05, f(z*,y")).

Note that by an asymptotic linear rate p we meant
p = limsup —Hth — 2| :
oo |lze — 27
Choosing ar, = 2/(A1 + ), ar = 2/(p1 + 1) gives the optimal convergence rate

HL—vi,F—l
:‘iL—Fl Hp—i—l’

where k1= A\ /A, and kg 1= 1/ . A slightly weaker result for FR, using only eigenvalues
of the Hessian, has appeared in Wang et al. (2020).

Proof. Let us first prove the following lemma:

Lemma 4.2.4. Given f : R? — R™™ and g : R — R™, assume g is Fréchet differentiable
at z and g(z) = 0, and f is continuous at z. Then, the product function h = fg is Fréchet
differentiable at z with h'(z) = f(2)d'(z).

Proof. 1t suffices to prove that ||[h(z +0) — h(2) — f(2)¢'(2) "6l = o(]|d]|). This is because:

(
1h(2 +0) = h(2) — f(2)g'() ]
= /(= +0)g(z +8) = f(2)g(2) = f(2)g' () "4
= [1f(z+0)g(z +8) = f(2)g(z +0) + f()g(z +8) — f(2)g(2) — f(2)g'(2) 4]
<z +0) = f(2)g(z + O + [1f(2)(g(= + ) — g(z) = g'(2) "9)|
1f (= +8) = f( - llg(z + O + I () - lg(z +8) — g(2) — g'(2) 4]

o(1) - llg(z +0) = g(2)]| + o(l[4]])
o(l1411), (4.41)

<
<

where in the second last line, we used g(z) = 0, the continuity of f and the Fréchet
differentiability of g. O
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With Lemma 4.2.4 we compute the Jacobian at (z*, y*):

I— aL(a:%z - 8:%3/ ’ (a§y>_1 ’ 8§x)f 0

J = 4.42
TGDA apf?;xf I + apf?;yf ( )

The spectral radius can be easily computed as:
p(Jrcpa) = max 1T —ap\| V mjax 11 — appy]. (4.43)

Now let us show that the Jacobian of FR has the same spectrum as TGDA. From (4.38)
and the comment below we know that

JTGDA =1+ PHf(x*,y*), JFR =1 + PTHf(ZI?*,y*), (444)

where

_ ol (03, (05,) 7)) f _ o5t o5 f
P=|" Yo . and H = ot (’)SZf'

For simplicity we ignore the argument (z*, y*). With the similarity transformation P"1PHP =
HP, we know that PH has the same spectrum as H P, and also its transpose (HP)' =
PTH.

The optimal convergence rate is achieved by optimizing max; |1 — ap\;| and max; |1 —
ag ;| respectively, which is achieved at ap, = 2/(A; + A\,) and ar = 2/ (1 + pim)- O

4.3 Newton-type Algorithms

After analyzing existing methods that locally converge to strict local minimax points, we
now present our Newton-type methods. We propose Gradient Descent Newton (GDN),
which updates x through gradient descent and y through a Newton step. This method
solves the ill-conditioning problem of the follower y in terms of local convergence. If we
further replace the gradient descent step of x with a Newton step, then we obtain complete
Newton (CN), which solves the ill-conditioning problem of both = and y. At the same time,
the computation complexity of GDN and CN are similar to TGDA and FR (see Table 4.1).

We assume that the partial Hessians are Lipschitz continuous in our proofs. This is
standard in conventional Newton methods for minimization. Based on this assumption,
we can derive the constants of Lipschitzness and boundedness for first- and second-order
derivatives (see Appendix C.1).

86



Assumption 4.3.1 (Lipschitz Hessian). There exist constants Ly, Ly, Ly, such that
for any x1, x5 € N(2*) and y1,y2 € N(y*), we have

1070f (21) = Oao f(22) | < Laall2r — 22,
102, f (21) = 02, f (22)|| < Layllz1 — 2],
105,f (1) = 0, ()l < Lyyllzr = 2],

with Z; = (.%Z,yz) fOT’ 1= 1,2

At alocal neighborhood of (z*, y*), we can also assume that the second-order derivatives
are bounded, i.e., for any (x,y) € N(z*) x N(y*),

10%f (2, )| < Baa, 102, f (@, y) || < Bay, 105, f (@, 9)]| < By (4.45)

This is because we assumed that f € C2. With Assumption 4.3.1 and f € C2?, we can also
derive the Lipschitz constants and boundedness constants of first-order derivatives. More
details about these constants and the derivation can be found in Appendix C.1.

4.3.1 Gradient Descent Newton

We propose our first Newton-based algorithm (GDN) for solving the nonconvex-nonconcave
minimax problem (2.7), and make connections and comparisons to existing algorithms. In
the GDA algorithm, the follower takes one gradient ascent step to approximate the best
response function. However, such step might be insufficient for the approximation. Instead,
we use a Newton step to approximate the local best response function r(x), which is also
more appealing if the inner maximization is ill-conditioned.

Many existing algorithms, including GDN, are based on a classic idea that goes back to
Uzawa (Arrow et al., 1958): we employ iterative algorithms F and L for the follower y and
leader x, respectively. The key is to allow F to adapt quickly to the update in L. Naturally,
we propose to apply gradient descent as L and Newton update as F:

Typ1 = T — ap - O f (24, Yt),
Yt+1 = Yt — ((ajy)fl = Oy) (i1, Ur),

Newton’s method is affine invariant (Boyd and Vandenberghe, 2004, Section 9.5.1): under
any invertible affine transformation, Newton’s update remains essentially the same while
gradient updates change drastically. Thus, for ill-conditioned follower problems (where the

(4.46)
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largest and smallest eigenvalues of (8§y f(x*,y*)) ! differ significantly), we expect Newton’s
algorithm to behave well while gradient algorithms will largely depend on the condition
number.

Newton-CG method. Efficient implementations of Newton’s algorithm have been
actively explored in deep learning since Martens (2010). The product ((02,)~"-d,)f can be
efficiently computed using conjugate gradient (CG) equipped with Hessian-vector products
computed by autodiff. Complexity analysis of the Newton-CG method can be found in
Royer et al. (2020) and references therein.

We now present the non-asymptotic local linear convergence rate of GDN to an SLmM.
Our result is on the local convergence, and we need a good initialization that is close to the
SLmM. To obtain a good initialization, in practice we consider the method of pre-training
and fine-tuning (Hinton and Salakhutdinov, 2006), which we will discuss more at the end
of §4.3.2 and implement in §4.4.

Define B(z*,6,) = {x € R" : ||z — 2*[|s < 0.}, B(y*,dy) ={y e R" : ||y — y*||» < ,} and
B(z*) = B(z*,d,) x B(y*,d,), we have:

Theorem 4.3.2 (GD-Newton). Given a SLmM (x*,y*) and 6, > 0, 6, > 0, suppose in
the neighborhoods N (z*) = B(z*,0,) and N (y*) = B(y*,d,), Assumption 4.53.1 holds and
the local best-response function v : N'(z*) — N (y*) ewists. Suppose p,I < D2 f(z,y) =
M,I for any (x,y) € N(z*) x N(y*). Define:

Nepn = {z € R ||z — 2*|| <6, [ly — v <2V} (4.47)
where
0 =minq o O P ‘ (4.48)
T2V AV2U apM (1 4 4V2/ p?) '

and pr = |1 — appy| V|1 —arM,|,0 < e <1—p, and U, V, M satisfy:
U= Ly (21,) 7" V = (By Ly, + NyLy)Nfa M := (Byy + Lg)Lyy(Qﬂz)_ley (4.49)

where p,, By, L., L,, L are constants defined in Lemmas C.1.2 and C.1.5. Given an
initialization (x1,y1) € Napn, |lyr — v*|| < 2V||z1 — 2*|| and suppose that (x2,y2) € Napn
and ||y — y*|| < 2V ||xe — x*||, the convergence of GD-Newton to (x*,y*) is linear, i.e., for
any t > 2, we have:

lwee1 = 2" < (pr+ €)' oz = 27|,y — 57| < 2V (pr + €)' |z — 27]].(4.50)
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The definition of § in (4.47) tells us that when € is small, the second term dominates. This
means that if we want a better local convergence rate we need to be closer to the SLmM.
Also, a smaller oy, can control the neighborhood and thus GDN becomes more stable.

Before we move on to the proof, we observe the dependence of the neighborhood on
condition numbers. In fact, for the GD-Newton method, there are two condition numbers.
We denote

L L
Kly = —2, Koy = —2. (4.51)
Hy Hy

K1, is the usual condition number when we study first order algorithms. For Newton-type
algorithms, ko, arises (Prop. 1.4.1, Bertsekas (1997)). From (4.49), and Lemma C.1.2, the
absolute constants can be written as:

U = /ﬂ)zyy/Q, V= Hl,y/ﬁ?ly(é‘z —+ 5y) + /ﬁ?Ly, M = (Bxy + Lg)/‘ig’ylﬁiy/Q. (452)

Namely, the neighborhood size depends on the condition numbers. This is not uncommon
in conventional minimization, for both first- and second-order algorithms (e.g. Nesterov
(2003), Theorems 1.2.4 and 1.2.5).

We also note that the constant M, in pu,l < D2 f(z) =X M,I can be taken to be
B?_ as in Lemma C.1.5, because for any z € B(z*) and # € R"™ such that ||z|| = 1, we
have ||D2_f(z)x| < B®,, and thus from Cauchy—Schwarz inequality we have D2 _f(2)z <

xxT)

|lz|| - |02, f(2)z|| < B®,. Therefore, for any 2z € B(z*), we obtain D, f(z) < B2 I.

Proof techniques Our proof relies on two parts: the leader takes gradient descent on
Y (z) with approximation error controlled by r(z;) — y; the follower takes Newton updates
to approximate the local best response r(x;) at each step. This reflects the sequential
nature of the minimax game. The difficulty lies in how to bound the approximation errors.

Proof. Now let us study the exact convergence rate. We can prove that Ngpn C B(x*, d,) X
B(z*,d,) because for any z = (z,y) € Ngpn, we have ||z — z*|| < § < 6, and ||y — y*|| <
2V <2V - ;—‘y/ = §,. Hence, all our results in Appendix C.1 are valid on Ngpn.

Suppose (zx, yx) € Nopn for k <t and t > 2. We first prove that:
Y1 = y* | < Ullye = y*11? + Vaa — 27, (4.53)
and then

w1 = 2|l < prllee — 2| + M ([loe — 27 + [lye—s — y"]1%), (4.54)
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where
pr=|1—awpie| V|1 — M|, M = (Byy + L2) Ly, (2453) L. (4.55)
With these two inequalities, we will prove in Part III that for ¢ > 2:

et —2* < G+ €)' Mo — Il et — 7l < 2V (o + €)' ez — 2*].(4.56)

Part I To prove (4.53), note that

lyess =y = llye =" = ((9y,) " - O f (", w4
+((9, ) 20y)f (@ ) = ((0y,) " - Oy f(@egn )
< 11(8y,) " F (@™, y) (O, f (2™ y) (ye — y7) — O f (2™, ) 1+
+H1((95,) " - 0 f (@™, ye) = ((9,) ™" 0y f(wesr, we) |- (4.57)

From the local Lipschitzness of ((0,)~" - d,)f, (C.31), we know that the second term is at
most

(N;lLy + ByU;2Lyy>|’xt+1 — &' = V@ — 27

Since we assumed that (x;,y;) € Nopy C B(2*), we can derive that (z*, 1) € B(z*) and
y: € N(y*). The first term can be upper bounded as:

102, £ w12, P ) ot — ) — B ") + 0, a7 |
< My_l 183, £ (@ y0) (ye — y) = Oy f (2™, 1) + Oy f (", )|

<0 [ IR0 0 = BT sl =D o~ s

< / Lyy(1 - $)llye — y*|Pds

= Lyy(2p1y) My — v* |7
= Ully: — v*|1%, (4.58)

where in the second line we used Lemma C.1.1; in the third line we used the following
identity:

1
0, f (. 1n) — O, f (2, o) = / 02, f (e, s + s(yn — ) (91 — ya)ds, (4.59)

and in the fourth line we used Assumption 4.3.1. Therefore we have proved (4.53).
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Part IT To prove (4.54), we observe that:

|2ep1 — 2| = ||z — 2" — 0o f (w4, yi) ||
= [l — 2" — arDy f (2, 7(2¢)) + w (D f (@, (1)) — Do f (24, Y1)
+ an(De f(w, ) — O f (w1, 32)) ||
= |lze — 2" = Dy f (@, (@) || + ol|Daf (@, (@) — Do f (@1, )|
+ av||De f (e, ye) — Ouf (24, y2) |- (4.60)

Note that r(x;) € N(y*) because of (4.7). So (x4, r(x;)) € B(z*) and our analysis is valid.
Now let us bound the three terms separately. The first term can be computed as

|2e — 2" — auDy f (24, 7(20))|| = ||z — 2" — an (¥’ (2s) — &' (27)) ||
1
= ||z, — 2" — ozL/ (2" + s(xy — x*)) (2 — 2¥)ds||
0

.y / (I — (2" + s(z, — %)) (z, — 2*)ds]|

1
: / 11— ad)” (2" + s(z — )| - |z — 2"||ds
0
< pullee — 2|, (4.61)

where in the first line we used from Lemma C.1.6, ¢'(z) = D,f(x,r(z)) and ¢'(z*) =
D, f(z*,r(z*)) = 0. In the last line, we used from Lemma C.1.6 that ¢""(z) = D2_f(x,r(x))
and our assumption I < D?_f(z ) = M,I for any z € B(z*). More spemﬁcally, since

r, =%+ s(xy — x*) € N(z¥), (4.62)
we have
I —a(z) =T — arD? (2, 7(24)), (4.63)
(1 —aLM,)I = I — arD? (vs,7(z)) = (1 — aLu,)I. (4.64)
Therefore,
11 = awD, (s, (@) < 11— awpa| V1 — M| = pr. (4.65)

From Lemma C.1.5 the second term can be bounded as:
ap||De f (e, (1)) — Do f (@, ye) | < cw Lo |7 () — well, (4.66)
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From the definition of Dy f := 0, f — 0, f - (02,f)~" - 9,f, the third term can be bounded
as:

0|0 (=) = Do f ()| = @ |(@2, - (@2,)7" - 8,)f(20)]
< an 2, FE - @20 G) - 10, Gl
< 0Bty 10,10, (4.67)

where we used Lemma C.1.2 and the assumption z; € B(z*) from induction. To upper
bound |0, f(2:)||, note that:

10y f )l = 10y f (@, yo) | = 119y f (e, 1 — Ay)l, (4.68)
with Ay = ((92,)7" - 9y) f (4, y¢—1). Therefore,
10y ()Nl = 10y f (24, ye1 — AY) | = |0y f (@4, Y1 — Ay) — Oy f (4, Ye1) — 8§yf(xt,yt71)(—Ay)I|

- / 2 (e g — sAy) — 02, f (2, y1r)) (—Ay)ds]

< / 1 (2, F (o0, s — 5D9) — 82, F (0, o)) (—Dg) | ds
1

< / 12, £ (20 s — sAy) — B2 (e o) - I1(— D)l ds

< /1 LnyHAyHQdS
0
= 3Ly Ayl
3Ll ((05,) 7 - 0,) f (e, ye-) |12
< %LyyH(@jy)‘lf(xt,yt_1)||2 Ny f (e, 1) P
< Lyy@ﬂi)_lHayf(xtayt—l) - 3yf(:13*,y*)”2
< Ly (20) 7 Ly (e = 21 + [y — v7[7) (4.69)

where in the second line we used (4.59); in the fifth line we used Assumption 4.3.1; in the
seventh line we used the definition of Ay; in the second last line we used [|(92,) " f(2)|| <
p, 't any z € B(z*) from Lemma C.1.2 and 9,f(2*) = 0; in the last line we used the
Lipschitz condition in Lemma C.1.2. Note that z;, 2,1 € B(z*), and thus y; 1 € N(y*),
z; € N(x*) and (24, y,-1) € B(z*). So all our discussion is within the neighborhood B(z*)
and thus valid. On the other hand, from 97, f(2) = —pu,[ for all z € B(z*), as in Lemma
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C.1.2, and the Cauchy-Schwarz inequality, we obtain:

H?"(ﬂft) = el 10y f (e, 7(20)) = Oy f (0, )|
—(r(2e) = yo) " Oy f (e, (w0)) = Oy f (w0, 1)
( ( ) - yt)—rag?yf(xhyf)(r(xt) - yt)
yHT(xt) —ul?, (4.70)
where in the third line we used the mean-value theorem and that y, is on the line segment

with y; and r(z;) as two endpoints; in the fourth line we used the definition of p, in Lemma
C.1.2. Therefore, from (4.70), 0, f(z¢,7(x;)) = 0 and (4.69) we obtain:

17 () = well < iy |0y f (e, () — Oy f (e, 1) |
= p;lﬂ(‘)yf(xt,yt)H
< Ly (203) L2 ([l — 21 + lye—s — *[1%) - (4.71)

Combining (4.60), (4.61), (4.66), (4.67) we obtain that:

21 — 2| < pulloy — 2% || + an Lo |7 (20) — el + aLBmyuy‘lII@yf(zt)ll
< pullwr — 2| + aw(Bay + L), 10y f (20
< pullze — 2| + oo M (o — 21 + [lyer — v*11%), (4.72)

where in the second line we used (4.71) and in the third line we used (4.69), and
M = (Bay + Lg)Lyy(Ql‘gg/)_le- (4.73)

Part IIT Denote a; = ||z; — 2*|| and b; = ||y; — y*||, we have proved the following claim
in Part I and Part II:

Claim 4.3.3. Suppose fort > 2, if {z1},_, C Napn, then we have:
k=1

at+1 S PrLat + ]\4(61,52 + b%—l)v bt+1 S Ub% + VCLH_l. (474)

Suppose now that z; € Ngpy for any 1 < t < T, let us prove 2741 € Ngpn. From
Claim 4.3.3 we know that (4.74) holds for all ¢ = 2,--- ,T. Define the upper bounding
sequence {a}i ' and {b;}1 ! such that @; = a; and for i = 1,2, and

C_Lt+1 = pLdt -+ M(df + B?—l)? BtJrl = UB? + thJrl, fort = 2, c. ,T. (475)
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One can show that for any 1 <t < T + 1, we have:
a; < ay, by < by, (4.76)

which follows from induction. To prove zr,; € Ngpn, it suffices to show that for any
t=2,....,T+ 1, we have:

by < 2Vay, a, <96, (4.77)

which is true for t = 1,2 from our assumption that a; = a; and b; = b; for i = 1,2 and
the definition of Ngpn. This is because we can simply apply (4.77) for t = T + 1 and use
(4.76). Suppose (4.77) holds for k <t and ¢t > 2:

[_)k: S 2de, ay S o0 for all k£ S t. (478)
Taking b; < 2V @, from (4.78) we obtain:

Bt+1 = VELH_l + UB?
< Vay, +4V2Ua?
2
v (1412 )
oL
< Wiy, (4.79)

where in the third line we used pra; < a;41 that can be derived from (4.75); in the last line
we used the assumption in (4.78) and a, < 0 < %5. Also, from (4.75), we have
aryr = pras + M(ai +0; )
< pra; + M(a; +4V?a; )
4v2
< pay + M (H—Q) a;

L

4V?
PL

(pL +€)ay (4.80)
a; <6, (4.81)

IAIA

where in the second line, we used b;_1 < 2Va,_; as in (4.78); in the third line, we used
a; > pray—1 which can be derived from (4.75); in the second last line we used the assumption
in (4.78) that a; < 0 < m; in the last line we used 0 < € < 1 — pr. By induction,
we have proved that for any ¢t = 2,..., T + 1, we have (4.77) and thus 2741 € Ngpn.
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So far, we have proved that for any ¢t > 1, z, € Ngpn. This implies that for any ¢ > 2,
(4.74) is true. Taking the upper bounding sequence again as in (4.76). We have in fact
proved from (4.79) and (4.80) that for any ¢ > 2,

A1 < (pL + €)ay, bpy < 2V, . (4.82)
Therefore, we obtain from the above that for ¢ > 2:
A1 < (pr+ €)' tay = (pL + €)' ay, (4.83)
and thus for any ¢ > 2:

2011 — 2" = a1 < @ < (pu+ €)' lag = (pu+ €)' 7|y — 27
Y11 = ¥ = biga < by <2V <2V(pL+ €)' rag = 2V (pr + €)' ey — 2. (4.84)

]

In fact, GDN is an approximation of Uzawa’s approach:

Tyl = T — Q- axf(xta ?Jt)a Y41 = T<$t+1)» (4-85)

where recall that r is the local best response. The update (4.85) is essentially the original
proposal by Uzawa (Arrow et al., 1958) as also in e.g. Fiez et al. (2019, Sec. 3.1) and Jin
et al. (2020, Sec. 4) for different settings. In Theorem 4.2.2 we will see another approach
to approximate (4.85).

As expected, the condition number of the follower Hessian 8§y f has no effect on the
local convergence rate of GDN thanks to the Newton update on y. When oy, = 2/(u,+M,),
pr is minimized to be

where k;, = M, /u, is the condition number.

The condition number x; of the leader problem does appear, since GDN still employs a
gradient update for the leader x. We will see how to remove this dependence in §4.3.2.

To fully appreciate our method, we make comparisons between GDN and existing
alternative algorithms and reveal interesting connections. Note that in Theorem 4.3.2, if
we take € — 0, we obtain an asymptotic (local) linear convergence rate pr:

PL = ’1—CKL)\1’\/’1—04L)\71’, (486)
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with A; and ), being the largest and smallest eigenvalues of DZ_ f(z*).

Compared to TGDA and FR in Thm. 4.3.2, the local convergence of GDN is always
faster, especially when the follower problem is ill-conditioned (i.e. when s is large com-
pared to ki), a point that we will verify in our experiments.

Comparing Thm. 4.2.2 with (4.86), we find that GDN and GDA-co share the same local
convergence rate, confirming that when sufficiently close to an optimum, a single Newton
step is as good as solving the problem exactly. When p; is large (meaning the follower
problem has a sharp curvature), we have to use a small step size « for updating the leader,
and the resulting rate can be slower than GDN. Similar to 2TS-GDA, it is hard to gauge
how many GA steps we need to approximate the exact algorithm (4.85) sufficiently well.
When the follower problem is ill-conditioned, the number of GA steps may grow excessively
large and we have to use a small step size o to ensure convergence.

4.3.2 Complete Newton

Although our first Newton-type algorithm, GDN, evades possible ill-conditioning of the
follower problem, it may still converge slowly if the leader problem is ill-conditioned, .e.,
the largest and the smallest eigenvalues of DZ_f differ significantly. We propose a new
Newton-type algorithm that evades ill-conditioning of both leader and follower problems,
and locally converges super-linearly to an SLmM. With total second-order derivatives, we
replace the gradient update of the leader in GDN with a Newton update, which we call
the Complete Newton (CN) method:

Tip1 = Ty — ((Dix)_l 2 Op) (1, Y1),
Yerr = Yo — ((05,) 7" - 0y) f(esn, me).

CN is a genuine second-order method that (we prove below) achieves a super-linear rate,
as compared to other methods in Section 4.2.2 that use the Hessian inverse. The Newton
update (D2,)7f - 0, f = (0%, — 8§y(8§y)_18§x)_1 f - 0. f can be efficiently implemented as
solving a single linear system of size (m + n) x (m + n) (see Lemma 4.3.4):

Lemma 4.3.4. If D and S := A — BD™'C are invertible, then the matriz [A B;C D] is
wnvertible, with:

(4.87)

{A B}lz{ 5t —S7'BD™! (4.88)

C D —-D7'CS™' D'+ D 'CS'BD "
Proof. Multiply [A, B; C, D] with the right hand side of (4.88) and use simple algebra. [J
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2.1 0] [Ad] _[0.f
2 f o f] [av] =] o
Nl A B R R

As a result, when m ~ n, CN has the same complexity as TGDA, FR and GDN, which all
use second order information (Table 4.1).

| =

However, only CN enjoys the following local quadratic convergence rate:

Theorem 4.3.5 (Complete Newton). Given a SLmM (z*,y*) and 6, > 0, 6, > 0,
suppose in the neighborhoods N (z*) = B(x*,d,) and N (y*) = B(y*,d,), Assumption 4.5.1
holds and the local best-response function r: N'(x*) — N (y*) exists. Define the neighbor-
hood Ncn as

Non = {z € R"™ : ||z — 2*|| < min{4,, J,, ?%L}},

where
L=U+V+1)($u LY, +W), (4.89)
Here U, V are the same as in Theorem 4.5.2 and
W= (Lopy " + BzNEZLgx)Lyy(Zui)ile- (4.90)

fas foys By, By, Ly, Ly, L2, L2 LY . L, are defined in Lemmas C.1.2, C.1.5, C.1.6 and

T’ Tx’

C.1.7. The local convergence of CN to z* = (x*,y*) is at least quadratic, i.e.:
. 1 . i 2L¢-D/2)
2 = 2"l < 57 max{2L]z — 27|, 2Lz — 2"}’ Y (4.91)
with the initializations z1 € Nen, 22 € Nen.

Before we move on to the proof. We first interpret the constant L. In (4.51) we defined
the condition numbers of y as:

R1y = —y, Roy = —. (492)

from which the absolute constants U, V' can be written as:

U= /‘igyy/Q, V= Hl,yHQ,y(dz + 51/) + R1y- (493)
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Similarly, we define the condition numbers on x as:

L, LP LY
Klg = —, K, = —2=% ’112/}1 =z (4.94)
Mo ’ Mg ' Ha

and using Lemma C.1.2, (4.90) can be written as:
W = (k14 + (6 + 51,);@1@;{3@)@@;{%@/2. (4.95)

Putting everything together, (4.89) becomes:

—_

K
L= =22 o (Rrghizg (0 + 8y) + fry + D (5, + (1o + (0 + 8y 1083, )2yt ). (4.96)

(]

This interpretation shows us that the size of the neighborhood Ncy that guarantees the
local quadratic convergence can be very small, since W is a product of condition numbers on
both x and y. The dependence of the neighborhood on condition numbers is not uncommon
in conventional minimization, for both first- and second-order algorithms (e.g. Nesterov
(2003), Theorems 1.2.4 and 1.2.5).

Proof. We assume first that z, € Noy for k < ¢ and ¢ > 2. Note that Non C B(z*) because
for any (z,y) € New,

le =27 < lz = 27 < 0, [ly = 9"l < Iz = 27] < by (4.97)

This satisfies our definition of B(z*) = B(x*,d,) x B(y*,0,) in (C.2). Non C B(2*) tells us
that we can use all the local Lipschitzness and boundedness results in Appendix C.1.

Since the update of y is the same as GDN, we can borrow (4.53) to have:

1y = oI < Ullye = v IIP + Ve — 27 (4.98)
We prove next that:
lwen — 2| < (gre " L, + W)llze — 271 + Wy — v (4.99)
where
W= (Lopg ' + Bopiy* Ly, ) Lyy (25) ™' L. (4.100)
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Part I To prove (4.99), we note that:

lwepr = 2| = o — 2" = ((D3,) ™" 0a) f e, r(@e)) + (D7) ™" - 0u) f(we, 7(w)) —
- ((Dix)il 2 0p) f (e, yo) |
< 0%) 7 f (e, (@) (D50 f (2, 7 () (e — 27) = Ouf (e, 7 ()| +
+ 1(02) 7" 9u) fae (@) = (D2,) ™" D) f (e ). (4.101)

We observe that r(z;) € N (y*) because of (4.7). So (x4, r(z;)) € B(2*) and our analysis
is valid. The first term can be computed as:

1(D%0) ™" f (e, () ) (D2 f (@, (20)) (e — &%) = Ouf (e, 7 ()|

< N0%) " e r @) - (05 f (2,7 (2e) (2 — 27) = O f (e, 7(20))) |
< ptg [0 (@) (= 27) = Duf (e, 7(20)) + D f (27, y7) |

=tz [0 (@) (= @) = ' () + ' (27|

" ) (e — ) / (@ + s(z — 2%)) (2, — 27)ds]

=ty | @ (@) = ¥" (2" + (@ — 27))) (2 — 2")ds|

0

1
<ut [ W) — @+ sto— 2] - o — a°|lds

0
1
< 'Ly, / (1= 8)[lz; — a°|[%ds
0

= L |y — 2P (4.102)

where in the third line we used that for x € N'(z*), we have from 0, f(z,r(x)) = 0 in (4.7):
D (. 1(2)) = 0o, 7(a)) — (82, - (02)7F - 0, v(a)) = O r(a)), (4103)
and thus D, f(z*,y*) = 0, f(z*,y*) = 0; the fifth line we used that for z1, x5 € N (z*):

P (x1) — ' (xg) = /0 V(29 + s(x1 — x2)) (21 — 22)ds, (4.104)

and in the second last line we used Lemma C.1.6 and the definition of LY, in (C.45).

From Lemma C.1.7 we know that on B(z*), (D2,)~'f := (D2, f(-)) ' is p; 2L -Lipschitz
continuous and g '-bounded. From Lemma C.1.2, we know that on B(z*), 0,f is L,-
Lipschitz continuous and B,-bounded. Therefore, from Lemma C.1.4, (DZ)7'f - 0,f is
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(Lypi; '+ By LR, Lipschitz continuous. The second term of (4.101) can thus be bounded
as:

(Lopiy '+ Bup "LE) () = will - < (Lot + Bopiy 2L3,) Ly (202) 7 %
L2 (o — 2P + lyer — v* 117, (4.105)

where we used (4.71). Note that the update of y, is the same for both GDN and CN. To
avoid heavy notation, we define

W = (Lopiy " + Bapiy L2, ) Ly (263) L2 (4.106)
From (4.101), (4.102) and (4.105), we obtain that:

ey — 2l < gpg Liglwe — 2712 + W (o — 2717 + llye-r — v [17)

= (50, LY, + W)l — 212 + Wlya — o (4.107)

Part IT So far, we have:

lyerr — ¥l < Ullye — y*|I° + Vl@er — 2], (4.108)
and
|21 — 2] < (Gpg LY + W)l — 2|2 + Wy — y*|%. (4.109)
where
W = (Lopiz " + Bupiz*Lgg) Ly, (211y) ' Ly, (4.110)

Bringing (4.109) to (4.108), we obtain that:
yerr =y (| < Ullys = y*|I° + V(Guz ' Li, + W)l — 2™ + VW |y — v |7, (4.111)
With (4.109) and (4.111), we can prove:

[ze41 = 27l < flzees — 27 4 [y — o7
< Ullye =yl + (V + D Gag Ly + W)l — 272 + (V + W |yees — 7|
< Ullz = 2°11° + (V 4+ 1)y Ly + W)llze = 22 + (V4 DW 2y — 2717
< L(llze = 2717 + llze-1 — 271, (4.112)
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where in the third line we used ||y, —y*|| < ||ze—2*|, [|Jxe—2*|| < ||2:— 2% and ||y—1 —y*|| <
||zi—1 — 2*||. Note also that we defined:

L=U+V+1)(u LY, +W). (4.113)

Now let us prove that z;y1 = (2441, Y1) is still in Non. This is because from (4.112),

|21 — 27| < L||Zt = 2| - [zt = 27| + L||Zt 1= 27 [z = 2]
SL-gp-llze =2+ L5 [l = 27|
3Hzt — 2+ 3llzo1 — 2 H
mln{éx,éy, 3L}—|— min{d,, 0, 3L}
< mm{éx,éy, 3L} (4.114)

| /\

where in the second line we used that ||z, —2*|| < 57 and ||z —2*|| < 57 and in the fourth
line we used the assumption ||z, — z*|| < mm{&x, " 3L} and ||z — 2 H < min{d,, oy, 57 }-
These results follow from our assumption z,2_; € Nen from induction. Therefore, we
have proved that {z;}?°;, C Nen given z1, 22 € Non.

Denote u; = ||z, — z*||, we have:
won < L+ ), (4115)
as in (4.112) for ¢ > 2. Multiplying both sides by 2L, we have:

(2Lut)2 + (2L'U,t,1>2
5 .
Define v; = 2Lu; for ¢ > 1 and let us prove by induction that for any £ > 1, we have:

2Ly < (4.116)

o < 2TV g = max{2Luy,2Lusy}, (4.117)
which is true for k: 1,2. Since z1,20 € Nen, we have u; = ||z — 2] < ?%L and
uy = ||z — z*|] < 5z, and thus ¢ < 1. Suppose (4.117) is true for k& < ¢ and ¢ > 2, then

from (4.116) we can obtain:

1 Lt— 1)/2J L(t—2)/2]
Vpy1 < 5 ( 2 + (¢° )2>

1 ale/2) 2Lt/2J )
2 (q
1 /2] Lt/2J

<3 (@ )

=5 q

_ q2L (t+1-1)/2] ’ (4118)
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where in the third line we used ¢ < 1 and [51] > [£]. So, we have proved by induction
that for any ¢ > 1, the following holds:

ol(t—=1)/2]

2Lu; = vy < g , ¢ = max{2Luy,2Lus}, (4.119)

namely, for any ¢ > 1, we have
2 — ]| < % max{2L 1 — 2*|, 2L 25 — 24327 (4.120)
O

The local super-linear convergence of CN means that this method is not heavily affected
by the ill-conditioning of either the leader or the follower problem, when the initialization
is close to the SLmM z*. To obtain a good initialization, we consider the following method
of pre-training and fine-tuning:

Pre-training and fine-tuning. We point out the sensitivity to initialization of our
Newton-based algorithms: CN and GDN require the initialization to be close to the opti-
mal solution, similar to the conventional Newton algorithm for minimization (Bertsekas,
1997). Fortunately, we can employ a “pre-training + fine-tuning” approach (Hinton and
Salakhutdinov, 2006). For instance, we may run GDA for the initial phases, even though
GDA is slowed down by the ill-conditioning, as soon as it goes in the neighborhood where
Newton-type algorithms have convergence guarantees, we can switch to CN or GDN to
converge quickly and to evade ill-conditioning, as we will show in Section 4.4.

4.3.3 Damping and Regularization

It is well-known that Newton-type methods only work in a neighborhood of the optimal
solution. Therefore, for convergence to a SLmM, we can use gradient descent-ascent to
converge to a neighborhood of a local minimax point, and then use Newton-type methods
such as GDN or CN. Another modification might be to add damping and regularization.
For example, for the Newton step in GDN, we can instead apply:

y' —y =05, — A0, f(x,y), (4.121)

where A > 0 and 0 < v < 1. We call v the damping coefficient and X\ the reqularization
coefficient. If A = 0 and v = 1, then it is the pure Newton phase. If A\ — oo while /A
stay fixed then the algorithm is simply gradient ascent. We could modify GDN by taking
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an adaptive scheme of v and A to stabilize this method. In a similar way, the Newton step
of z in CN could be modified as:

2’z — (D2, + M) 710, f(x,y), (4.122)

We could also choose an adaptive scheme of v and A, by choosing two sequences {~,} and
{An} such that «,, — 1 and A\, — 0 as the iteration step goes to infinity. Another way to
choose 7 is through line search (e.g. Boyd and Vandenberghe, 2004).

4.4 Experiments

We present experiments for Newton-type algorithms. Our numerical experiments confirm:

e The concept of strict local minimax is applicable in GAN training and ill-conditioned
problems may arise even when learning simple distributions using GANs;

e Newton’s algorithms can address the ill-conditioning problem and achieve much faster
local convergence rate while keeping similar running time with existing algorithms

such as GDA-k, TGDA and FR.

All our experiments in this section are run on an Intel i9-7940X CPU and a NVIDIA
TITAN V GPU.

4.4.1 Learning a Gaussian Distribution

Consider learning a Gaussian distribution  ~ N (u, ¥) using a JS-GAN (Goodfellow et al.,
2014), where the latent variable z follows a standard Gaussian.

First, we estimate the mean p with two different covariance matrices: a well-conditioned
covariance ¥ = I and an ill-conditioned covariance ¥ = diag(1,0.05). We use a discrimi-
nator D(z) and a generator G(z), such that

D(z)=o0(w'z), G(z) =2+n (4.123)

The corresponding GAN training problems are not convex-concave, yet the optimal solu-
tions are SLmMs. The minimax problem of GAN training can be written as:

HelIlRI% max U(n,w) :==Epnox)logo(w' z) + E.onox)log (1 —o(w'(z+1n))), (4.124)
n w
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The problem is concave-concave. It is easy to check that (n*,w*) = (0,0) is a global
minimax point. We have the gradients:

Ol(n,w) = —E.onos)o(w’ (z+n))w (4.125)
0.1, w) = Egnron)(1 — o(w'z))z — ]EZNN(OZ)U(wT(z +n))(z+n) (4.126)

and the partial Hessians:
O l(n,w) = ~E.onomyo (' (2 +m)(1 = o(w' (2 +n)))ww’ (4.127)
Pl w) = —E,nosow z)(1 —ow z))za’, ( )
—Eowomow (z+n)L—ow (z+n)(z+m(z+mn)",  (4.129)
O, l(n,w) = ~Eenios) (0w’ (z +m) + 0" (@' (z +0)(z +n)w’). (4.130)

At (n*,w*), we have

* * * * 1 * *
O 07" w) = 0, R w") = =5, O ) = —

|
J’N
~—~
=~
—_
w
—
S~—

and thus this point is a SLmM.

Now let us consider learning the covariance of a Gaussian:

((V, W) :=E,. 1 w E.. log (1 — vTwv
Jmin max (VW) = Banos logo (' Wa) +Eaoyon log (1 -0 (2 2))
(4.132)

) =

with z € R? and 2z € R% The generator is G(z) = Vz and the discriminator is D(z
o(x"Wx). The optimal solution satisfies VV' = X = diag(1,0.04) and W + WT = 0.

Experiments First, let us estimate the mean of a Gaussian distribution. Comparison
among algorithms are presented in Figures 4.1a and 4.1b. While the convergence rates for
most algorithms on the well-conditioned Gaussian are similar, all existing methods severely
slow down on the ill-conditioned Gaussian. Only Newton-type methods retain their fast
convergence, confirming our theory that they can cope with ill-conditioned problems. In
particular, in both cases CN converges to a high precision solution only in a few iterations,
verifying its superlinear convergence rate.

The covariance of the data distribution determines the condition of w. We compare con-
vergence speed in two cases: a well-conditioned covariance

N=1 (4.133)
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Figure 4.1: Convergence on learning Gaussian distributions using JS-GAN. Top: Esti-
mating the mean of a Gaussian. We compare the convergence rate in a well-conditioned
and an ill-conditioned setting, and plot the norm of the generator and the discriminator
respectively. Bottom: Estimating the covariance of a Gaussian. We plot the convergence
behavour of different algorithms and the eigenvalues at the SLmM. In both cases, CN
quickly reaches the precision limit of double precision floating point numbers.

and an ill-conditioned covariance

1 0
Y= {0 0'05} . (4.134)

We set ap = 0.05, ag = 0.5 for all algorithms. For GDA-k we set a = 0.05. We run
conjugate gradient for up to 8 iterations and terminate it whenever the norm of residual
is smaller than 1074°. The size of training data is 10000. We randomly initialize the
parameters in running all algorithms using a zero-mean Gaussian with standard deviation
0.1.

Second, we estimate an ill-conditioned covariance ¥ = diag(1,0.04) with a fixed mean
= 0. We set ap = 0.02, ap = 0.2 for all algorithms. For GDA-k we set a = 0.02.
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(a) GDA-20 (b) TGDA (d) GDN

Figure 4.2: Digits generated by different algorithms on MNIST 0/1 subset. We draw
samples from the latent distribution and pass them to the generator learned with different
algorithms.

We run conjugate gradient for up to 16 iterations and terminate it whenever the norm
of residual is smaller than 1073°. The size of the training data is 10000. A /¢, norm
regularization is added on the discriminator and the regularization coefficient is 107°. We
randomly initialize the parameters in running all algorithms using a zero-mean Gaussian
with standard deviation 0.01.

We plot the eigenvalues at the optimal solution in Figure 4.1d:

e the solution here is almost an SLmM, as the total derivative Dy ¢ is approximately
positive definite (the only negative eigenvalue is on the order of 107?), and dyw/ is
negative definite;

e the problem is ill-conditioned, as the condition number of Oy ¢ is greater than 10%.

Because of the poor conditioning, we observe again that GDA and TGDA/FR severely
slow down, while only GDN and CN can retain their fast convergence rate (Figure 4.1¢). In
particular, CN converges superlinearly and reaches the precision limit of floating numbers
in only a few iterations. Note that the solution is not a saddle point, as 0y in Figure 4.1d
is negative definite. Thus algorithms for strongly-convex-strongly-concave functions may
not work.

From Thm. 4.2.3, TGDA and FR have the same convergence rate since their pre-
conditioners on GDA are transpose of each other (Section 4.2.2). The convergence be-
haviour of the leader and the follower slightly differ: TGDA converges faster on the gen-
erator while FR converges faster on the discriminator.
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Figure 4.3: Convergence on a mixture of 8 Gaussians. Top: samples from generator.
Bottom: discriminator prediction. Last column: gradient norms during training. The
x-axis is epoch.

4.4.2 Learning Mixture of Gaussians

We learn a mixture of Gaussians using JS-GAN in Figure 4.3. Both the discriminator and
the generator are 3-hidden-layer ReLLU networks with 256 neurons in each hidden layer.
The latent variable z is sampled from a 100 dimensional standard Gaussian distribution.
The size of training data is 10000. We first use GDA (ar = ag = 0.01) with batch size 256
to find the initialization for other methods. TGDA, FR and GD-Newton use ap = 0.01
and ar = 0.02. We run conjugate gradient for 20 iterations to solve linear systems and
terminate it whenever the norm of residual is smaller than 107%°. For CN, we choose the
damping coefficient v = 0.1 (see (4.122)) with 20 CG iterations for the discriminator, and
32 CG iterations for the generator. We also add a regularization factor A = 0.1 for the
generator as in (4.122).

We plot the distribution learned by the generator, the discriminator prediction, and
gradient norms during training. The discriminator trained by GDN/CN is totally fooled
by the generator, predicting constant % almost everywhere, and the gradient norms shrink
quickly after a few epochs. In contrast, the gradient norms of TGDA and FR decrease, if
at all, very slowly.

Although this is a two dimensional example, the minimax optimization problem has
several hundred thousand variables since the generator and the discriminator are deep
networks, demonstrating the moderate scalability of Newton-type algorithms to high di-
mensional problems.
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Table 4.2: Running times per epoch on MNIST.

method GDA-20 TGDA FR GDN CN
time (in sec) 2.78 6.08 6.22 446 7.04

4.4.3 MNIST

We compare different algorithms for generating digits on the 0/1 MNIST subset. We use
Wasserstein GAN (Arjovsky et al., 2017) to learn the distribution, with 2-hidden-layer
MLPs (512 neurons for each hidden layer) for both the generator and the discriminator,
and we impose spectral normalization (Miyato et al., 2018) on the discriminator. We first
run GDA, which is oscillating in a neighborhood, and use its output as initialization. We
compare the per epoch running time of different algorithms in Table 4.2. TGDA, FR, GDN
and CN have similar running times since they solve linear systems of similar sizes in their
updates. Since we choose a small number of CG iterations (max_iteration = 16 for the

discriminator and max_iteration = 8 for the generator), they have similar running times
to GDA-20, as predicted by our Table 4.1.
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Figure 4.4: Gradient norms on MNIST 0/1 subset.

Even though all of our algorithms have similar running times, we find the convergence
speeds are quite different. We plot the change of their gradient norms with respect to the
running time in Figure 4.4, where we also compared with the method of extra-gradient
(EG, Korpelevich (1976)). TGDA/GDA-20/FR do not converge or converge quite slowly.
In contrast, GDN converges much faster than all these algorithms above with the same
step sizes, as predicted by Theorems 4.3.2, 4.2.3 and 4.2.2. The convergence speed can be
further improved by CN, where the gradient norms diminish faster even if we take a small
number of CG iterations. We plot the digits learned by these algorithms in Figure 4.2. It
can be seen that GDN/CN generate high-quality digits that are as good as, if not better
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than, other optimizers.
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Chapter 5

Conclusions

In this chapter I conclude the thesis and discuss possible directions for future work.

The aim of Chapter 2 is to provide a comprehensive study of the recently proposed
local minimax points (Jin et al., 2020). I discussed the relations between local saddle
and local minimax points, between local and global minimax points, and interpreted local
minimax points based on infinitesimal robustness. I presented the first- and second-order
optimality conditions of these local optimal solutions, which extend Jin et al. (2020) to
the constrained and degenerate cases. Specifically, in (potentially non-convex) quadratic
games, local minimax points are (in some sense) equivalent to global minimax points. I
also studied the stability of popular gradient algorithms near local optimal solutions, which
provides insights for the design of algorithms to find minimax points.

The implication of this work is two-fold: (a) we may need new algorithms for smooth
games, since I have shown in Proposition 3.4.5 that our common intuition might fail
w.r.t. the convergence to a local and global minimax point; (b) we need to think about
new solution concepts other than global/local minimax points. As many theoretical works
aim to go beyond the definition of Nash equilibria (a.k.a. saddle points) such as Jin et al.
(2020); Farnia and Ozdaglar (2020); Berard et al. (2020), to name a few, we may need
to take one step further, beyond the definition of Stackelberg equilibria (a.k.a minimax
points), as also pointed out in Schaefer et al. (2020).

In Chapter 3 I focus on the local stability of gradient-based algorithms. By drawing
a connection to discrete linear dynamical systems and using Schur’s theorem, I provide
necessary and sufficient conditions for a variety of gradient algorithms, for both simultane-
ous (Jacobi) and alternating (Gauss—Seidel) updates. My results show that Gauss—Seidel
updates converge more easily than Jacobi updates in bilinear games, by proving that the
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feasible hyperparameters of GS updates strictly include the feasible hyperparameters of
the corresponding Jacobi updates. I performed a number of experiments to validate my
theoretical findings and suggest further analysis.

In Chapter 4, I developed two Newton-type algorithms for local convergence of uncon-
strained nonconvez-nonconcave minimax optimization which have wide applications in,
e.g., GAN training and adversarial robustness. My algorithms

e share the same computational complexity as existing alternatives that explore second-
order information;

e have much faster local convergence, especially for ill-conditioned problems.

Experiments show that my algorithms cope with the ill-conditioning that arises from prac-
tical GAN training problems. Since I only study the local convergence of Newton-type
methods, I consider them as a strategy to “fine-tune” the solution and accelerate the local
convergence, after finding a good initialization or pre-training with other methods, such
as GDA or damped Newton. How to use second-order information to obtain fast global
convergence to local optimal solutions in nonconvex minimax optimization with theoretical
guarantees remains an important problem.

Minimax optimization has many applications in modern machine learning as I have
discussed in Chapter 1. Despite recent theoretical works including my thesis, there is still
a big gap between theory and applications. On the one side, many concurrent works focus
on general minimax optimization. On the other side, current applications of minimax op-
timization usually have specific problem structures, which are largely unexplored. In the
future I plan to study more applications of minimax optimization, including domain adver-
sarial training (Acuna et al., 2021) and domain generalization. Understanding the solution
concepts and stability in such problems would be important to improve the optimization
and thus the training process.
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Appendix A

Supplementary Material for
Chapter 2

A.1 Nonsmooth Analysis: A Short Detour

We give a short detour on some classical optimality conditions in nonsmooth optimization.
These results will be used in Section 2.2 to yield necessary and sufficient conditions for
local optimality in zero-sum two-player games, since the optimality conditions for local
optimal points can be reduced to those for the envelope functions, which are in general
non-smooth.

Let h be a function defined on some set X C R™. Its upper and lower (Dini) directional
derivatives are defined as:

Dh(z; d) := limsup W ttd) - h(x)’ Dih(z;d) := liminf M+ td) - h(x)

t—0+ t t—0t t

(A1)

When the two limits coincide, we use the notation Dh(z;d) and call the function h direc-
tionally differentiable (at x along direction d). We can similarly define the upper and lower
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second-order directional derivatives' according to Ben-Tal and Zowe (1982):

h(z + td +t2g/2) — h(x) — t - Dh(x;d)

Hh(x;d, g) = limsu , A2
( 9) 1t §+P 122 (A.2)

2 _ —t-Dh(z:d
Hih(z;d,g) = liminf Mz +td+tg/2) — h(z) —t- Dhlz; ) (A.3)

t—0t t2/2

Similarly, when the two limits coincide we use the simplified notation Hh(x;d, g) and call
h twice directionally differentiable (at x along parabolic (d,g)). Note that, when d = 0,
we recover the directional derivative:

HA(2;0,9) = Hyh(z;0,9) = Dh(z; 9), (A.4)
while if g = 0,
Hh(z;d) := Hh(z;d,0), Hih(z;d) := Hyh(x;d,0), Hh(z;d) :== Hh(z;d,0) (A.5)

reduces to the second-order directional derivatives of Dem’yanov (1973). The advantage
of the definition of Ben-Tal and Zowe (1982) is evidenced in the following chain rule:

Theorem A.1.1 (Ben-Tal and Zowe 1982). Let h : R™ — R be locally Lipschitz and
k:R™ — R™ be (twice) directionally differentiable. Then,

D(h o k)(z;d) = Dh(k(xz); Dk(z; d)), (A.6)
H(h o k)(x;d, g) = Hh(k(x); Dk(x; d), Hk(2; d, g)). (A7)

(The same result holds for the lower derivatives, and hence the derivatives when they exist.)

In contrast, the definition of Dem’yanov (1973) fails to satisfy the chain rule above. Indeed,
if h is differentiable, then

Dh(z;d) = (Vh(z),d) (A.8)
while if h is twice differentiable, then
Hh(x;d, g) = Dh(a: g) + Hh(a;d) = (Vh(z),g) + (d, V*h(x)d) (A.9)

where Vh and V?h are the gradient and Hessian of h, respectively. (A slightly more
general setting is discussed in Seeger 1988, Proposition 1.1.) The following properties of
the directional derivatives are clear:

LA popular directional derivative in nonsmooth analysis, due to Clarke (1990), is to replace h(z + td)
with h(y +td) for some sequence y — x. The second-order counterpart appeared in Cominetti and Correa
(1990). For our purpose here, the classical Dini definitions suffice.
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Theorem A.1.2. For any A > 0 we have
Dh(z; Ad) = A - Dh(z;d), (A.10)
Hh(z; Ad, N2 g) = \* - Hh(x; d, g) (A.11)

If b is locally Lipschitz around x, then Dh(z;-) and Hh(z;d,-) are Lipschitz continuous.
(Similar results hold for the upper and lower derivatives.)

A.1.1 Necessary Conditions

Consider the nonsmooth optimization problem

min  h(x). (A.12)

zeXCR™

We define three tangent cones of the (closed) constraint set X":

Ke(X, ) := {d:V{tx,} — 07 H{t,} = 0",z +t,d € X} C cone(X — x) (A.13)

KafX,2) = liminf A Vb — 0% I — 0% {di )} — dx + ted, € X}
(A.14)

Ko(X, ) = limsup " = {d: 3{te} — 0, {de} — d,z + tudy € X}, (A.15)

t—0t

Obviously, the (feasible) cone Ks is contained in the (derivable) cone Kqy, which is itself
contained in the (contingent) cone K.. Ky and K. are always closed while K¢ may not be
so (even when X is closed). On the other hand, if X is convex (and x € X'), then all three
tangent cones are convex, K¢ = cone(X — x) and Ky = K. = K¢. Note that for all tangent
cones, we have

Vo g X, K(X,z) =0, and Vo € X°,K(X,z) = R™, (A.16)

where X and X° denote the closure and interior of X, respectively. The following necessary
condition is well-known:

Theorem A.1.3 (first-order necessary condition, e.g. Dem’yanov (1966)). Let x* be a local
manimizer of h over X. Then,

Vd € Ke(X,2"), Dyh(z*;d) > 0. (A.17)

The converse is also true if h and X are both convex around x*. If h is locally Lipschitz,
then

Vd € Kg(X,2%), Dyh(z*;d) > 0. (A.18)
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Proof. We first prove the converse part. Suppose to the contrary there exists x around z*
so that h(z) < h(z*). Then, d = x — x* € K¢(X, 2*) and we have

1— * . *
Dih(z*;d) = liminf h((1 —t)z" +tx) — h(z")

t—0t t

< h(z) — h(z*) < 0, (A.19)

which is a contradiction.

To see the claim when h is locally Lipschitz, note that d € Kyq(X,z*) implies for any
{tx} — 0 there exist {tx,} — 07 and {dy,} — d such that z* + t;,dy, € X. For sufficiently
large k; we have h(z* + ty,di,) > h(z*) since z* by assumption is a local minimizer. Thus,

h(z* +td) — h(z*) h(z* + tgd) — h(x*)

lim inf = lim (A.20)
t—0+ t tp—0T tr
> lim sup h(z* + tg,dy,) — h(z*)
tki—)0+ tk‘l
h(x* + ty,d) — h(x* + tg,dg,
— lim sup (&7 + tud) = M@ + biudr) (A.21)
tki—>0+ tk:l
>0-0=0. (A.22)
The proof for a general function h is similar. O

To derive second-order conditions, we define similarly the second-order tangent cones:
Ke(X,2;d) :={g: V{ts} L 0 {tr,} L 0, + ty,d + £} g/2 € X}, (A.23)
.. X —x—td
Kd(Xa Z; d) = htfg(}};lf T
= {g :V{te} 4 0 I{tx,} 1 0, {o,} = 9,2+ ti,d + t; g, /2 € X}. (A.24)
The proof of the following result is completely similar to that of Theorem A.1.3:

Theorem A.1.4 (second-order necessary condition, e.g. Ben-Tal and Zowe 1985). Let h
be directionally differentiable and x* be a local minimizer of h over X. Then,

Vd € Ke(X,2%),Yg € Ke(X,2";d), Dh(z*;d) =0 = H h(z";d,g) > 0. (A.25)
If h is locally Lipschitz, then

Vd € Ky(X,x%),Vg € Ky(X,2";d), Dh(z*;d) =0 = H h(z";d,g) > 0. (A.26)
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A.1.2 Sufficient Conditions

We give sufficient conditions for a nonsmooth function to attain an isolated minimum.

Theorem A.1.5 (first-order, e.g. Dem’yanov 1970; Ben-Tal and Zowe 1985). Let h be
locally Lipschitz. If

V0 # d € K (X, z%), Dyh(x*;d) > 0, (A.27)
then x* is an isolated local minimum of h over X.

Proof. Suppose to the contrary there exists a sequence x, € X converging to x* so that
h(zg) < h(z*). Let ty = ||lzgy — 2*|| and dy = (vx — 2*)/||zx — 2*||. By passing to a
subsequence we may assume d — d # 0, where clearly d € K (X, 2*) since z* + tyd), =
zr € X. But then

h(x* + tid) — h(x*)

D, h(z*;d) < liminf (A.28)
t—0t tk;
t—0t 179 0+ 123
<0+0=0, (A.30)
arriving at a contradiction. 0

Note that when X is convex, we may replace K. = K¢ with K¢ (recall the Lipschitz continuity
in Theorem A.1.2).

Theorem A.1.6 (second-order, e.g. Dem’yanov 1970). Let h be locally Lipschitz and di-
rectional differentiable, and X be convex. If

1. Vd € K¢(X,z*), Dh(x*;d) > 0,
2. 3y > 0 such that for all d € Ke(X,2%),||d|] = 1,Dh(z*;d) € [0,7] we have for all

small t and uniformly on bounded sets in d:
h(z* + td) — h(xz*) — tDh(x*; d)
t2/2

> Ap(z*;d) > 0, (A.31)

then x* 1s an isolated local minimum of h over X.
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Proof. Let x € X and x # x*, then d := (z —2*)/||lx — 2*|| € K¢(X, 2*) (since X is convex).
Suppose Dh(z*,d) > v > 0, then
h(z* 4+ td) = h(z") + tDh(z*;d) + o(t) > h(x™) + vt + o(t) > h(z*) + vt /2, (A.32)

for sufficiently small ¢t < ¢;. Since the function d — h(z* 4 td) is locally Lipschitz, we may
choose a nonempty open subset from each set {v : V¢t € (0,t4], h(z*+tv) > h(z*)}. Hence,
using a standard compactness argument, we know for all small positive t,

d € Ke(X,z%), ||d|| = 1,Dh(z*,d) > v = h(x™ +td) > h(z"). (A.33)

Suppose instead Dh(z*, d) € [0,~], then for all small positive ¢ and uniformly in d we have
h(z* +td) > h(z*) + tDh(z*; d) + $t°An(z*; d) (A.34)

> h(z*) + 3t*A (2" d) (A.35)

> h(z"). (A.36)

Finally, combining the above two cases completes the proof. O

We make a few remarks regarding Theorem A.1.6:

e In general we cannot let v = 0 (for an explicit counterexample, see Dem’yanov
1970). This is one of the subtleties to work with directional derivatives: even when
Dh(z*;d) vanishes for some direction d we may still have Dh(z*;d) approaching 0
for other directions, but with v = 0 we will not know how Aj(z*;d) behaves (e.g.
negative) along the latter directions.

e It is clear that Hi h > A,. In some cases it is easier to verify the uniformity (along
directions) in (A.31) if we relax the lower 2nd-order directional derivative Hih to
some convenient function A;,. See Theorem A.1.11 for an example.

o [f ¥ =R™ and h is Fréchet differentiable with locally Lipschitz gradient Vh around
x*, then we can verify the uniformity in (A.31) as follows. Note first that we have
Vh(z*) = 0 from the necessary condition. Second, for all small ¢ we have

h(x* +td) — h(z*)  h(x* +td +t(d — d)) — h(z*)

£2/2 - £2/2 (A.37)
h(z* + td) — h(z*) + t (Vh(z* + 0td) — Vh(z*),d — d)
B t2/2
(A.38)
Mot ) =) g d - ., (4.30)

= 22
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where 6 € [0,1] and L is the local Lipschitz constant of Vh. Thus, if 2&HI_RET) ¢

- t2/2
then for all nearby d we also have W’L;d—;;hm > (. In this case we may let A, = H, h

and recover (Ben-Tal and Zowe, 1985, Theorem 3.2).

Another result that directly uses the second-order derivative is:

Theorem A.1.7 (second-order sufficient condition, e.g. Dem’yanov and Malozemov 1974).
Suppose h is uniformly first-order and second-order directional differentiable (at x*) and X
is convex. If there exist r,q > 0 such that for all normalized feasible direction t, Dh(x*;t) >
0, and

0 < Dh(z*;t) <r == Hh(z";t) > q >0, (A.40)

then x* is an isolated local minimum.

Proof. 1f Dh(z*;t) > r, it reduces to the proof of Thm. A.1.5. Otherwise, (A.40) holds,
and

2
h(z* + at) = h(z*) + aDh(z*; 1) + %Hh(m*; t) + o(a?;t). (A.41)

Since h is uniformly second-order directional differentiable in any direction t, there exist
0 < a1 < ap such that for any 0 < @ < «; and for any [[t|| = 1, o(a?;t) > —qa?/4.
Therefore, for any = € N(z*, a1) not equal to x*, we can take t = (z —2*)/||z — 2*|| (which
is feasible from convexity of X') , a = ||z — z*|| and obtain:

h(z) = h(z* + at) > h(z*) + o?q/4 > h(z®). (A.42)
m
In the theorem above, we are considering “approximately” critical directions, rather

than only the second order derivatives along the critical directions. The following example
demonstrates this point, as inspired by Ben-Tal and Zowe (1985, Example 2.1):

Example A.1.8. We cannot take r = 0 in (2.61). Consider f((x1,22),y) = (2x1 + 27 +
x3)y + 2} and (z*,y*) = (0,0). fe(x1,22) = €221 + 2] + 23| + 2} and it is uniformly twice
directional differentiable. We can evaluate D fc((0,0); (t1,12)) = 2€|t1| and

2e(t2 +12)  t; >0,
er((O,O); (t1,t2)) = 2675% t1 =0,
—2e(t? +13) t; <0.
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The critical directions are (0,ty) along which Hf.(0,t) = 2¢t3 > 0. However,

Je((0,0), (a1, \/ 221 — 7)) = 2 <0

if =2 <z, <0.

A.1.3 Envelope Function

Our main interest in this section is the envelope function:

f(x) :=max f(z,y) (A.43)

yey

where ) is some compact topological Hausdorff space?. It is easy to verify:

o If f: X xY — R is (jointly) continuous, then so is f (in ).

e Ifalso 0,f : X x Y — R is (jointly) continuous, then f is locally Lipschitz.

The envelope function turns out to be directionally differentiable:

Theorem A.1.9 (e.g. Danskin 1966; Dem’yanov 1966). Let f and O.f be (jointly) con-
tinuous. Then, the envelope function f is directionally differentiable:

Df(z;d) = max (0,f(x,y),d), where Vo(x):={y€V: flx) = f(r;9)}. (A.44)

yE€YVo(x)
Clearly, Df(x;-) is Lipschitz continuous.
The following theorem explains the necessity of the function A, in Theorem A.1.6:

Theorem A.1.10 (Seeger 1988; Dem’yanov 1970). Let f and O, f be continuous. Then,

Df(z:d) = max (0.f(z,y),d), Vo(z):={ye€V: f(x)=f(z,y)} (A.45)

y€YVo(x)
Hyf(z;d, g) > Dax Hif(z,y;d, g),
Vi(a;d) == {y € Yo(x) : Df(x;d) = (o.f (2,y),d)}. (A.46)

2Results in this section can be extended to the more general case where the constraint set )) depends
on z (in some semicontinuous manner); see Seeger (1988) for an excellent treatment. For our purpose here
it suffices to consider a constant ).
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If 9%, f is also (jointly) continuous, then
Af(r;d) max (02, f(z,y)d,d) (A.47)

yEy

satisfies the uniformity condition in Theorem A.1.6.

Proof. We need only prove the last claim. Indeed
fla+td) = f@) = tDf(id) _ (ot tdy) ~ fwy) = 0. (@y),d)

£2/2 = yedi(wid) t2/2
= max (07, f(z+1t0(y,d)-d,y)d,d). (A.48)
yEV1(z3d)

Since 92, f is continuous (hence uniformly continuous over compact sets), the right-hand
side converges to Az(z; d) uniformly on bounded sets in d as t goes to 0. ]

When Y has limit points, proving As(z;d) = H f(z;d) may be difficult (even with
additional regularity conditions). Nevertheless, we can still apply the sufficient condition
in Theorem A.1.6.

Seeger (1988) pointed out the following equivalence:
Df(a;d) = max Df(z,y;d)= max sup Df(z,y;(d,v)), (A.49)
yedo(x

YEVO(T) veKy(V,y)

where the first two directional derivatives are taken wrt z only while the last direc-
tional derivative is joint wrt (x,y). Indeed, when f is (jointly) continuously differentiable,
Df(z,y;(d,v)) = (0:f(z,y),d) + (0, f(x,y),v). However, since y € Vp(z), we know from
the necessary condition in Theorem A.1.3 that (0,f(z,y),v) < 0 for all v € Ky4(V,v).
Surprisingly, the second order counterparts are no longer equivalent:

Theorem A.1.11 (Seeger 1988). Let f : X x Y — R be continuously differentiable. Then,
Hyf(z;d,g) > max  sup sup  Hyf(z,y;(d,v), (9, w)), (A.50)

yeVo(2) eV (z,y;d) weKq(V,y;v)

where Yo(r) = {y € YV : f(z) = f(z,y)} and V(z,y;d) = {v € Kg(V,y) : Df(x;d) =
Df(x,y; (d,v))}.

If the second-order derivative of f is also (jointly) continuous, then

2, f(x,y) 02 f(l“,y)] <d) (d)>
Az(x;d) = vl b ) +
ploid) = max, S e <[85xf<w»y> 2, f@.y)] \v) \v

+ 0y f(2,y), w) (A.51)
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satisfies the uniformity condition in Theorem A.1.6, provided that the directions d,v and
w are bounded.

Proof. We assume Kq4(),y;v) is not empty for otherwise the theorem is vacuous. For any
w € Ky(Y,y;v) we know for any sequence t; | 0 there exist a subsequence t;, | 0 and
wy, — w such that y + t v+t w, € Y. Thus, fix any y € Vy(z), v € V(z,y;d) and
w € Kg(Y,y;v), we know (after passing to a subsequence if necessary)

Jla+ted+1t79/2) — f(x) — ;D f(x;d)

A.52
2/2 (A.52)

= 2/2 '

2 2 _ _ :
t7/2
N flx+thd+12g9/2,y + tpv + Gwi/2) — f(x + tpd + 129/2,y + Lo + 2w /2)
1272

(A.55)
= H f(2,4; (d, ), (9,w)) + o(tr), (A.56)
where the small order term o(t;) is independent of d, v and w if they are bounded. ]

By setting y € Vi(x;d),v = w = 0, we see that the lower bounds in Theorem A.1.11 are
always shaper than the ones in Theorem A.1.10. However, note that Theorem A.1.10 only
requires ) to be any compact topological space while Theorem A.1.11 only applies when
Y is a compact set of some finite dimensional vector space.

Example A.1.12 (Seeger 1988). Let Y = R™ and f(z,y) = (z)T {% [;T g] (jj) + (g)}

Assume C < 0. Then, Yo(z) is a singleton, Y1 = R™, and WLOG w = 0. Therefore,
Af(z;d) =d"(A— BC'BT)d, (A.57)

A B

-1
BT C] (g) is a (unique) global saddle point if C < 0 and A —

whence (x,y) = [
BC'BT = 0.
However, if we apply Theorem A.1.10 we can only conclude that
Aj(z;d) = d" Ad, (A.58)

which is clearly a looser lower bound (recall that C < 0).
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In principle, one should use the lower second-order directional derivative) Hy (z*;d, g) >
0 for a stronger necessary condition. However, to our knowledge, we do not have an
appropriate formula for it. We therefore look into upper second-order derivatives instead
for which Kawasaki (1988) showed a result. From this result, we are able to introduce the
second-order necessary conditions for z* being a local minimizer of f(z):

Theorem A.1.13 (Kawasaki 1988). Let f be twice (jointly) continuously differentiable.
Then,

Hf(z;d,g) = max (9.f(x,y),9) + (0%, f(x,y)d, d) + limsup 30° (z;d)u'(2), (A.59)

yeYV1(z,d) z2—y
where (t)_ = min{t,0}, t' = {é/t’ ifB’ and
uly) := f(x) = f(x,y) >0, v(y;d) := Df(x;d) — Df(x,y;d). (A.60)

Proof. We give a direct (and arguably simpler) proof of this result. Denote
f(x+td+12g/2) — f(x) — tDf(z;d)

A(t) := . A.61
(1) 7 (A61)
Using the definitions of v and v we have
At) = flz +td+1t2g) — f(z,2) —;Df(x,z;d) —u(z) — tu(z; al)7 (A.62)
t2/2
which holds for any z € Y. Let us first choose z = z; € Vo(z + td + th):
Alt) = fla+td+t2g,2) = f(v,2) = tDf(w,255d)  u(z) + tv(zt;d)' (A.63)

£2/2 22

Let y € Vo(x) be a limit point of z;. Suppose y € Vo(x) \ Vi(x;d). Then, for small ¢
we have (in the corresponding subsequence) v(z;d) =~ v(y;d) > 0 hence liminf; A(t) =
H, f(z;d,g) = —oo, contradicting Theorem A.1.10. Thus, y € Vi (z;d). Optimizing t for
the second term we obtain

flx+td+t3g, z) — f(x,2) — tDf(z, 2; d)
272

where we used the fact that if u(z;) = 0 then v(z;d) > 0 (see Theorem A.1.9). Taking
limits on both sides proves the < part in (A.59).

Aft) < + 50 (25 d)ul (2), (A.64)
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For the converse, let y € Yi(z;d) and 2z, — y attain the maximum and limsup

n (A.59), respectively. We need only consider lir_r}y 02 (zp; d)ul (z) > 0, for otherwise
2k

the > part in (A.59) would already follow from Theorem A.1.10. We obviously have
u(zx) > 0 and v(zg;d) < 0 for sufficiently large ¢. Since u(zx) — u(y) = 0 we also
have v(zg;d) — v(y;d) = 0. We claim that (after passing to a subsequence if necessary)
limg u(zy)/v(z1;d) = 0, for otherwise limv?(zy;d)/u(zx) = 0, contradicting to its strict
positivity. Now, setting ¢, = —2u(zy)/v(zx; d) we have (for large k):
flx+td+ 139, 2) — (7, 2) — D f (v, 213 d) — u(zp) — tyv(z; d)
t2/2
tpd + 1, — — 1D ;d
- fehdrtions) = fa) SOOI Lk (i dl (). (A00)
k

Taking limits on both sides we obtain the > part in (A.59). O

A(ty) = (A.65)

For later convenience, we remind that

Vo) = {y : uly) = 0}, Ni(z;d) = {y : uly) = v(y;d) = 0}. (A.67)
and denote E(y;t) = limsup,_,, 0% (z; d)ul(z).
With Carathédory’s theorem for convex hulls, one can obtain from (A.59) the following
necessary condition for envelope functions:

Theorem A.1.14 (Kawasaki (1991)). Assume f € C* and X = R™. If 2* is a local
minimum of f(x), then for each d € R™ satisfying D f(x*;d) = 0, there exist at most n + 1
points yi, ..., Yni1 € Vi(a*;d) and Ay, ..., N\, > 0 not all zero, such that:

> N f(x*,y:) =0, Z)\ (d"2, f(z*,y:)d + E(yi; d)) > 0. (A.68)

Proof. We borrow the result from Kawasaki (1991). In order to write down the second-
order derivative formula in Kawasaki (1988), we define

Yo(t) := {y € Y : there exists a sequence {2z} — vy, u(zx) > 0 and v(zy;t)/u(z;) = —o0},

and the following upper semi-continuous function (Kawasaki, 1988):

SUD (o, sy lim sup, 0(24 1)2/(2u(z1)) € Yo(t) and {2} s in Yo(t),
E'(y;t) =40 uly)=v(y:)=0 & y & Yo(t)  (A.69)

—00 otherwise.
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As shown in Kawasaki (1991), u(y) = v(y;t) = 0 whenever y € Yy(¢). We simplify the
definition above:

Lemma A.1.15. Denoting x_ := min{z,0}, 2 = 1/x if x # 0 and 27 = 0 otherwise,
then for any u(y) = v(y;t) =0,
E(y;t) = limsup v_(z; t)2uf (2:) /2. (A.70)
Ze—Y

Proof. Tt suffices to consider those sequences {z,} C Y such that u(z;) > 0. We want to
prove that F(y;t) = E'(y;t). We first prove E(y;t) > E’'(y;t). If y € Yy(t), then for any
0 > 0, there exists a sequence {z;} such that

timsup v )2/ (2u(z1)) 2 B'(y3t) = 5.

u(zr) > 0 and v(zp;t)/u(z,) — —oo. For large enough m, v(2;t) < 0, and thus we take
the same sequence in (A.70) to obtain E(y;t) > E'(y;t) — d. Since the above holds for any
0 >0, we have E(y;t) > E'(y;t). If y ¢ Yo(¢), then E(y;t) > 0= E'(y;t).

Now let us prove that E(y;t) < E'(y;t). Assume for any 6 > 0, {2z} is the sequence
s.t.

lim sup v_(zg; 1)’ (2)/2 > E(y;t) — 6.
k

If u(2x) > 0 or v(z;t) < 0 for finite number of m, then E(y;t) = 0 < E'(y;t). Assume
WLOG now that for any m, u(zx) > 0 and v(z;t) < 0, if v(2g;t)/u(zx) is bounded, then
since v(y;t) = 0, E(y;t) = 0 < E'(y;t). So we can assume further that v(zy;t)/u(z,) —
—o00. Using the same sequence in (A.69), we know E'(y;t) > E(y;t) —d for any § > 0, and
thus E'(y;t) > E(y;t). O

]

Moreover, the following assumption guarantees the existence of Hf(x;d, g) from which
we can get second-order sufficient conditions:

Assumption A.1.16 (Kawasaki (1992)). For each y € Yi(x*;t) with t # 0 and
Df(z*;t) = 0, and for each non-zero d € R™, there exist o, # 0 and p,q > 0 such
that the following approximation holds:

u(y + 6d) = ad? + o(6?), v(y + dd; t) = 537 + o(d7), (A.71)
whenever y + dd € N (y*,€) and § > 0. Note that
u(y) = f(a*) = f(2",y), v(y;d) := Df(2";d) = Df(z", y; d).
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Theorem A.1.17 (second-order sufficient condition, Kawasaki (1992)). Assume
Assumption A.1.16 holds at x*. Let X = R"™ and Y be convex. x* is an isolated local
minimum of f(z) if for any d € R", Df(z*;d) > 0, or Df(z*;d) = 0, d # 0 and there exist
a > 1 points yi, ..., Y, € Y1(x*;d) and My, ..., s > 0 such that:

> N0 f(@*,y) =0, N (dT0%, f (2, yi)d + E(yi;d)) > 0. (A.72)
i=1 =1
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Appendix B

Supplementary Material for
Chapter 3

B.1 Proofs

We present full proofs of OGD and the Momentum method (Heavy Ball) in this appendix.

B.1.1 Proof of OGD

Theorem 3.2.5 (OGD). For generalized OGD with oy = as = «, Jacobi and Gauss—
Seidel updates achieve linear convergence iff for any singular value o of E, we have:

J- ’ﬁlﬁ202‘ <1, (Oé—ﬁl)(Oé—ﬁg)>0,4+(Oé+51)(05+ﬁ2)0’2>0, (3 58)
| a® (B30 + 1) (B30% + 1) < (Bi1B20? 4+ 1)(2a(B1 + B2) + B1B2(B18202 — 3));
: (a—p)(a—PF2) >0, (a+pi)(a+ f2)o* < 4,
G5 {(aﬁlaz + 1) (aBe0? + 1) > (1 + B1B20?)% (3:59)

The convergence region of GS updates strictly includes that of Jacobi updates.
Proof. The Jacobi characteristic polynomial is now quartic in the form A\ +aX3+bA2+cA+d,

with
a=-2,b=0a’0"+1,c=—a(Bi+ B)0?, d = 10> (B.1)
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Comparably, the GS polynomial (3.57) can be reduced to a cubic one A3 + aA\? + bA + ¢
with
a=—-2+0a’0% b= —a(B+ B)o? + 1, c = B1 B0 (B.2)

First we derive the Schur conditions (3.58) and (3.59). Note that other than Corollary
3.1.3, an equivalent Schur condition can be read from Cheng and Chiou (2007, Theorem
1) as:

Theorem B.1.1 (Cheng and Chiou (2007)). A real quartic polynomial \* +a\®+b\? +
cA + d is Schur stable iff:

|d| <1, |a| <d+3,la+c| <b+d+1,
(1—d)?*+c—a(l+dc— (1+d)(1—d)?+ad<0. (B.3)

With (B.1) and Theorem B.1.1, it is straightforward to derive (3.58). With (B.2) and
Corollary 3.1.3, we can derive (3.59) without much effort.

Now, let us study the relation between the convergence region of Jacobi OGD and GS
OGD, as given in (3.58) and (3.59). Namely, we want to prove the last sentence of Theorem
3.2.5. The outline of our proof is as follows. We first show that each region of («, 51, 52)
described in (3.58) (the Jacobi region) is contained in the region described in (3.59) (the
GS region). Since we are only studying one singular value, we slightly abuse the notations
and rewrite ;0 as §; (i = 1,2) and ao as a. From (3.56) and (3.57), 8; and P can switch.
WLOG, we assume 31 > (5. There are four cases to consider:

e 31 > Po > 0. The third Jacobi condition in (3.58) now is redundant, and we have
a > (1 or a < B3 for both methods. Solving the quadratic feasibility condition for «
gives:

B2+ /4 + 503 u+ Vu?+tv

where u = (8182 + 1)(61 + B2), v = B1B2(B1f2 + 1) (8162 — 3), t = (B + 1)(65 + 1).

On the other hand, assume o > (31, the first and third GS conditions are automatic.
Solving the second gives:

0<Be<1, B< B <

- / 2
0<Ba<l, B<pBi< b2 + 5 8+ﬁ2,ﬁ1 <a<—%(ﬁ1+62)+%\/(61—62)2+16.
(B.5)
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Define f(f2) == —f2++/8+ 53/2 and g(B,) := (B2 ++/4+563)/(2(1+ 53)), and

one can show that

f(B2) = g(Ba). (B.6)

Furthermore, it can also be shown that given 0 < S < 1 and 5y < 1 < g(52), we
have

(u+ Vu2 +4v)/t < —(By + B2)/2 4+ (1/2)\/(B1 — p2)? + 16. (B.7)

£1 > Py = 0. The Schur condition for Jacobi and Gauss—Seidel updates reduces to:

2
Jacobi: 0 < 1 <1, i <a< iy (B.8)
— 16 2
GS:0< B <V2, B <a< ﬁl+2 +Bl. (B.9)
One can show that given £, € (0,1), we have 28,/(1 + 87) < (=1 + /16 + 3?)/

p1 > 0 > Ps. Reducing the first, second and fourth conditions of (3.58) yields:

\/4 + 552 vuZ+t
62<0,0<61<52;r(1+;2)52,61<a<u+t$. (B.10)
2

This region contains the Jacobi region. It can be similarly proved that even within
this larger region, GS Schur condition (3.59) is always satisfied.

fa < By < 0. We have u < 0, tv < 0 and thus a < (v + Vu? +tv)/t < 0. This

contradicts our assumption that o > 0.

Combining the four cases above, we know that the Jacobi region is contained in the GS
region.

To show the strict inclusion, take 5 = s = a/5 and @ — 0. One can show that as

long as « is small enough, all the Jacobi regions do not contain this point, each of which is
described with a singular value in (3.58). However, all the GS regions described in (3.59)
contain this point.

The proof above is still missing some details. We provide the proofs of (B.4), (B.6),

(B.7) and (B.10) in the sub-sub-sections below, with the help of Mathematica, although
one can also verify these claims manually. Moreover, a one line proof of the inclusion can
be given with Mathematica code, as shown in Section B.1.1.
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Proof of equation B.4

The fourth condition of (3.58) can be rewritten as:
ot — 2ua — v < 0, (B.11)
where u = (8182 + 1)(61 + Ba), v = B182(B1fa + 1) (B2 — 3), t = (87 +1)(85 +1). The
>

discriminant is 4(u? + tv) = (1 — B152)%(1 + B152) (8% + B3 + BiP3 — B12) > 0. Since if
p1p2 <0,

B+ B3+ 5105 — Bifo = B + 5 + BiBa(B182 — 1) > 0,
It 162 = 0,

B+ Bs + BiBs — BiBa = (81 — B2)* + BiBa(1 + B1Ba2) > 0,

where we used |f3;0s| < 1 in both cases. So, (B.11) becomes:

u— VuZ+tv o< w4+ Vuz +to

a (B.12)
t t
Combining with a > £ or a < 35 obtained from the second condition, we have:
— +/92 t /12 t
ufm<@<520rﬁl<@<w. (B]_?))

The first case is not possible, with the following code:

u (b1 b2 + 1) (b1l + b2); v = bl b2 (bl b2 + 1) (bl b2 - 3);
t (b172 + 1) (b272 + 1);

Reduce[b2 t > u - Sqrt[u”2 + t v] && bl >= b2 > 0

&& Abs[bl b2] < 1],

and we have:
False.

Therefore, the only possible case is 1 < a < (u+ vu?+tv)/t. Where the feasibility
region can be solved with:

Reduce[bl t < u + Sqrt[u”2+t v]&&b1>=b2>0&&Abs[bl b2] < 1].
What we get is:

0<b2<1 &&
b2<=b1<b2/(2 (1+b2°2))+1/2 Sqrt[(4+5 b2"2)/(1+b2°2)"2].

Therefore, we have proved (B.4).
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Proof of equation B.6
With

Reduce[-(b2/2) + Sqrt[8 + b272]/2 >=
(b2 + Sqrt[4 + 5 b27°2])/(2 (1 + b272)) && 0 < b2 < 1],

we can remove the first constraint and get:

0 < b2 < 1.

Proof of equation B.7

Given

Reduce[-1/2 (bl + b2) + 1/2 Sqrt[(bl - b2)"2 + 16] >
(u + Sgrt[u™2 + t v])/t &
0 <Db2<1&&
b2 <= bl < (b2 + Sqrt[4 + 5 b272])/(2 (1 + b272)), {b2, bl}],

we can remove the first constraint and get:

0 <b2<1&&
b2 <= bl < b2/(2 (1 + b272)) +
1/2 Sqrt[(4 + 5 b272)/(1 + b272)"2].

Proof of equation B.10

The second Jacobi condition simplifies to « > f; and the fourth simplifies to (B.12).
Combining with the first Jacobi condition:

Reduce[Abs[bl b2] < 1 &&
a>bl & (u - Sqrt[u™2 + t v])/t < a < (u + Sqrt[u™2 + t v])/t
&& bl >= 0 && b2 < 0, {b2, b1, a} ] // Simplify,

we have:
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b2 < 0 && bl > 0 &&
b2/(1 + b2°2) + Sqrt[(4 + 5 b2°2)/(1 + b2°2)"°2] > 2 bl &&
bl <a< (bl + b2+ bl"2 b2 + bl b272)/((1 + b1"2) (1 + b2°2)) +
Sqrt[((-1 + bl b2)°2 (b1"2 + b2°2 + bl b2 (-1 + b272) +
b1°3 (b2 + b2°3)))/((1 + b1°2)"2 (1 + b2"2)"2)].

This can be further simplified to achieve (B.10).

One line proof

In fact, there is another very simple proof:

Reduce[ForAll[{bl, b2, a}, (a - bl) (a - b2) >0

& (a + bl) (a + b2) > -4 && Abs[bl b2] < 1 &&

a”2 (b1”2 + 1) (b2°2 + 1) < (b1 b2 + 1) (2 a (b1 + b2) +
bl b2 (bl b2 - 3)), (a - bl) (a - b2) > 0 &&

(a+Dbl) (a+Db2) <4

& (a bl + 1) (a b2 + 1) > (1 + bl b2)"2], {b2, bl, a}]
True.

However, this proof does not tell us much information about the range of our variables.

]

B.1.2 Proof of Momentum

Theorem 3.2.6 (momentum). For the generalized momentum method with oy = as = «,
the Jacobi updates never converge, while the GS updates converge iff for any singular value
o of E, we have:

8132 < 1,] — a?0” + B1 + B2 + 2| < Bifa + 3, 4(B1 + 1)(B2 + 1) > o?0?,
o?0*B1 s < (1= 3152)(26162 — B1 — Ba). (3.64)

This condition implies that at least one of (31, By is negative.

Proof. Jacobi condition We first rename oo as al and (1, 52 as b1, b2. With Theorem
B.1.1:
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{Abs[d] < 1, Abs[a] < d + 3,

a+b+c+d+1>0, -a+b-c+d+1>

0, @-d2b -(c-ad) (a-c)-A+d (1-d"2K
0y /. {a > -2 -Db1 -Db2, b ->al"2+ 1+ 2 (bl + b2) + bl b2,
c => -bl - b2 - 2 bl b2, d -> bl b2} // FullSimplify.

We obtain:

{Abs[bl b2] < 1, Abs[2 + bl + b2] < 3 + bl b2, al~2 > O,
al"2 + 4 (1 + bl) (1 +Db2) >0, al™2 (-1 + bl b2)"2 < 0}.

The last condition is never satisfied and thus Jacobi momentum never converges.

Gauss—Seidel condition With Theorem B.1.1, we compute:

{Abs[d] < 1, Abs[a] < d + 3,
a+b+c+d+1>0, -a+b-c+d+1>
0, 1 -d)2b +c2-al+dc-1+d (1-d"2+a2dc<
0} /. {fa->al"2-2-bl -b2, b ->1+2 (bl +b2) + bl b2,
c > -bl - b2 - 2 bl b2, d -> bl b2} // FullSimplify.

The result is:

{Abs[bl b2] < 1, Abs[2 - al"2 + bl + b2] < 3 + bl b2, al~2 > 0,
4 (1 +bl) (1 +b2) > al~2,
al"2 (b1 + b2 + (-2 + al"2 - bl) bl b2 + bl (-1 + 2 bl) b2"2) < 0},

which can be further simplified to (3.64).

Negative momentum  With Theorem 3.2.6, we can actually show that in general
at least one of 3 and 53 must be negative. There are three cases to consider, and in each
case we simplify (3.64):

1. 5152 = 0. WLOG, let 5y = 0, and we obtain

—1 < B <0and a’0® < 4(1+ B). (B.14)

2. 182 > 0. We have

—1< B <0, =1< B, <0,0%0% <4(1+ B1)(1+ Bs). (B.15)
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3. 0152 < 0. WLOG, we assume [3; > (5. We obtain:

B
1+ 25

—1<62<0,0<61<min{

—3%2, } (B.16)

The constraints for o are a > 0 and:

i { (1= B1B2)(26182 — 1 — f2)
B132

,0} <a?o? <4(1+B)(1+B). (B.17)

These conditions can be further simplified by analyzing all singular values. They only
depend on oy and o,, the largest and the smallest singular values. Now, let us derive
(B.15), (B.16) and (B.17) more carefully. Note that we use a for ao.

Proof of equation B.15
By running the following Mathematica code:
Reduce[Abs[bl b2] < 1 && Abs[-a"2 + bl + b2 + 2] < bl b2 + 3 &&
4 (b1 + 1) (b2 + 1) > a™2 &&

a”2 bl b2 < (1 - bl b2) (2 bl b2 - bl - b2) && bl b2 > 0 &&
a > 0, {b2, b1, a}]

we obtain:
-1 < b2 <0 & -1 <Dbl <0 & 0<a<Sqrt[4 + 4 bl +4 b2 + 4 bl b2]

Proof of equations B.16 and B.17

By running the following Mathematica code:

Reduce[Abs[bl b2] < 1 && Abs[-a"2 + bl + b2 + 2] < bl b2 + 3 &&
4 (b1 + 1) (b2 + 1) > a2 &&
a"2 bl b2 < (1 - bl b2) (2 bl b2 - bl - b2) && bl b2 < 0 &&
bl >= b2 && a > 0, {b2, bl, a}]

we obtain:

(-1 < b2 <= -(1/3) && ((0 < bl <= b2/(-1 + 2 b2) &&
0 <a<3$8grtld +4 bl +4 b2+ 4 bl b2]) || (b2/(-1 + 2 b2) <
bl < -(1/(3 b2)) &&
Sqrt[(-b1 - b2 + 2 bl b2 + b1"2 b2 + bl b2"2 - 2 b1"2 b272)/(
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bl b2)] < a < Sqrt[4 + 4 bl + 4 b2 + 4 bl b2]))) || (-(1/3) <
b2 < 0 && ((0 < bl <= b2/(-1 + 2 b2) &&

0 <a<Sqrtld + 4 bl +4 b2+ 4 bl b2]) || (b2/(-1 + 2 b2) <

bl < -(b2/(1 + 2 b2)) &&

Sqrt[(-b1 - b2 + 2 bl b2 + b1"2 b2 + bl b2°2 - 2 b1"2 b2°2)/(

bl b2)] < a < Sqrt[4 + 4 bl + 4 b2 + 4 bl b2])))

Some further simplification yields (B.16) and (B.17).
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Appendix C

Supplementary Material for
Chapter 4

C.1 Local Boundedness and Lipschitzness

The purpose of this section is to derive the local Lipschitzness and boundedness of various
first-order and second-order derivatives based on the assumption that f is twice continuous
differentiable and that the Hessian of f is Lipschitz continuous (Assumption 4.3.1). Based
on the derivations in Appendix C.1, we derive the non-asymptotic local convergence of
Newton-type algorithms, including GD-Newton and Complete Newton. In order to quan-
tify the absolute constants we mentioned in Theorems 4.3.2 and 4.3.5, we first quantify
WLOG that the neighborhoods in (4.7) to be:

N(a?) = B(z",8,) == {z € R": |lx —a"|| < &},
Ny =By*,8,) == {y e R™ : |ly — y*|| < ,},

where d,, > 0 and J, > 0. Since f is twice continuous differentiable, at its SLmM (z*, y*),
the second-order derivatives are bounded. There exist positive constants B, By, By, such
that for any (x,y) € B(z*,6,) x B(y*,d,),

1072 f (. 9)II < Bua, 105, f (2, )| < Bay, 10, f(z,y)]| < By, (C.1)

: 2 _ (92 T 2 ) 2
Since 9, f(z) = (03,f(2))" for f € C* (Schwarz’s theorem), we have |97, f(z,y)|| < B.,
(the fact that the matrix A and its transpose AT have the same spectral norm can be
derived from the SVD decomposition). For later convenience, we denote

B(z*) := B(z*,d,) x B(y*, ). (C.2)
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Since 97, f(z*,y*) < 0 and f € C?, we can assume w.l.o.g. that for any z € B(z*), 02, f(2) =
—pyI. Therefore, (92, f(-))~" is bounded on B(z*), i.e.,

102, £ (2))7Hl < pyts V2 € B(2"). (C.3)
This is because of the following lemma:

Lemma C.1.1 (Local Lipschitzness and boundedness of the inverse). Suppose in

a neighborhood N' C RY, there exists ju > 0 such that there exists a matriz-valued function
A N — R¥¥k that satisfies:

for any z € N, A(z) < —ul or for any z € N, A(z) = ul. (C.4)

then for any z € N, A(2) is invertible and || A7 (2)|] < p™t, with A7 @ 2z — (A(-))7.
Moreover, if A is L-Lipschitz continuous, i.e., for any z1,z, € N, we have

[A(z1) — A(22)[| < Ll[21 = 2|, (C.5)
then A=1 .= (A(-))™! 4is p=2L-Lipschitz continuous, i.e., for any z1,zo € N, we have

1A (z1) = A ()| < p77Lllz1 — 2. (C.6)

Proof. WLOG we only need to prove the case when A(z) = ul for any z € N, because we
can take B = —A for the other case and apply the result on B. The invertibility of A(z)
follows from the positive definiteness. From the definition of spectral norm we have that
for any z € N:

1A () = sup A7 (2)w'[| = sup [u] (C.7)

f[w’{|=1 [A(z)wl=1

On the other hand, A(z) = ul tells us that for any w € R? and ||A(2)w| = 1, we can
write:

pllwl* < w"A)w < Jlwl - [[A(z)w] = vl (C.8)

where we used Cauchy—-Schwarz inequality. Combining (C.7) and (C.8) above we obtain
that for any ||A(z)w|| = 1, we have ||w|| < p~! and thus for any z € N:

AT I < p (C.9)
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Therefore, for 2,z € N, we have from the Lipschitzness of A that

AT} (z1) = AN (2)[| = |A7H (20) A(21) AT (22) — A7 (21) A22) A7 (20) |

< AT z)(A(z1) — A22)) A7 (=) |

< AT )N A=) = A=) - 1A (=)

< p L2 = 2|, (C.10)

where in the third line we used that for two matrices U € R? — R**F W € R? — RF**,

|V = sup [UVz] < sup [U]-[[Vz]| = [|U]] Sup, Ve = UVl (C.11)

z||=1 zl|=1 |E:
ll2]]

O

Lemma C.1.1 tells that (92,)7'f := (92, f(-))~" is p,*Ly,-Lipschitz continuous under
Assumption 4.3.1.

Now let us derive the local Lipschitzness of the partial derivatives 0, f and 0,f from
the local boundedness of the partial Hessians. For any 21, zo € B(z*), we have:

102/ (21) = Ou f(22) | = [|02f (21, 51) — Ouf (22, 92)|
= |0af(z1,91) — Ouf (21, y2) + Ou f (21, y2) — Ou f (22, 2) ||
<0z f(1,91) = Ouf (1, y2) | + (|02 f (21, y2) — Ouf (w2, 92) |
<N, f@n vl - Iy — ol + 105, f (2, g)ll - oy — 2o
< Buyllyr — v2ll + Beallz1 — 22|
< (Bay + Baa) |21 — 22ll, (C.12)

where in the fourth line we used the mean-value theorem and that ye € [y, ys] and z., €
[x1, Z2] ([a,b] denotes a line segment with end points a and b); in the second last line we
used (C.1); in the last line we used ||z; — xo|| < |21 — 22f] and ||y1 — vl < ||z1 — 29|
Similarly, we can derive that:

10y f(21) = Oy f(22)|| < (Bey + Byy)ll21 — 22]- (C.13)

The local Lipschitzness of 0, f and 0, f also leads to their local boundedness. On the
neighborhood B(z*), we can derive:

(C.14)
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where we defined L, := B,, + B, to be the Lipschitz constant of 0, f on the neighborhood.
Similarly, we can derive that |0, f(2)|| < L,(0,+0,) for any z € B(z*) with L, := B,,+By,.
To summarize we have the following lemma.

Lemma C.1.2 (Local Lipschitzness and boundedness). At an SLmM z* of a function
[ € C?, there exist positive constants By, Byy, By, and p, such that for any z € B(2*):

107 f ()| < Buw, 10, f (2)Il < By 105, f(2)|| < By,
Oy f(2) = =y I, (05, £(2)) M < (C.15)

and O, f and O, f are locally Lipschitz, i.e. for any z, 2z € B(2*), we have

10:f(21) = 0o f(22)|| < Lell21 — 22| = (Baw + Bay)ll21 — 22
||ayf(zl) - ayf(ZZ)H < LyHZl - 22” = (Bry + Byy)Hzl - 22” (C'16)

Moreover, 0,f(z) and 0,f(z) are bounded, i.e., for any
102 f (2] < Ba:= La(0s + 0y), |0y f(2)[| < By := Ly(0a + 0y). (C.17)

Suppose Assumption 4.3.1 holds on the neighborhood B(z*), then (02,)""f = (9;,f(-)) ™"
18 /L;2Lyy—Lz'pschitz continuous, i.e. for any z, z2 € B(z*), we have

1@, (20) ™ = (@2,F ()| < 11y Ly la = 2] (C.18)

Let us now derive the local Lipschitzness of D, f and D,,f. We need the composition
rules of the Lipschitzness and boundedness of addition and product. Recall from Assump-
tion 4.3.1 that for any z;, 20 € B(z*), we have:

107:f (21) = 020 f (22) | < Luallr = 2], 105, f(21) = 05, f(22)l| < Luyllzr — 2,

105, f (21) = 95, f(z2) | < Lyyll21 — 2. (C.19)
Lemma C.1.3 (Local Lipschitzness and boundedness of addition). Suppose that in
a neighborhood N' C R?, we have matriz-valued functions A : N' — R¥>k B N — RkxF
and vector-valued functions v : N' — RF, u : N — R*. Suppose that on the neighbor-

hood N, A is L4-Lipschitz continuous, B is Lg-Lipschitz continuous, v is L,-Lipschitz
continuous and u s L,-Lipschitz continuous. Namely, for any zi, 2o € N, we have:

[A(z1) = A(z2)[| < Lallzs — 22|, [[B(21) = B(22)l| < Lallz1 — 2,
[o(21) = v(2)|| < Lollzs = 22l [Juz1) = u(z2)]] < Lullze = 2. (C.20)
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Then, the matriz-matriz addition function A+ B : z — A(z)+ B(2) is (La+ Lg)-Lipschitz
continuous and the vector-vector addition function u + v : z — u(z) + v(z) is (L, + Ly)-
Lipschitz continuous, i.e. for any z,z3 € N, we have:

I(A+ B)(21) = (A+ B)(22)|| < (La+ L) - [[21 = 2l (C.21)
I(w+v)(21) = (u+v)(z2)]| < (Lu+ Ly) - [[21 = 22| (C.22)

Suppose A, B, v, u are By, Bg, B,, B, bounded on the neighborhood N, respectively, i.e.
for any z € N, we have:

[A()II < Ba, |B(2)[| < Bg, [[v(2)]| < Bu, [[u(2)]| < Bu. (C.23)

Then, A+ B is (Ba + Bg)-bounded and v+ v is (B, + B,)-bounded on the neighborhood
N.

Proof. For any z1,z; € N, we write:

[(A+ B)(21) — (A+ B)(22)|| = |A(21) — A(22) + B(21) — B(2)|
< [[A(21) — A(z2)|| + | B(21) — B(z2) |l
< Lallz1 — 22| + Lllz1 — 2|
— (La+ L)z — 2. (C.24)

Similarly, we can prove ||(u—+v)(z1) — (u+v)(22)|| < (Lu+ Ly)-||21 — 22]|. The last sentence
of Lemma C.1.3 follows from the triangle inequalities of norms. O]

Lemma C.1.4 (Local Lipschitzness and boundedness of product). Suppose that in
a neighborhood N' C R?, we have matriz-valued functions A : N' — R¥>*k B N' — RkxF
and a vector-valued function v : N — RF. Suppose that on the neighborhood N, A is
L -Lipschitz continuous and By bounded, B is Lg-Lipschitz continuous and Bg bounded,
v 18 L,-Lipschitz continuous and B, bounded. Namely, for any z1, 2, € N, we have:

[A(z1) = A(z)ll < Lallzs — 2|, |1B(21) = B(z2)[| < Lpll21 = zll;
[v(21) = v(22)|| < Lolz1 — 22l (C.25)

and for any z € N,

[A)[I < Ba, [ B(2)[| < B, [v(2)[| < By (C.26)
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Then, the matriz-matriz product function AB : z — A(z)B(z) and the matriz-vector
product function Av : z — A(2)v(2) on the neighborhood N are also Lipschitz, i.e. for any
21,20 € N, we have:

|A(z1)B(21) — A(22) B(22)[| < (BaLp + BpLa) - [|21 — 22, (C.27)
[A(z1)v(21) — A(22)v(22) || < (BaLy + ByLa) - [[21 — 22]|- (C.28)

Moreover, AB is ByBpg-bounded and Av is B4 B,-bounded on the neighborhood N .

Proof. For any z1, 2o € N, we have:

[A(z1)B(21) — A(22) B(22) || = [|A(21) B(21) — A(21) B(22) + A(21) B(22) — A(22) B(22) |

< [|A(21)B(21) — A(21) B(22)[| + | A(21) B(22) — A(22) B(22)||
= [|A(z1)(B(z1) — B(22))|| + [[(A(21) — A(22)) B(22)]|

< A=) - 1B(21) — B(22)[| + [[A(21) — A(z2)|| - | B(22) |

< (BaLp + BpLa)|21 — 2, (C.29)

where in the fourth line we used (C.11). Similarly, we can derive that for 21,2, € N, we
have:

[A(z1)v(21) = A(z2)v(22)|| < (BaLy + BuLa)llz1 — 2| (C.30)

The final claim follows from (C.11) and that for any z € N, [[A(2)v(2)]| < [JA(2)] -
lo(2)]]- O

We can now derive the local Lipschitzness of D, f and D, f under Assumption 4.3.1. On
the neighborhood B(z*), since (E)Zy)*l J s py, 2 Ly,~Lipschitz continuous from Lemma C.1.1
and /1, L-bounded from Lemma C.1.2, and 8, f is L,-Lipschitz continuous and B,-bounded,
from Lemma C.1.4,

(@2,)7"f - 0, f is (u, 'Ly 4 By, * Ly, )-Lipschitz continuous, and ' B, bounded. (C.31)

Smce 0? y,J 18 Byy-bounded and L,,-Lipschitz continuous from Assumption 4.3.1, 89233/ f-
(95,)” LF0,f is

Lyt ‘B, + Bwy(ﬂy_lLy + Byﬂy Lyy) (C.32)
Lipschitz continuous and

By, By (C.33)
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bounded on B(z*). Finally, from Lemma C.1.3, D, f = 9, f — 02, f - (02,) " f - O, f is:
Ly + Lwy:u;lBy + Bwy(:u;lLy + By:u;QLyy) (C.34)

Lipschitz continuous and B, + Byyu,, !B, bounded. In a similar way, Dy, f = Oy f — 6§y f-
(02,)71f - Oy f is

Loz + 2Ly Baypi, ' + B2 1, Ly, (C.35)
Lipschitz continuous and B,, + Bzy,u; ! bounded. We summarize our result as follows:

Lemma C.1.5 (Local Lipschitzness and boundedness of D,f and D2_f). Suppose
on the neighborhood B(z*) of an SLmM z* of a function f € C%, Assumption 4.5.1 holds.

Da:f = a:cf - agyf ’ (ajy)ilf ) ayf is:
L2 := Ly + Layp, ' By + Bay(pt, ' Ly + By, > Ly,) (C.36)

Lipschitz continuous and
BY := B, + By, ' B,

bounded, i.e., for any z, z1, zo € B(2*), we have that:
[0, (21) = Def ()] < I2]121 — 2]l DS (2)] < B (C37)
In a similar way, Doy f = Opu f — 8§yf . (ajy)’lf Oy f 15
LY, = Lug + 2LayBoyp, ' + B2y, * Ly, (C.38)

Lipschitz continuous and
Bgm = By + Bgyugjl

bounded, where the constants are the same as in Lemma C.1.2. i.e., for any z,z1, 20 €
B(z*), we have:

D%, f (1) = Do f (22) I < L3, [l21 = 2|l D%, £ (2)]| < By, (C.39)

Finally, we derive the local Lipschitzness of the derivatives of the local maximum func-
tion ¢ (z) = f(z,r(x)) where z € N(z*), i.e.,

V(@) =Dy f(z,7()), ¥'(x) =Dy, f(z, 7 (). (C.40)
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From Lemma C.1.5, for any 1, 22 € N (2*) = B(z*, d,), we have that

19 (1) = " (z2)|| = (D2 f (21, 7(21)) — Do f (22, 7(22))]
< L1, (1)) — (22, 7(22)) |
< Ly(|Jwy — @l + ||r(21) — 7(x2)]])
= Ly(llzy — ma|l + (|1 () (21 — 22)])
< Ly (L4 |17 ()N |1 — 2]
= L1+ || = ((05,) " - 95) f (g, () |21 — 22
< L2(1+ gy ' Boy )1 — 5, (C.41)

where in the fourth line we used the mean-value theorem and that z. is on the line segment
with end points z; and xo. In the sixth line we used (4.8) and in the last line we used
the local boundedness of (92,)~" f and 92, f in Lemma C.1.2 and (C.11). Similarly, we can
derive that:

1" (1) = ¢"(@2) | = D2 f (w1, 7(21)) — Do f (2, 7(22)) |
< Lo ll(w1 r(21)) = (22, 7(x2)) |
< L3, (1+ 1y Bay) |l — 2ol (C.42)

We summarize these conclusions:

Lemma C.1.6 (Local Lipschitzness of ¢/(z) and ¢"(z)). Under the same assumption
as in Lemma C.1.5 we define

P(z) = f(x,r(x)) where z € N(x*).

We have ' (z) = D, f(z,r(z)) and ¢"(x) = D2, f(x,r(x)). Moreover, ¥'(z) and ¢"(x) are

Lipschitz continuous on N'(x*), namely, for any x € N (z*), we have that:

[/ (21) = ¢’ (@2)l| = IDaf (w1, 7(21)) = Duf (w2, 7(2)) || < LY [|1 — ], (C.43)
19" (1) = 9" (@) || = D50 f (w1, 7 (1)) — Dipf (wa, r(2)) | < Lilloy — 2ol (C.A4)

where we define
LY = L2(1 + p, " Byy) and LY, := L2 (14 p, " Byy), (C.45)

and the constants L2, L . p,, By, are defined in Lemmas C.1.2 and C.1.5.
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Since D?_f = 0 for any z € B(z*) and we have proved in Lemma C.1.5 that D?_f is
(Lipschitz) continuous, there exists a positive constant p, > 0 such that

D2, f(2) = u.I, for any z € B(z*). (C.46)
From Lemma C.1.1 we obtain that:

Lemma C.1.7. At an SLmM z* of a function f € C?, suppose that Assumption 4.5.1
holds on the neighborhood B(z*). There exists p, > 0 such that (D2,)~'f := (D2, f(:))~" is
locally bounded and Lipschitz continuous, i.e., for any z € B(z*), we have:

1(02,) " fF () < izt (C.47)
and for any z1, zo € B(2*), we have:
1(05.) ™" f(21) = (D2.) 7" fF22) || < gz Lo, [0 — 22|, (C.48)

where L2 is defined in Lemma C.1.5.
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