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Abstract

Text-based games are complex, interactive simulations where a player is asked to
process the text describing the underlying state of the world to issue textual commands
for advancing in a game. Playing these games can be formulated as acting in a partially
observable Markov decision process (POMDP), as the player needs to issue actions to reach
the goal, by optimizing rewards, given textual observations that may not fully describe the
underlying state. Previous art has focused on developing agents to achieve high rewards
or faster convergence to the optimal policy for single games. However, with the recent
advances in reinforcement learning and representation learning for language we argue it is
imperative to start looking for agents that can play a set of games drawn from a distribution
of games rather than single games at a time.

In this work, we will be looking at TextWorld [1 7] as a testbed for developing generalizable
policies and benchmarking them against previous work. TextWorld is a sandbox environment
for training and evaluating reinforcement learning agents on text-based games. TextWorld
is suitable to check the generalizability of agents as it enables us to generate hundreds
of unique games with varying levels of difficulties. Difficulty in text-based games are
determined by a variety of factors like the number of locations in the environment and
length of the optimal walkthrough to name a few. Playing text-based games requires skills
in sequential decision making and processing language. In this thesis we evaluate the learnt
control policies by training them on a set of games and then observing their scores on
unseen games during the training phase. We check for the quality of the policies learnt,
their ability to generalize on a distribution of games and their ability to transfer on games
from different distributions. We define game distributions based on the difficulty level
parameterized by the number of locations in the game, number of objects, etc.

We propose generalizable and transferrable policies by extracting structured information
from the raw textual observations describing the state. Additionally, our agents learn these
policies in a purely data-driven fashion without using any handcrafted component — a
common practice found in prior work. Specifically, we learn dynamic knowledge graphs
from raw text to represent our agents’ beliefs. The dynamic belief graphs a) allow agents to
extract relevant information from text observations and, b) act as memory to act optimally
in the POMDP. Experiments on 500+ different games from the TextWorld suite show that
our best agent outperforms previous baselines by an average of 24.2%.
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Chapter 1

Introduction

Text-based games are complex, interactive simulations in which the game state is described
with text and players act using simple text commands (e.g., chop carrot with knife).
They serve as a proxy for studying how agents can exploit language to comprehend and
interact with the environment. Text-based games are a useful challenge in the pursuit of
intelligent agents that communicate with humans (e.g., in customer service systems).

Playing text-based games requires a combination of reinforcement learning (RL) and
natural language processing (NLP) techniques. For example : a player has to process textual
observations to optimize rewards and make a recipe by collecting all the ingredients and
processing them correctly. However, inherent challenges like partial observability, long-term
dependencies, sparse rewards, and combinatorial state-action spaces make these games very
difficult. For instance, [29] show that a state-of-the-art model achieves a mere 2.56% of
the total possible score on a curated set of text-based games for human players [11]. On
the other hand, while text-based games exhibit many of the same difficulties as linguistic
tasks like open-ended dialogue, they are more structured and constrained. Furthermore,
the idea behind solving these games is to potentially yield agents which can understand
their environments purely by language-informed interactions. However at the current stage,
the results obtained on these games should not be directly extended to any real-world
application(s), owing to the relative simplicity of these games compared to interactions in
the real-world.

To design successful agents for text-based games, previous works have relied largely on
heuristics that exploit games’ inherent structure. For example, several works have proposed
rule-based components that prune the action space or shape the rewards according to
a priori knowledge of the game dynamics |31, 44, 2, 78]. More recent approaches take



advantage of the graph-like structure of text-based games by building knowledge graph
(KG) representations of the game state: Ammanabrolu et al., 2019 [6] and Ammanabrolu
et al., 2020 [5], for example, use hand-crafted heuristics to populate a KG that feeds into
a deep neural agent to inform its policy. They use off-the-shelf open domain information
extraction tools (OpenlE [3]) to obtain triplets from text observations at every time step.
The set of triplets thus obtained contain many irrelevant triplets which calls for using
handcrafted filters for pruning the obtained knowledge graphs. Furthermore, handcrafted
components are also required for maintaining the dynamic knowledge graphs to preserve
the information from previous time steps — not a functionality provided by OpenlE. Despite
progress along this line, we expect more general, effective representations for text-based
games to arise in agents that learn and scale more automatically, which replace heuristics
with learning [65].

This work investigates how we can learn graph-structured state representations for text-
based games in an entirely data-driven manner. We propose the graph-aided transformer
agent (GATA) that, in lieu of heuristics, learns to construct and update graph-structured
beliefs” and use them to further optimize rewards. We introduce two self-supervised
learning strategies—based on text reconstruction and mutual information maximization by
contrastive learning—which enable our agent to learn latent graph representations without
direct supervision or hand-crafted heuristics.

We benchmark GATA on 500+ unique games generated by TextWorld [17] (a sandbox
environment for text-based games), evaluating performance in a setting that requires
generalization across different game configurations. We show that GATA outperforms
strong baselines, including text-based models with recurrent policies. In addition, we
compare GATA to agents with access to ground-truth graph representations of the game
state. We show that GATA achieves competitive performance against these baselines
even though it receives only partial text observations of the state. Our findings suggest,
promisingly, that graph-structured representations provide a useful inductive bias for
learning and generalizing in text-based games.

1.1 Problem Statement

A graph-aided transformer agent (GATA), generalizes on distributions of text-based games
better than previous baselines using purely data-driven unsupervised learning regimes.

'Text-based games are partially observable environments.



You find yourself in a backyard. You make out a patio Welcome to the shed. You can barely contain your

table. But it is empty. You see a patio chair. The patio excitement. You can make out a closed toolbox here.
chair is stylish. But there isn’t a thing on it. You see a You can see a workbench. The workbench is wooden.
gleam over in a corner, where you can see a BBQ. Looks like someone’s already been here and taken
There is a closed screen door leading south. There is everything off it, though. You swear loudly. There is an
an open wooden door leading west. open wooden door leading east.
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Figure 1.1: GATA playing a text-based game by updating its belief graph. In response to
action A,_;, the environment returns text observation O,. Based on O, and G,_;, the agent
updates G, and selects a new action A,. In the figure, blue box with squares is the game
engine, green box with diamonds is the graph updater, red box with slashes is the action
selector.

1.2 Contributions

The main contributions of this work can be summarized as follows :

e We propose a novel graph-aided transformer agent (GATA) which extracts dynamic
belief graphs in an end-to-end manner using unsupervised training regimes, to optimize
rewards on distributions of text-based games;

e We propose two unsupervised training regimes, contrastive learning and self-supervised
learning-based, to extract and maintain dynamic knowledge graphs from unstructured
textual sequences;

e We empirically benchmark all the methods discussed in the work on a wide variety of
games to test for their generalization abilities.

e We also probe the dynamic knowledge graph embeddings extracted by GATA to study
the nature of information encoded by them.

1.3 Thesis Organization

The thesis is organized as follows, in Chapter 2, we go over related works on playing
text-based games, reinforcement learning, graph representation learning, unsupervised



representation learning. Chapter 3, the main chapter, describes the model architecture of
GATA and the unsupervised training regimes, followed by details about experiments in

Chapter 4. In Chapter 5, we summarize the main contributions of the thesis and discuss
potential future work.



Chapter 2

Background and Related Work

The approaches discussed in this work are an amalgamation of graph representation learning,
deep reinforcement learning, representation learning and text-based games. In this chapter,
we first discuss the relevant topics to explain our methodology in Chapter 3.

2.1 A brief review of Reinforcement Learning (RL)

The essence of reinforcement learning is learning through interaction. An RL agent interacts
with its environment and learns to optimize rewards by altering its behavior based on these
interactions. Such trial-and-error learning has its roots in behavioral psychology which
forms one of the core foundations of RL [06]. In an RL setting, an agent observes a state
S, from the environment at gamestep ¢. The agent then issues an action a, to interact with
the environment based on which it receives a reward R,,; from the environment. The goal
of an agent is learn a policy 7 to maximize the expected return. This goal of an RL agent
draws parallels with the literature in optimal control. However, unlike in optimal control,
the state transition dynamics of the environment aren’t accessible by the agent. As a result,
the agent has to rely heavily on the trial-and-error mechanism to learn the consequences
of its actions. Every action issued by the agent yields information from the environment,
which the agent uses to update its knowledge. See the perception-action-learning loop in
Figure 2.1.
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Figure 2.1: An agent interacts with the environment by issuing an action to receive next
state and reward.

2.1.1 Markov Decision Processes and RL

Playing games can be represented as a Markov decision process (MDP) parameterized by
< S,p,A,T,R,v > Here, S is a set of states, p(sy) is a distribution of starting states,
A is the set of actions, T'(s,41]s;,a;) are the state transition dynamics, R(s;, a;, Sy41) 1S
the reward function and v € [0, 1] is the discount factor where lower values yield myopic
returns.

An agent’s policy m maps states to a probability distribution over actions : 7 : S —
p(A = al|S). In case of episodic MDPs, the state is reset after reaching the terminal state.
Further, the sequence of states, actions and rewards is called a rollout of the policy. Every
rollout results in a return R defined as : R = ZtT:_Ol vtrtH. The goal in RL is to find an
optimal policy 7" to achieve the maximum expected return : @ = argmaz,E[R|7]. In
case of non-episodic MDPs (T = 00), v < 1 prevents infinite returns.

As per the Markov property, the current state s, is solely dependent on the previous state
si—1- As aresult of this property, in RL, actions a,_; are chosen by just observing the current
state s;_;. Formulating RL as an MDP requires the environment to be fully observable,
which may not be the case. Text-based games for instance are partially observable. Partially
observable Markov decision processes (POMDPs) are thus a more general formulation of
MDPs which can be used to model partially observable models as well.

In POMDPs the agent receives an observation o; € {2 which is dependent on the current
state and the previous action as per the observation probability distribution, p(op1|Si+1, as).



Algorithms for POMDPs maintain belief over the current state conditioned upon the
belief of the previous state, previous action and the current observation. Typically, in a
deep learning setting, recurrent neural networks are used to tackle POMDPs as they are
dynamical systems |53, 28, 32].

2.1.2 Value functions

In RL, there are two main approaches to achieve an optimal policy: estimating value
functions or carrying out policy search. In this work, we mainly rely on value function-based
algorithms and hence we restrict the review [10] to only this class of RL algorithms. The
state-value function V" (s) is defined as the expected return when starting in state s and
following the policy .

V7™(s) = E[R]s, 7] (2.1)

The optimal policy 7*(s) has the state-value function V*(s) (and vice-versa) defined as :

V*(s) = maz,V"(s) Vs€S. (2.2)

Access to V*(s) yields the optimal policy as the agent can choose the action a that
maximises Est+1~T(st+1|st,a)[V*(3t+1)] at every time step. Similar to the state-value function
V(s), we construct the state-action value or quality function Q" (s,a). We do so, as the
transition dynamics T'(s:41|5;, a;) are not accessible by the agent. The Q" (s, a) is given as :

Q" (s,a) = E[R]s,a, ] (2.3)

Given a Q"(s,a), the agent chooses the action a with highest value in every state :
argmaz,Q" (s, a).

2.1.3 How to learn ()-values?

()-values are learnt by leveraging the Markov property using the Bellman equation [14].
The Bellman equation adapted for ()-values looks as follows:

QW(Sa a) = Est+1[7’t+1 + ’YQW(SHM 7(3t+1))]‘ (2’4>

The recursive Bellman equation 2.4 allows us to iteratively improve our Q" values. Such
updates forms the core of Q-learning [7/| and the state-action-reward-state-action (SARSA)
[57] algorithms. Typically the @-values are updated as :

Qﬂ(stv at) « Qﬂ(sta at) + 0557 (25)

7



where « is the learning rate, § =Y — Q" (s;, a,) is the temporal difference and Y are the
targets.

SARSA is an on-policy learning algorithm which uses the transitions by the behavioral
policy (derived from Q") to improve the Q-value estimates. In SARSA, the targets are thus
written as : Y = r, + vQ" (8441, @41). In Q-learning, targets are necessarily obtained by the
behavioral policy, instead, it generally formulates targets as : Y = r, + ymax,Q" (Si41,a);
which estimate Q*.

The optimal Q* is achieved from any arbitrary Q" at an intermediate stage by using
generalized policy iteration methods. The policy iteration method generally consists of two
phases, policy evaluation and policy improvement. The policy evaluation phase aims at
iteratively achieving better estimates of the ()-values by minimizing the TD errors. Better
()-value estimates from policy evaluation helps in achieving improved policy (during policy
improvement). Generalised policy iteration methods interleave the policy iteration and
policy improvement steps for faster convergence to an optimal policy. In a tabular RL
setting, generalized policy iteration methods converge Q" to the optimal Q* as the we
increase the number of iterations.

2.2 Deep Reinforcement Learning

The previous chapter describes an RL setting in a tabular form. However, as we move
away towards large state and action spaces, it becomes increasingly intractable to learn
Q-values for each state-action pair. As a result, we use deep reinforcement learning where
value functions ¢(s,a), v(s) and policies 7(s,a) are represented by neural networks-whose
parameters are trained by gradient descent optimizers. Thus the ()-value estimates are now

dependent on the parameters 6 of the neural network (or any other function representation),
and are defined as, Q(s,a;0) = Q*(s,a).

2.2.1 Deep Q-Networks (DQN)

DQN [51] successfully combined deep neural networks and reinforcement learning to predict
action values for a given state S;. Specifically, they use convolutional neural networks
to encode the states of an Atari game (stack of frames of raw pixels) to predict Q value
for every action at every time step t. Further, at each game step ¢, the agent selects an
action in an e-greedy manner and adds a transition tuple < S;, Ay, Rer1, V1, See1 > t0 a



Algorithm 1 Training DQN

1: Initialize replay buffer B
2: Initialize the Q-network with random weights
3: for episode = 1, M do

4: Initialise sequence s; = {x1} and preprocessed sequence ¢; = ¢(s1)
5 for t=1, T do

6: With probability e select a random action a,

7 or select a; = maz,Q* (4(s;), az; 0)

8: Execute action a; to receive reward r; and next image x;41

9: Set next state s;41 = S¢, Ty41,a; and preprocess it as ¢z = ¢(Sp41)
10: Store transition < ¢y, ay, ¢, Ppe1 > in B
11: Sample random batch < ¢;,a;,7;, ¢j41 > from B
12: if ¢4 is terminal then
13: Y; =1y

14: else
15: y; =15 + ymazyQ(dj.1,a’50)

16: end if
17: Perform a gradient descent step on (y; — Q(¢;, a;; 0))?

18: end for
19: end for

replay buffer [15]. The replay buffer is used to sample transitions to optimize the DQN by
minimizing the loss

(Ris1 + Yeermaz 1 qp(Sien, a') — qo( Sy, At))2a (2.6)

where Y = Ryyq + veamazyqg( S, a') are the targets, and 6 are the parameters of the
target network—a frozen copy of the behavioral network 6 from a few iterations of the policy
iteration before. Algorithm 2 explains the training procedure of the DQN [51] in detail.

2.2.2 Double Deep Q-Networks

The maximizaton step in Equation 2.6 leads to an overestimation bias that can further lead
to sub-optimal policies [26]. Double Q-Learning [26] addresses this bias by decoupling the
selection of action from its evaluation. In deep Q-learning setting, this is done by using the
greedy action from the online network to get the estimated target Q-value from the target
network. This can be formulated as:

(Rt+1 + ”Yt+1Qé(St+1> argmaxa'Q@(St+la a')) - QG(Sta At))Q- (2-7)
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Doing this was experimentally demonstrated to reduce overestimations to avoid suboptimal
policies on Atari games [25].

2.2.3 Prioritized Experience Replay

Naive DQN uniformly samples a batch from the replay buffer B to optimize the Q-network.
A DQN with prioritized experience replay [58] samples transitions from which there is a
much to learn with higher priority than other transitions. Prioritized experience replay
uses the following variant of the temporal difference (TD) error [66], to sample a transition
with a probability p, :

Py X IRt+1 + ’yt+1maxa'Q§(St+la a') - %(St714t)|w~ (2'8)

The intuition here is to sample transitions with higher TD-errors more frequently to
capture the correct state-representations and Q-values rapidly.

2.3 Text-based Games

Text adventure games or interactive fiction (IF) games are interactive simulations where
text describes the states of the game, and require players to enter textual commands in order
to progress. IF games form a useful testing ground for grounding in natural language and
reinforcement learning policies. Formally, text-based games can be described as partially
observable Markov decision processes (POMDPs) [17] as the text-only observations, O,
provided by the game engine at time step ¢ may not fully describe the underlying game
state S; for the agent. Note that the observations O, are deterministic given the state
S, in the games explored in this work. However, same O, can be generated for more
than one S;. Using O, the agent interacts with its environment by issuing short text
commands A, as actions—based on which rewards R, are provided at every time step.
Figure 1.1 depicts an agent interacting with its environmen